3. ÜBUNGSBLATT

Lineare Algebra I

IM WS 2025/26 BEI PROF. DR. S. GOETTE

Abgabe bis Montag 3.11, 10:15 in den Briefkästen.

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt. Sie dürfen in Zweiergruppen abgeben.

Aufgabe 1 (4+4+2 Punkte)

Sei M eine endliche Menge. Gesucht ist eine Halbordnung \leq auf $\mathcal{P}(M)$, so dass für $A, B \subset M$ gilt

$$(*)$$
 $\#A < \#B \Rightarrow A \leq B.$

(a) Warum gibt es keine Halbordnung \leq , so dass für alle $A, B \subseteq M$ gilt

$$\#A < \#B \Rightarrow A \leq B$$
.

wenn M mindestens zwei Elemente enthält?

- (b) Geben Sie eine Halbordnung auf $\mathcal{P}(\{1,2\})$ an, die (*) erfüllt.
- (c) Beschreiben Sie ein allgemeines Verfahren, um für jede Menge eine Halbordnung \leq auf $\mathcal{P}(M)$ zu finden, die (*) erfüllt.

Aufgabe 2 (3+3+2+2 Punkte)

Es sei $n \in \mathbb{N}$, $n \ge 1$. Für $k, l \in \mathbb{Z}$ gelte $k \sim l$ genau dann, wenn ein $m \in \mathbb{Z}$ mit l - k = mn existiert.

- (a) Zeigen Sie: " \sim " ist eine Äquivalenzrelation. Wieviele Elemente hat der Quotient \mathbb{Z}/\sim ?
- (b) Es seien $k, l, p, q \in \mathbb{Z}$ mit [k] = [l], [p] = [q] in \mathbb{Z}/\sim beliebig. Zeigen Sie, dass [k+p] = [l+q] und [kp] = [lq].
- (c) Zeigen Sie mit (b), dass wir Addition und Multiplikation auf \mathbb{Z}/\sim erklären dürfen durch

$$[k]+[p]=[k+p]\quad \text{und}\quad [k]\cdot [p]=[kp].$$

(d) Überprüfen Sie mindestens zwei der Rechenregeln aus Satz 1.41 (a)-(d).

Aufgabe 3 (3+2+3+2 Punkte)

Es sei $f\colon M\to N$ eine beliebige Abbildung zwischen Mengen. Wir definieren eine Relation \sim auf M für alle $x,y\in M$ durch

$$x \sim y \iff f(x) = f(y).$$

Zeigen Sie:

- (a) Die Relation "∼" ist eine Äquivalenzrelation.
- (b) Die Abbildung f induziert eine Abbildung $\bar{f}: M/\sim \to \mathrm{im}(f)$.
- (c) Die Abbildung \bar{f} aus (b) ist bijektiv.
- (d) Schreiben Sie f als Verkettung von \bar{f} , einer Inklusion, und einer Quotientenabbildung. Hinweis: Achten Sie in (d) auf die Reihenfolge.

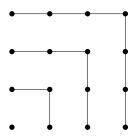
Aufgabe 4 (4+4+2 Punkte)

Die folgende Aufgabe stammt aus einem Schulbuch "Vertiefungskurs Mathematik".

Beweisen Sie, dass für jede natürliche Zahl n gilt:

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

- (a) Lösen Sie die Aufgabe durch vollständige Induktion.
- (b) Erklären Sie die Gleichung anhand des folgenden Bildes:



(c) Vergleichen Sie die Zugänge aus (a) und (b). Was sind Gemeinsamkeiten, was sind Unterschiede?

3. Präsenzaufgaben Lineare Algebra I

IM WS 2025/26 BEI PROF. DR. S. GOETTE

Aufgabe 1

Beweisen oder widerlegen Sie:

- (a) Für alle endlichen Mengen gilt $\#(M \cup N) = \#M + \#N$.
- (b) Subtraktion in \mathbb{Z} ist kommutativ.
- (c) Subtraktion in \mathbb{Z} ist assoziativ.
- (d) Es gibt eine Zahl $x \in \mathbb{Q}$, so dass y = x/y für alle $y \in \mathbb{Q}$.
- (e) Es gibt eine Zahl $x \in \mathbb{Q}$, so dass y = y/x für alle $y \in \mathbb{Q}$.

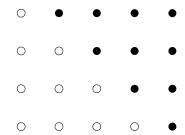
Aufgabe 2

Zu zeigen ist

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

für alle $n \in \mathbb{N}$.

- (a) Beweisen Sie die Gleichung durch vollständige Induktion.
- (b) Lässt sich mit Hilfe des folgenden Bildes ein Beweis finden?



(c) Vergleichen Sie (a) und (b). Wie würden Sie anderen die Gleichung erklären?