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An introduction to the notions of homotopy limit and colimit is given. It is explained how they can
be used to neatly describe the “old” distinguished triangles and shift functors of derived categories
resp. cofiber and fiber sequences in algebraic topology. One of the goals is to motivate the language
of derivators from the perspective of classical homological algebra. Another one is to give elementary
proofs (one brute-force in the exercises, and one a bit more abstract) that in the category of
unbounded chain complexes of an (AB4, resp. AB4*) abelian category all homotopy limits (resp.
colimits) exist and that this situation leads to a (stable) derivator. The heart of these proofs is an
explicit formula for homotopy limits and colimits, the Bousfield-Kan formula. Later it is explained
how these results fit in the framework of model categories. We sketch proofs that any model
category gives rise to a derivator. We also rediscuss Bousfield-Kan’s formula and outline the proof
that it is valid in any simplicial model category (even a slightly weaker structure). In the end the
homotopy theory of (homotopy) limits and colimits is discussed. In particular we explain that any
derivator is a module over H (the derivator associated with the homotopy theory of spaces).
The reader is assumed to have seen some algebraic topology and/or homological algebra (here in
particular the construction of abstract derived functors) although we will briefly recall everything.
Some knowledge of category theory (limits, colimits, adjoints) is helpful but most facts are listed
in an appendix. For the second part it is helpful to be familiar with model categories, but they will
be briefly motivated and results presented as a black box.
The notes of the fourth talk at the summer school, on fibered derivators, (co)homological descent
and Grothendieck’s six functors is to be found in a subsequent document [16].
I would like to thank all participants of the summer school for the nice week, and for their very
useful questions, comments and remarks.
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1 Homological algebra

References: [2, 11, 28, 31, 32]

We first focus on homological algebra. Some general facts about localizations of categories are
moved to section 4 to not interrupt the discussion. That section should be read alongside with the
present one.

1.1. Let A and B be abelian categories, for example the category of R-modules for a ring R.
One starting point for doing homological algebra emerges from the fact that functors F ∶ A → B
might not be exact but only left- or right-exact. Let us recall what this means: In A there is a
distinguished class of sequences isomorphic to

{ X � � α
(mono)

// Y // coker(α) }

— or equivalently — the class of sequences isomorphic to

{ ker(α) // Y
α

(epi)
// // Z }

which are called exact sequences. Actually the fact that these two classes coincide is the char-
acterising axiom which makes a category (with zero object and existence of certain (co)limits)
abelian. Recall that in any category with zero-object (??):

ker(X → Y ) ∶= lim

⎛
⎜⎜⎜
⎝

0

��
X // Y

⎞
⎟⎟⎟
⎠

coker(X → Y ) ∶= colim

⎛
⎜⎜⎜
⎝

X //

��

Y

0

⎞
⎟⎟⎟
⎠

If F ∶ A → B is now a functor between abelian categories which is only left exact, i.e. it preserves
kernels (and hence monomorphisms) but not cokernels resp. epimorphisms, the situation is “re-
paired” by constructing right derived functors RiF ∶ A → B which have the property that an
exact sequence

0 // X // Y // Z // 0 (1)

leads to a long exact sequence

0 // X // Y // Z // R1F (X) // R1F (Y ) // R1F (Z) // R2F (X) // ⋯

Recall how RiFX is constructed. First one chooses an injective resolution (supposed to exist in
A), i.e. an exact sequence

0 // X // I0
// I1

// I2
// ⋯
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where the Ii are injective. This might be seen as a quasi-isomorphism in the category of chain
complexes C(A) of A:

X �
� q.i. // I●.

RiFX is then defined as the homology of the complex F (I●). The homology groups do not depend
on the choice of I●. The long exact sequence arises because one can in fact find an exact sequence

0 // IX,● // IY,● // IZ,● // 0

which is quasi-isomorphic to sequence (1). The sequence

0 // F (IX,●) // F (IY,●) // F (IZ,●) // 0

now remains exact (because exact sequences of injectives split).
Let W be the class of quasi-isomorphisms in C(A). Actually one can form a functor to a category
ι ∶ C(A) → C(A)[W −1] which is universal (see 4.1) w.r.t. to functors with the property that all
quasi-isomorphisms become isomorphisms. Considering F as a functor C(A) → C(B)[W −1], its
property of being not exact can be expressed by saying that quasi-isomorphisms are not mapped
to isomorphisms.
One can even for an arbitrary (bounded below; otherwise see 6.3) complex X● find a quasi-
isomorphism

X●
� � q.i. // IX,●,

where IX,● is a complex of injectives. In Remark 4.1 it is explained that RF defined as X● ↦ F (IX,●)
can be seen as a functor C(A)[W −1] → C(B)[W −1] together with a universal (see 4.3) natural
transformation F → ιRF . It is uniquely determined (up to unique isomorphism) by this property
and is called the total right derived functor of F .

1.2. What properties does RF have, reminiscent of the fact that F was left exact, and which imply,
for example, the existence of the long exact sequence of right derived functors?
The problem is that an intrinsic notion of exact sequence does not exist in C(A)[W −1] anymore.
If

0 // X● // Y● // Z● // 0

is an exact sequence of chain complexes and

0 // X ′
● // Y ′

● // Z ′
● // 0

is another sequence, isomorphic to the previous in C(A)[W −1], then the latter does not need to be
exact, and the long exact sequence of the former cannot be reconstructed. Since in C(A)[W −1] both
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sequences are isomorphic, it is not clear how to proceed. The classical approach of triangulated
categories starts from the observation that the connecting morphism

Hi(Z●) δ // Hi+1(X●)

actually lifts to a morphism in C(A)[W −1] (we will review this in 1.7)

Z●
δ̃ // X●[1],

where (X●[1])i is Xi+1. The “old” strategy of Grothendieck and Verdier [31] is to not consider the
bare category C(A)[W −1] alone but to equip it with the following additional structures:

1. Shift functors [+1], [−1] ∶ C(A)[W −1]→ C(A)[W −1].

2. A distinguished set of sequences (so called distinguished triangles) isomorphic to

X● // Y● // Z●
δ̃ // X●[1]

coming from an exact sequence of complexes.

The answer to the question raised is thatRF is exact in the sense that it maps distinguished triangles
to distinguished triangles. Observe that this implies the existence of the long exact sequence of
right derived functors.
Grothendieck and Verdier found (cumbersome but workable) axioms that these two extra structures
should satisfy. One of them states that for any morphism α ∶X● → Y● there should be a triangle

X● // Y● // Cone(α) // X●[1]

completing it. (That means in our situation in particular that any morphism has to be quasi-
isomorphic to a monomorphism, which we will review shortly). Another axiom states that Cone(α)
is up to (non-unique!) isomorphism determined by α. A drawback of this approach is that Cone(α)
is not functorial in α, i.e. there is no functor

Cone ∶ Fun(→,C(A)[W −1])→ C(A)[W −1].

A further problem with using triangulated categories is that, for example, fundamental construc-
tions like the formation of the total complex of a complex of complexes can not be performed in
C(A)[W −1] equipped with its triangulated structure alone. Considering a complex of complexes
as a sequence of objects in C(A)[W −1] looses most information.
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1.3. The idea of derivators starts from the observation that actually the category C(A)[W −1], its
triangulated structure, and also the derived functors, abstractly depend only on the pair (C(A),W )
in a sense that we will now describe. For C(A)[W −1] this is explained in 4.1 (cf. also 4.9), and
RF for a functor F does only depend on (C(A),W ) by the abstract total-derived-functor-property
4.3 (cf. also 4.1). The fundamental observation is, that also the functors Cone and [±1] can be
characterized using only (C(A),W ) and accordingly the distinguished triangles can be defined.
The functor Cone is actually just the derived functor of the cokernel1, as we will now explain.
Consider the classical snake lemma: A commutative diagram with exact rows

0 // X //

α
��

Y //

β
��

Z //

γ
��

0

0 // X ′ // Y ′ // Z ′ // 0

yields an exact sequence:

0 // ker(α) // ker(β) // ker(γ) // coker(α) // coker(β) // coker(γ) // 0

If we consider coker as a functor

coker ∶ Fun(→,C(A))→ C(A)

(note that the left hand side is again the category of chain complexes of an abelian category, namely
of Fun(→,A)) then the snake lemma suggests the assertion

L1 coker = ker Li coker = 0 for all i > 1.

But how do we compute L coker, i.e. the total derived functor of coker in the sense of Defintion
4.3? Lemma 4.7 tells us that we have to replace α ∶ X● → Y● (functorially) by a quasi-isomorphic
morphism Qα ∶X ′

● → Y ′
● such that coker ○Q maps quasi-isomorphisms to quasi-isomorphisms. This

would be the case if Qα ∶X ′
● → Y ′

● consists of monomorphisms:

Lemma 1.4. Consider a diagram of chain complexes

X●
� � α //

q.i.
��

Y●

q.i.
��

X ′
●
� � α′ // Y ′

●

where the horizontal maps consists of monomorphisms and the vertical maps are quasi-isomorphisms.
Then the induced morphism coker(α)→ coker(α′) is a quasi-isomorphism.

1or, up to shift, the derived functor of the kernel
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Proof. The morphism of exact sequences of complexes

0 // X●
α //

��

Y● //

��

coker(α)●

��

// 0

0 // X ′
●

α′ // Y ′
● // coker(α′)● // 0

gives rise to a morphism of long exact sequences

Hi(X●) //

∼
��

Hi(Y●) //

∼
��

Hi(coker(α)●)

��

// Hi+1(X●) //

∼
��

Hi+1(Y●)
∼
��

Hi(X ′
●) // Hi(Y ′

● ) // Hi(coker(α)●) // Hi+1(X ′
●) // Hi+1(Y ′

● )

By the 5-Lemma the statement follows.

1.5. Now we proceed to construct a functorial replacement which consists of monomorphisms:
Recall that the cylinder of a morphism

α ∶X● → Y●

is the complex

Cyl(α)● ∶=X● ⊕ Y● ⊕X[1]● d =
⎛
⎜
⎝

dX● − id
dY● α

−dX●[1]

⎞
⎟
⎠

It is the colimit of
X●

δ0
��

α // Y●

��
∆○

1 ⊗X● // Cyl(α)

(see 4.9 for the definition of ∆○
1). This is analogous to the construction in topology (see 3.2) where

the name comes from.
There is an injection X● ↪ Cyl(α) induced by δ1. Furthermore there are morphisms

p ∶ Cyl(α)→ Y● ι ∶ Y● → Cyl(α)

where p is induced by the pair of maps Y● = Y● and ∆○
1 ⊗X● → X● → Y● and ι is the projection

Y● → Cyl(α).

Lemma 1.6. Let A be an abelian category and consider the pair (C(A),W). Then the association

(α ∶X● → Y●)↦ (α̃ ∶X● ↦ Cyl(α)●)

is a replacement adapted to coker (see Definition 4.6) which has values in monomorphisms.
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Proof. We have a functorial diagram

X●
� � // Cyl(X●)

p

��
X● // Y●

and it is easy to see that p and ι constitute a homotopy equivalence hence p is a quasi-isomorphism.
The replacement is adapted to coker by Lemma 1.4.

1.7. Now consider the exact sequence

0 // X● // Cyl(α)● // Cone(α)● // 0

where Cone(α)● is the cokernel, called cone of α.
Hence Lemma 1.6 implies finally:

L coker = Cone

Explicitly Cone(α) is the complex:

Cone(α)● ∶= Y● ⊕X●[1] d = (dY● α
−dX●[1]

)

Furthermore, if α is a monomorphism then one has a morphism of exact sequences

0 // X● //

��

Cyl(α)●

��

// Cone(α)●
p

��

// 0

0 // X●
α // Y● // Z● // 0

whose vertical morphisms are quasi-isomorphisms (for the third use Lemma 1.4). Furthermore the
composition (in C(A)[W −1])

Z● ∼
p−1

// Cone(α)●
pr2 // X●[1]

is the sought-for lift of the connecting homomorphisms of the long exact sequence. Finally, we have
X●[1] = Cone(X● → 0).

In particular:

Corollary 1.8. The distinguished triangles in C(A)[W −1] are precisely the sequences isomorphic
to

{ X●
α // Y● // L coker(α) // L coker(X● → 0) } (2)

where α runs over all morphisms in C(A).
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Observe that L coker is in fact a functor

L coker ∶ Fun(→,C(A))[W −1
→ ]→ C(A)[W −1]

where W→ is the class of morphisms in Fun(→,C(A)) which are point-wise a quasi-isomorphism.
The first category is in general different from Fun(→,C(A)[W −1])!

1.9. Dually the functor
ker ∶ Fun(→,C(A))→ C(A)

is not exact either. A dual version of Lemma 1.4 shows that a replacement will be adapted to ker
if it has values in epimorphisms. The dual construction of the cylinder yields the cocylinder as the
kernel of

coCyl(α) //

��

X●

��
Hom(∆○

1, Y●)
δ0 // Y●

where Hom(∆○
1,−) is the transposed version of ∆○

1 ⊗ −.
The Fiber or Cocone F (α) of α ∶X● → Y● is defined as the limit (kernel) of

F (α) //

��

coCyl(α)

α̃
��

0 // Y●

Hence:
Rker = F

If we carry out the computation of the explicit complex we get that

F (α)[1] ≅ Cone(α)

and Exercise 1.2 shows that the class of sequences (isomorphic to)

{ Rker(0→ Y ) // Rker(α) // X●
α // Y● } (3)

is also equal to the class of distinguished triangles — or equivalently to the class of sequences (2).
Later, in the language of derivators, this fact will be encoded in the notion of stability. Note the
analogy with the definition of an abelian category.
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Exercises

Exercise 1.1. Prove explicitly that the class of sequences isomorphic to (2) is the same as the class
of sequences isomorphic to (3).

Exercise 1.2. Prove that the composition

Z● ∼
p−1

// Cone(α)●
pr2 // X●[1]

is a lift of the connecting homomorphism of the long exact sequence.
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2 Derivators

References: [7, 12, 13, 18, 19, 23, 25]

2.1. All additional structures of the triangulated structure on the derived category are determined
via the notions of homotopy kernel and cokernel by the pair (C(A),W ). Therefore we could take
such pairs as objects of our theory. This is what we do, in principle, when we work with model
categories. There are however two problems:

• Different pairs (C,W ) might lead to the same triangulated category and even to the same
“homotopy theory” altogether. Considering in addition a model category structure makes
this issue even worse.

• There might be interesting contexts where there is a triangulated category and a “homotopy
theory” but they do not arise from any apparent pair (C,W ).

Grothendieck’s idea of a derivator starts from the observation that the only thing that we used
of the pair (C,W ) was the notion of derived kernel and cokernel. It turns out that to prove all the
axioms of a triangulated category and to do many more constructions which are not possible in the
world of triangulated categories, all we need are more general homotopy limits and colimits (and
also homotopy left and right Kan extensions).

2.2. Let (C,W ) be a localizing pair (see section 4). Let I be a diagram (i.e. a small category).
Consider the category Fun(I,C) of functors from I to C and natural transformations between them.
To each object X in C we may associate the constant functor c(X) ∶ i↦X. By definition the limit
is the right adjoint functor to c and the colimit is the left adjoint functor to c:

Fun(I,C)
colim

**

lim

44 C.coo

In other words lim and colim are equipped with functorial isomorphisms:

HomC(colimD,X) ≅ HomFun(I,C)(D, c(X)),
HomFun(I,C)(c(X),D) ≅ HomC(X, limD).

The class W distinguishes a class of morphisms WI in Fun(I,C), too, which consists of those natural
transformations w ∶ D1 → D2 such that w(i) ∈ W for all i ∈ I. We also say w is point-wise in W .
Again c induces a functor C[W −1]→ Fun(I,C)[W −1

I ]. The homotopy limit is just its right adjoint
and the homotopy colimit is its left adjoint:

Fun(I,C)[W −1
I ]

hocolim
,,

holim

22 C[W −1].coo
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Proposition 2.3. If the limit lim ∶ Fun(C, I) → C exists and has an absolute right derived functor
R lim (see Definition 4.3) then

holim = R lim .

If the colimit colim ∶ Fun(C, I) → C exists and has an absolute left derived functor L colim (see
Definition 4.3) then

hocolim = L colim .

Proof. This is but a consequence of the derived adjunction proposition 2.6 below.

This also encompasses L coker, resp. Rker of before:

Lemma 2.4. For (C(A),W ) we have:

L colim

⎛
⎜⎜⎜
⎝

X● //

��

Y●

0

⎞
⎟⎟⎟
⎠
= L coker(X● → Y●)

(and similarly for Rker).

Proof. Since

colim

⎛
⎜⎜⎜
⎝

X● //

��

Y●

Z●

⎞
⎟⎟⎟
⎠
= coker(X●, Y● ⊕Z●)

the replacement

⎛
⎜⎜⎜⎜
⎝

X●
α //

��

Y●

Z●

⎞
⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜
⎝

X●
� � α̃ //

��

Cyl(α)

Z●

⎞
⎟⎟⎟⎟
⎠

is adapted to colim. For X● ↪ Cyl(α)⊕Z● is still a monomorphism.

2.5. For a functor α ∶ I → J of diagrams, we get a functor α∗ ∶ Fun(J,C)→ Fun(I,C) by composition
with α. It induces again a functor

α∗ ∶ Fun(J,C)[W −1
J ]→ Fun(I,C)[W −1

I ].

The left (resp. right) adjoint to this functor is called a homotopy left (resp. right) Kan
extension. Note that the homotopy limit (colimit) is the special case of the projection p ∶ I → {⋅}.
It turns out that the knowledge of all homotopy left and right Kan extensions suffices to prove
that C[W −1] is a triangulated category. All axioms of a triangulated category follow as theorems
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from rather simple axioms concerning these homotopy Kan extensions. Conversely, however, ho-
motopy left and right Kan extensions cannot be reconstructed in the triangulated category alone.
Grothendieck proposes therefore to consider the whole strict 2-functor

D ∶ I ↦ Fun(I,C)[W −1
I ]

as the fundamental datum, where I runs over all diagrams (small categories), together with functors
α∗ for all α ∶ I → J (and together with a 2-functoriality for natural transformations α⇒ β). Such a
datum will be called a derivator provided certain axioms hold (in particular left and right adjoints
for the α∗ should exist!). We will see them in detail in the lectures of Moritz Groth. For convenience
we will list them below. Note that no extra data is needed to reconstruct the triangulated structure.

Above we used the following:

Proposition 2.6. Let (C,WC) and (D,WD) be localizing pairs and

C
F

,, D
G

ll

be an adjunction. If F has an absolute left derived functor LF and G has an absolute right derived
functor RG (see Definition 4.3) then

C[W −1]
LF .. D[W −1]
RG

nn

is an adjunction.

Proof. By Lemma 4.8 the total right derived functor of HomD(FX,−) is HomD[W−1](FX,−).
Therefore by Exercise 4.2 the total right derived functor of HomD(F−,−) is HomD[W−1](LF−,−)
because LF is absolute. By the same reasoning it is equal to HomC[W−1](−,RG−). The statement
follows because of the uniqueness of total derived functors (up to unique isomorphism).

2.7. We’ll list here the axioms of a derivator for convenience: A pre-derivator is just an association
(technically: a strict 2-functor) as mentioned above

D ∶ Dia→ CAT

from a category of diagrams (could be all small categories for example) to the “category” of cate-
gories.
It is called a left derivator if the following axioms hold true:

(Der1) For I, J in Dia, the natural functor D(I∐J) → D(I) × D(J) is an equivalence. Moreover
D(∅) is not empty.
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(Der2) For I ∈ Dia the ‘underlying diagram’ functor

dia ∶ D(I)→ Hom(I,D(⋅))

is conservative.

(Der3 left) For each morphism α ∶ I → J in Dia the functor

α∗ ∶ D(J)→ D(I)α∗S

has a left-adjoint α! (Existence of homotopy left Kan extensions, in particular, homotopy
colimits!).

(Der4 left) For each morphism α ∶ I → J in Dia, an object j ∈ J , and the 2-cell (see appendix A.3 and
A.9)

I ×/J j
ι //

αj

��
⇙µ

I

α

��
{j} � � j // J

we get that the induced natural transformation of functors αj !ι
∗ → j∗α! is an isomorphism.

There are obvious dual variants of (Der3–4 left) defining a right derivator. If it is both left and
right, we just call it a derivator.
Axioms (Der1) and (Der2) are rather technical and avoid pathological situations. There are im-
mediately clear in the examples. Axiom (Der3) states the existence of homotopy (co)limits and
homotopy right (left) Kan extensions. Axiom (Der4) is a derivator version of Kan’s formula (A.9)
computing Kan extensions in usual (co)complete categories. It is therefore very natural to impose.
It is striking that all axioms of a triangulated category follow as easy propositions from these
axioms, and the following two2:
We call D pointed if the following axiom holds:

(Der6) The category D(⋅) has a zero object.

We call D stable if the following axiom holds:

(Der7) In the category D(◻) an object is homotopy cartesian if and only if it is homotopy cocartesian.

Roughly, if we imagine an object in D(◻) as a square of objects in D(⋅) (by which, of course, we
would loose its coherence!)

A //

��

B

��
C // D

2plus strongsness, a technical condition which we won’t state here.
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homotopy cartesian means that D is the homotopy colimit of the upper left diagram ⌜ and
homotopy cocartesian means that A is the homotopy limit of the lower right diagram ⌟.
Details will be given in the lectures of Moritz Groth, cf. also [12].
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3 Algebraic topology

References: [14, 26, 27]

3.1. There is a strong similarity between the derived category of an abelian category and the
homotopy category of topological spaces (resp. spectra) as we will explain in this section. As in
section 1, we are given a localizing pair (T OP,W ), where T OP is the category of topological spaces
and W is the class of weak equivalences, i.e. the class of those continuous maps α ∶X → Y which
induce isomorphisms of πi(X,x) → πi(Y,α(x)) for all i and x ∈ X. This leads again to notions of
derived functors and in particular of homotopy limit and colimit. It turns out that homotopy limit
and colimit exist in this context, too, and are related to fundamental constructions in algebraic
topology. Also with the pair (T OP,W ) there is an associated derivator, which however is not
stable, in particular, the classes of sequences (4) and (5) are not equal. However, passing to the
theory of spectra, we get a stable derivator. Thus also their homotopy category is a triangulated
category. We will, however, not discuss spectra in this lecture. In this section, we consider the case
of pointed topological spaces (T OP∗,W )3 and examine first again the notion of homotopy kernel
and cokernel.
We will use the fact that (T OP∗,W ) is a localizer. Later, when we discuss the abstraction of both
of the situations to model categories, we will see a reason for this.
As in the case of chain complexes, the cokernel as map from

Fun(→,T OP∗)→ T OP∗
is not exact, i.e. it maps point-wise weak equivalences not necessarily to weak equivalences. Hence
we may try to construct a total left derived functor in the sense of 4.3. We will see that this is
completely analogous to the construction of L coker for chain complexes.

3.2. Again there is the notion of cylinder and cone associated with a map α ∶X → Y . The cylinder
is defined as the colimit of

X

��

α // Y

��
I ×X // Cyl(α)

where I is the intervall [0,1] ⊂ R and the vertical map is the injection x ↦ (0, x). There is a map
α̃ ∶X → Cyl(α) given by x↦ (1, x). The cone Cone(α) is defined by the pushout of

X

��

α̃ // Cyl(α)

��
0 // Cone(α)

3where the maps in W do, of course, have to respect the base point
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where 0 is the one point space (it is a zero object of T OP∗). Observe that this is literally the same
construction as in 1.5 except that ∆○

1 ⊗ − has been replaced by I × −.
Furthermore there are morphisms

p ∶ Cyl(α)→ Y ι ∶ Y → Cyl(α)

where p is induced by the pair of maps Y = Y and X × I → X → Y and ι is the projection
Y → Cyl(α).

Again, we claim that

Proposition 3.3. The replacement

(α ∶X → Y )↦ (α̃ ∶X → Cyl(α))

is a left replacement functor for coker.

It follows again that
L coker = Cone

Proof. Again there is the morphism
X �
� // Cyl(X)

p

��
X // Y

and again homotopic maps become equal in T OP∗[W −1] (see ??), hence in particular homotopy
equivalences are in W . For the fact that the replacement is adapted to coker, I do not know of
a completely elementary proof. The proof from homological algebra 1.4 does not translate to this
setting, because the sequence X → Cyl(X) → Cone(X) does not induce a long exact sequence of
homotopy groups. For the dual construction of homotopy kernels, however, the same proof works,
as we will shortly see. A partial proof of this Proposition will be given using the machinery of
model categories, see Proposition 6.10.

Remark 3.4. Again we have:

hocolim

⎛
⎜⎜⎜
⎝

X //

��

Y

0

⎞
⎟⎟⎟
⎠
= L coker(X → Y )

which will, for example, follow from Proposition 6.10, or the explicit description of hocolim over
this diagram in 7.8.
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3.5. Dually, as in the case of complexes, the kernel as map from

[→,T OP∗]→ T OP∗

is not exact, i.e. it maps point-wise weak equivalences not necessarily to weak equivalences. Hence
we may consider its right derived functor in the sense of 4.3.
The cocylinder (or mapping path space) of X → Y is defined to be the limit

coCyl(α) //

��

X

��
Hom(I, Y ) δ0 // Y

where Hom(I, Y ) is the path space of Y .
The Fiber or Cocone F (α) of α ∶X → Y is defined to be the limit (kernel) of

F (α) //

��

coCyl(α)

α̃
��

0 // Y

where α̃ is induced by the map δ1 ∶ Hom(I, Y ) → Y . Note that these constructions are completely
dual to those of the cylinder and cone.

Again, we claim that

Proposition 3.6. The replacement

(α ∶X → Y )↦ (α̃ ∶ coCyl(α)↦ Y )

is a right replacement functor adapted to ker (see Definition 4.6).

It follows that
Rker = F

Proof. Here we sketch an elementary proof, which is completely analogous to the one for chain
complexes.
1. We have the functorial commutative diagram

X

��

α // Y

coCyl(α) α̃ // Y

18



where the vertical maps are homotopy equivalences, therefore are in W . The vertical map X →
coCyl(α) is given by the pair of maps X → Y → Y I (constant path) and X = X respectively. The
homotopy inverse is given by the natural map coCyl(α)→X.
2. Now there is an exact sequence of pointed sets (∼ = morphisms up to homotopy)

Hom(A,F (α))/ ∼ // Hom(A,X)/ ∼ // Hom(A,Y )/ ∼

which, for the case A = Sn, for n > 0, can be shown to give an exact sequence of groups

πn(F (α)) // πn(X) // πn(Y ).

3. Denote β ∶ F (α) → X the canonical map. There is a homotopy equivalence F (β) → ΩY , where
ΩY is the loop space of Y . This gives a map

Hom(A,ΩY )/ ∼ // Hom(A,F (α))/ ∼

and an exact sequence

πn+1(Y ) // πn(F (α)) // πn(X) // πn(Y )

Furthermore the fiber of the map ΩY → F (α) is homotopy equivalent to ΩX. Therefore we actually
get a long exact sequence of homology groups.

πn+1(X) // πn+1(Y ) // πn(F (α)) // πn(X) // πn(Y )

4. An extended version of the 5-lemma (to include the case n = 0) shows that if there is a commu-
tative diagram

X

��

α // Y

��
X ′ α′ // Y ′

where the vertical arrows are in W then also the induced map F (α)→ F (α′) is in W .

3.7. For the pair (T OP∗,W ) we call the class of sequences in T OP∗[W −1] isomorphic to

{ X α // Y // L coker(α) // L coker(X → 0) } (4)

cofiber sequences and those isomorphic to

{ Rker(0→X) // Rker(α) // X
α // Y } (5)

fiber sequences. Unlike for the case of chain complexes these classes are not equal! They become
equal in the homotopy category of spectra.
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Exercises

Exercise 3.1. Prove that F (0→X) is the loop space of X and that Cone(X → 0) is the suspension
of X.
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4 Localizing categories

References: [24]

Let C be a category and W a class of morphisms of C. As for rings one can try to construct a
functor ι ∶ C → C[W −1] such that all morphisms ι(w) for w ∈ W are invertible, and such that ι is
universal w.r.t. this property. In other words given any functor F such that F (w) for w ∈ W is
invertible, there is a unique functor F ′ such that

C
ι
��

F // D

C[W−1]
∃!F ′

77

is commutative (on the nose, not up to isomorphism of functors).

Proposition 4.1. ι ∶ C → C[W −1] with the above universal property exists.

Proof (sketch). C[W −1] is defined by

Ob(C[W −1]) = Ob(C)

Mor(C[W −1]) = {
finite chains of morphisms in C:

X X1
∈Woo // X2 ⋯∈Woo // Xn−2 Xn−1

∈Woo // Y
}/ ∼

where composition of morphisms is given by composition of chains. Here ∼ is an appropriate
equivalence relation. It is the finest implying that the obvious map ι ∶ C → C[W −1] is a functor

and that for every w ∈ W the compositions X Y
woo w // X and Y

w // X Y
woo are the

identity. We leave it to the reader to fill in the details.

From the construction in the proposition follows that HomC[W−1](X,Y ) might not be a set but a
proper class which is, in this generality, rather impossible to determine. Therefore we make the
following definition

Definition 4.2. The pair (C,W ) is called a localizing pair whenever C[W −1] is locally small and
we have w ∈W if and only if ι(w) is an isomorphism.

The second condition has been added for convenience. Obviously one can always enlarge W such
that it becomes true without changing C[W −1]. In our examples there will always be means of
ensuring that a given pair (C,W ) is localizing, for example, because it will be part of a model
structure.
The most fundamental definition about localizing categories is the notion of derived functor:
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Definition 4.3. Let (C,W) be a localising pair and F ∶ C → D be a functor. A right derived
functor RF of F is a functor together with a natural transformation η ∶ F ⇒ RF ○ ι

C
ι
��

F // D

C[W−1]
RF

77

RF is called total, if it is universal in the sense that applying ι and composing with η induces an
isomorphism:

Hom(RF,G) ≅ Hom(F,G ○ ι)
for all functors G ∶ C[W−1]→ D.
RF is called absolute if (κ ○RF,κ ∗ η) is a total right derived functor of κ ○F for any category E
and functor κ ∶ D → E.

Note that a total right derived functor RF is characterized up to a unique natural isomorphism by
its defining property and moreover RF is actually a left Kan extension of F along ι (A.9).

Remark 4.4. If F maps elements of W already to isomorphisms then by the universal property
there is a functor F ′ with F = F ′ι. It follows from the definition that F ′ is an absolute left and
right derived functor and η is in both cases the identity.

Remark 4.5. If we have two localizing pairs (C,WC) and (D,WD) and a functor F ∶ C → D then
by abuse of notation we denote by RF a total derived functor of ι ○ F .

In most cases RF is computed by means of a replacement functor:

Definition 4.6. A right replacement functor adapted to F is a functor Q ∶ C → C together with
a natural transformation: ν ∶ idC → Q object-wise in W and such that FQ(w) is an isomorphism
for each w ∈W .

If (P, ν) is a right replacement functor adapted to F then FQ is equal to F̃Qι for some functor
F̃Q by the universal property of C[W−1].
Lemma 4.7. F̃Q is the absolute right derived functor for F .

Proof. First of all the morphism η ∶ F → F̃Q is given as the composition

F
Fν // FQ F̃Qι.

Let α ∶ F → Gι be given. For any X we consider the diagram

FX
FνX //

αX

��

FQX

αQX

��

F̃QX

GX
GινX // GQX
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Since ινX is invertible in C[W −1] we get a morphism

F̃QX
αQX // GQX

G(ινX)−1

// GX.

Obviously this is inverse to the map in the definition of right derived functor.
Note that F̃Q is absolute because GFQ is equal to GF̃Qι and GF̃Q is a total derived functor of
GF by the first part of the proof.

Lemma 4.8. The right derived functors of X ↦ HomC(X,Y ), Y ↦ HomC(X,Y ) and (X,Y ) ↦
HomC(X,Y ) considered as functors from C → SET , Cop → SET , and C × Cop → SET exist and are
all equal to HomC[W−1].

Proof. We have
Hom(HomC[W−1](ι(X), ⋅),G) ≅ G(ι(X))

and also
Hom(HomC(X, ⋅),Gι) ≅ G(ι(X))

by Yoneda’s Lemma. The statement about the functor of two variables follows from Exercise 4.2
considering that HomC[W−1] already maps W in both arguments to isomorphisms.

Remark 4.9. Consider the case of chain complexes as in section 1. Actually C(A)[W −1], which is
called the derived category of A, is usually constructed in a two-step process. First, one defines
on Hom(X,Y ) an equivalence relation, where two morphisms f and g are equivalent (or homotopic)
if there is a homotopy f ⇒ g, and obtains a category K(A). Let us recall what a homotopy is.
This is analogously defined as in topology. First, one can “realize” any simplex in the category of
bounded chain complexes over Z.

(∆○
i )−n = Z[{ strictly increasing maps {0, . . . , n}↪ {0, . . . , i}}]

with boundary maps given by the alternating sum of the compositions with the n + 2 maps δin ∶
{0, . . . , n}→ {0, . . . , n + 1}. For example

∆○
0 = {Z} ∆○

1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z

⎛
⎝
−1
1

⎞
⎠

// Z2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

∆○
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z

⎛
⎜⎜⎜
⎝

1
−1
1

⎞
⎟⎟⎟
⎠

// Z3

⎛
⎜⎜⎜
⎝

1 1
1 −1
−1 −1

⎞
⎟⎟⎟
⎠
// Z3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where always the rightmost entry sits in degree 0. This is a reduced version of the chain complex
associated with the standard simplices and actually a cosimplicial object in Cb(Z −MOD) (cf. 5.5
for details). All X ⊗∆○

i are quasi-isomorphic to X.
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A homotopy µ ∶ f ⇒ g is a map µ ∶ X ⊗∆○
1 → Y such that the two compositions are respectively f

and g:

X
δ1
00

δ0
// X ⊗∆○

1

µ // Y

Now in the diagram

X
δ1
00

δ0
// X ⊗∆○

1

p // X

the composition is the identity and p is a quasi-isomorphism! Therefore the first two morphisms δ0

and δ1 are the same in HomC(A)[W−1](X,X⊗∆○
1), therefore also f and g. We conclude that it makes

no difference, whether we consider C(A)[W −1] or K(A)[W −1]. The advantage of constructing
K(A) first is that the chains of morphisms in the construction of K(A)[W −1] are actually all of
the form X ← X ′ → Y , where the first arrow is a quasi-isomorphism. See e.g. [11]. This is a
common behavior if there is a model category structure (see [17]), in which case even X ′ is w.l.o.g.
a fixed replacement of X.

Exercises

Exercise 4.1. Explain that RF ∶ C+(A)[W −1] → C+(B)[W −1] defined by means of an injective
replacement of (bounded below) complexes is actually a functor and even an absolute right derived
functor of ι ○ F ∶ C(A)→ C(B)[W −1].

Hint. By Lemma 4.7 we need to check that

1. the injective replacement Q ∶X● → I● can be made functorial (actually is suffices functoriality
up to homotopy because F respects the relation of homotopy of morphisms, hence we may
replace C(A) with K(A) from the beginning),

2. F ○Q maps quasi-isomorphisms to quasi-isomorphisms.

First of all by exercise 4.3 we have a lift in the following diagram:

X●� _

q.i.

��

// Y●
� � q.i. // IY,●

��
IX,● //

66

0
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To show functoriality it suffices to show that two lifts are homotopic. This follows from the existence
of a lift in the diagramm

IX,●⊕IX,●
X●� _

q.i.
��

// IY,●

��IX,●⊗∆○
1

X●
//

77

0

It remains to show that if I● → J● is a quasi-isomorphism between complexes of injectives then
F (I●)→ F (J●) is a quasi-isomorphism, too. For this use the exact sequence

0 // I● // Cyl(α)● // Cone(α)● // 0

and exercise 4.4.

Exercise 4.2. Consider two localizing pairs (Ci,Wi), i = 1,2 and a functor

F ∶ C1 × C2 → D.

Suppose that the total right derived functor R(FY ) of the functor FY ∶ X ↦ F (X,Y ) exists for all
Y . Denote RXF ∶ Y ↦ R(FY ). Show that a total right derived functor of RXF is also a total right
derived functor of F , i.e. RYRXF = RF .
Suppose that the derived functor R(FX) of the functor FX ∶ Y ↦ F (X,Y ) exists for all X. Denote
RY F ∶ X ↦ R(FX). Show that a total right derived functor of RY F is also a total right derived
functor of F , i.e. RXRY F = RF .

Exercise 4.3. Let I● be a bounded below complex of injectives in an abelian category. Prove that
I● → 0 has the right lifting property w.r.t. monomorphisms which are quasi-isomorphisms, i.e. for
any square

X●� _
q.i.

��

// I●

��
Y● //

88

0

there is a lift as indicated.

Exercise 4.4. Let I● be an acyclic bounded below complex of injectives in an abelian category and
let F be a left exact functor. Prove that also F (I●) is acyclic.
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5 General homotopy limits and colimits — explicit construction

References: [1, 7, 10]

In this section we show how general homotopy (co)limits may be computed for a localizing pair
(C,W ) provided that C is roughly a simplicial category which is tensored and cotensored, and such
that some axioms hold. The pairs considered in sections 1 and 3 are of this form. Later we will
see more abstract ways of constructing homotopy limits and colimits using model categories. In
particular, in this section, we prove without using model categories that the category C(A) of
unbounded chain complexes in an abelian category admits homotopy limits and colimits, as well
as left and right Kan extensions.
To show the existence of the left adjoints (colimit, left Kan extension) we have to assume that A
satisfies axiom (AB4) and for the existence of the right adjoints that A satisfies axiom (AB4*)4.

5.1. Let I be a diagram and F ∶ I → C(A) be a functor.
We define a double complex CI(F )●,● as follows:

CI(F )−p,q ∶= ⊕
µ∶∆p→I

F (µ(0))q

for p ≥ 0. Here ∆p is the category 0 → 1 → ⋯ → p. The vertical differential is given by d on the
complexes F (i), and the horizontal by the boundary operations

CI(F )−p,q → CI(F )−p+1,q

(x)µ ↦
p

∑
k=0

(−1)k(F (µ(0→ δk(0)))x)µδk

where δ0, . . . , δp are all injective functors ∆p−1 →∆p, numbered such that δk omits k. Define

ConeI(F )● ∶= Tot⊕(CI(F )●,●).

One goal of this section is to explain

Theorem 5.2. If A is an (AB4) abelian category, I is a diagram and F ∈ Fun(I,C(A)) then

hocolimI(F ) = ConeI(F ),

i.e. the functor F ↦ ConeI(F ) is left-adjoint to p∗ ∶ C(A)[W −1]→ Fun(I,C(A))[W −1
I ].

4For coherently bounded below (lim-case), resp. coherently bounded above (colim-case) diagrams of complexes one
doesn’t need these assumptions.

26



In the exercises (cf. 5.9) a brute-force proof of this result is given. In the sequel, we will sketch a
bit more conceptual, yet elementary proof (which however assumes also AB4*) and covers also the
case of topological spaces. In section 7 we will review the construction from the point of view of
model categories.
The nice feature is that the construction is actually functorial in diagrams on the nose (i.e. not
only in the derived category), see 5.17 and also Exercise 5.6

5.3. To proceed, we review a tiny bit from the general theory of simplicial sets and (co)simplicial
objects in categories: Let ∆ be the category

Ob(∆) = {∆n ∶= {0,1, . . . , n}∣ n ∈ N0}
Mor(∆) = {order preserving maps ∆n →∆m}

which may be depicted schematically as:

⋯⋅
//
//
//
⋅

oo
oo
oo
oo

//
// ⋅

oo
oo
oo

// ⋅oo
oo

(where only some morphisms are depicted).
A simplicial object in a category is a functor X ∶ ∆op → C, in particular a simplicial set is a
functor X ∶ ∆op → SET . A cosimplicial object in a category is a functor A ∶ ∆→ C.
If C is complete, any cosimplicial object A defines an adjunction5:

SET ∆op
RA

,, C
NA

nn

(RA is the left adjoint) where the functors are defined by (cf. section A.6 in the appendix)

RA ∶ S ↦ ∫
n
(∐
Sn

An)

NA ∶ C ↦ (∆n ↦ Hom(An,C))

RA is uniquely determined by the property of preserving colimits and mapping ∆n (representable
simplicial set) to An. This follows from Exercise A.7 in the appendix.

Example 5.4. If C = T OP, there is a canonical cosimplicial object

A ∶ ∆n ↦ {standard n-simplex in Rn }

The associated functor
R ∶ SET ∆op → T OP

5R stands for realization and N for nerve.
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is called the geometric realization. Its right adjoint

N ∶ T OP → SET ∆op

is the singular simplicial set associated with a topological space. These actually can be used to define
a Quillen equivalence between associated model categories (see 6.8).

Example 5.5. If C = Z −MOD there is also a canonical functor

R ∶ SET ∆op → Z −MOD
X ↦ R(X) R(X)n ∶= Z[X−n] for n ≤ 0

with differential given for x ∈Xn by

[x]↦
n

∑
i=0

(−1)i[δni x]

from which a cosimplicial object A ∶ ∆n ↦ R(∆n) may be reconstructed. The R(∆n) are however a
bit different from the ∆○

n of 4.9. In contrast to the latter the R(∆n) are unbounded (but bounded
above) complexes. In this section it will be convenient to work with the unbounded version.

Example 5.6. If C = SCAT there is also a canonical (even tautological) simplicial object given by

A ∶ ∆n ↦∆n = (0→ 1→ ⋯→ n).
The right adjoint functor NA is called the nerve.

N ∶ CAT → SET ∆op

N(A)n ∶= {x0 → ⋯→ xn ∣ xi ∈ Ob(A)}
The functor N, and its left adjoint R, can be used to define a Quillen equivalence between associated
model categories (see 6.8). (As they stand, they do not yet.)

5.7. Let now C be either T OP or C(A). Recall our canonical cosimplicial object A ∈ T OP∆ (see
5.4), resp. A ∈ C(Z−MOD)∆ (see 5.5). Write ⊗ for the natural tensor product with C(Z−MOD)
for chain complexes, and for × for topological spaces. We actually get an adjunction of two variables
given by

⊗ ∶ SET ∆op × C → C
S,Y ↦ RA(S)⊗ Y

Homr ∶ Cop × C → SET ∆op

X,Y ↦ (n↦ Hom(An ⊗X,Y ))

Homl ∶ (SET ∆op)op × C → C
S,Y ↦ Hom(RA(S), Y )
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For T OP, Hom is the homomorphism space, and for C(A) the external hom C(Z)op×C(A)→ C(A)
(transposed version of ⊗). In other words:

Hom(S ⊗ Y,Z) = Hom(S,Homr(Y,Z)) = Hom(Y,Homl(S,Z))

This renders T OP even into a tensored and cotensored simplicial category. For C(A) this would
be true, if we replaced R(∆n) with the bounded ∆○

n.

5.8. Now, if I is a diagram, we can extend the adjunction of 5.7 in two variables. This is a fairly
general process (see Exercise A.5 in the appendix) and is given by:

⊗ ∶ Fun(Iop, (SET ∆op)) × Fun(I,C) → C

S,Y ↦ ∫
i
S(i)⊗ Y (i)

Homr ∶ Fun(I,C)op × C → Fun(Iop,SET ∆op)
X,Y ↦ {i↦ Homr(X(i), Y )}

Homl ∶ Fun(Iop, (SET ∆op))op × C → Fun(I,C)
S,Y ↦ {i↦ Homl(S(i), Y )}

Example 5.9. Consider the case C = C(A). There is the tautological functor δ ∶ ∆↦ SET ∆op
. Let

X ∈ Fun(∆op,C(A)). We can associate with it a double complex

Xn,m ∶=X(∆−n)m

where the horizontal differential is given by the alternating sum of the differentials δni . Then we
have

δ ⊗X ≅ Tot⊕X●,●.

5.10. Later (cf. section 7) we will consider these adjunctions from the point of view of model
categories. To prove the existence of homotopy (co)limits in the category of chain complexes and
to get an elementary formula for them we actually only need the following axioms:

1. Homl(∆0,X) and X are weakly equivalent.

2. The maps Homl(∆i,X) ← Homl(∆0,X) induced by the unique maps ∆i → ∆0 are weak
equivalences.

3. For a simplicial object X ∈ Fun(∆op,C) the functor X ↦ δ ⊗X maps weak equivalences to
weak equivalences.
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4. Homl(S,−) maps weak equivalences to weak equivalences for any simplicial set S.

5. Weak equivalences are stable under coproducts.

If C = C(A) where A satisfies (AB4) and (AB4*), these properties can be shown in an elementary
way, see exercise 5.3. If C = T OP the validity of 1.–5. will be shown in section 7 using model
categories under the extra assumption that all occurring spaces are cofibrant (cf. the next chapter
for this notion). Actually, with the language of 7, we can give a much more conceptual proof of the
Bousfield-Kan formula.

Theorem 5.11 (Bousfield-Kan). Let (C,W ) be a localizing pair such that an adjunction like in
5.7 exists with the properties 1.–5. of 5.10. Consider the functor N(− ×/I I) ∈ Fun(Iop,SET ∆op).
Recall that it is given by (cf. A.3 for the definition of comma category):

N(i ×/I I)n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i

ww �� ��
i0 // i1 // ⋯ // in

RRRRRRRRRRRRRRRRRR

ij ∈ I

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Then for all X ∈ Fun(I,C)[W −1
I ] we have:

hocolimI X = ∫
i
N(i ×/I I)⊗X(i). (6)

Remark 5.12. Note that (at least for topological spaces):

colimI X = ∫
i
∆0 ⊗X(i).

The mechanism behind the Bousfield-Kan formula is therefore: Instead of replacing X by a “good
replacement”, replace ∆0 by a “good replacement”. We will come back to this point of view in
section 7.

Example 5.13. If C = T OP we get:

hocolimI X = ∫
i
R(N(i ×/I I)) ×X(i)

where R is the geometric realization, provieded X is point-wise cofibrant (cf. the next chapter for
this notion).

Example 5.14. In the case C = C(A), we get analogously hocolimI X● = ∫ iR(N(i×/I I))⊗X●(i),
where R is the realization in C(Z −MOD). Recall that

R(N(i ×/I I))n = ⊕
∆−n→i×/II

Z for n ≤ 0
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with differential given by the alternating sum of face maps. From this and from the explicit formula
of the coend it follows that

hocolimI X● = ∫
i
R(N(i ×/I I))⊗X●(i) = ConeI(X●).

5.15. For the proof of Bousfield-Kan, we will need the construction of a category ∆op/S for any
simplicial set S, which is the Grothendieck construction applied to the functor S ∶ ∆op → SET ⊂
SCAT , where sets are considered as discrete categories.

Ob(∆op/S) = {∆n ∈ ∆, x ∈Xn}
Hom∆op/S((∆n, x), (∆m, x

′)) = {µ ∶ ∆m →∆n ∣ µ(x) = x′}.

Proof of theorem 5.11. Call F the functor in the RHS of (6).
Consider the correspondence of functors

(∆op/N(I))op
ιop

xx

pop

&&
Iop ∆

where ι is the functor mapping (∆n, µ ∶ ∆n → I) to x(0) and p = ∆op/(N(I)→∆0) is the projection.
By Kan’s formula, we have N(i ×/I I) = (ιop)!(pop)∗δ. Here δ ∈ Fun(∆,SET ∆op) is the canonical
object which maps ∆n to the simplicial set represented by ∆n. Using Exercise A.6 it follows that

F (X) ∶= ∫
i
N(i ×/I I)⊗X(i) = ∫

n
∆n ⊗ (p!ι

∗X)(∆n).

Since p is a Grothendieck op-fibration p! is the same as the colimit over the fibers, which are discrete.
Therefore by property 3 we have that this functor maps weak equivalences to weak equivalences.
Now the functor

F ∶X ↦ ∫
i
N(i ×/I I)⊗X(i)

is adjoint to
G ∶ Z ↦ (i↦ Homl(N(i ×/I I), Z))

which both map weak equivalences to weak equivalences and hence coincide with their derived
functors. Therefore they also induce an adjuction (Lemma 2.6)

Fun(I,C)[W −1
I ]

F .. C[W −1].
G

nn

It suffices to show that the functor G (as a functor between homotopy categories) is actually
isomorphic to the constant functor. Now N(i ×/I I) is homotopy equivalent to ∆0 in SET ∆op

(use
exercise A.1 in the appendix). Therefore by axiom 2. Homl(N(i ×/I I), Z) is weakly equivalent to
Homl(∆0, Z). Therefore by axiom 1. Hom(N(i ×/I I), Z) is weakly equivalent to Z.
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Example 5.16. Resuming Example 5.9, we see from the proof of the Bousfield-Kan formula that
for X ∈ Fun(∆op,C(A)) there is the easier formula:

hocolimX = Tot⊕X●,●

(Compare this to the formula: colimX =Hhorz
0 (X●,●)).

5.17. The nice feature about these explicit formulas is that we can write down left and right Kan
extensions using Kan’s formula as for ordinary categories. Indeed, for a morphism α ∶ I → J of
diagrams, the association

F (X) ∶ j ↦ ∫
µ
N(µ ×/(I×/J j) (I ×/J j))⊗X(ι(µ))

is functorial in j and therefore defines an object in Fun(J,C). Since the right hand side represents
the homotopy colimit over I ×/J j of ι∗X, the Kan formula holds automatically, provided we are
able to show that this object is a homotopy Kan extension.

Theorem 5.18. Under the hypothesis of Theorem 5.11, F defines a homotopy left Kan extension.

Proof. We have that

∫
µ
N(µ ×/(I×/J j) (I ×/J j))⊗ ι∗X(µ) = ∫

i
N(i ×/I I ×/J j)⊗X(µ)

because of Exercise A.6 and the easy calculation (ιop)!N(µ ×/(I×/J j) (I ×/J j)) = N(i ×/I I ×/J j).
By elementary properties of ends and coends (Exercise A.5) the functor

F ∶X ↦ (j ↦ ∫
i
N(i ×/I I ×/J j)⊗X(i))

is adjoint to

G ∶ Z ↦ (i↦ ∫
j
Homl(N(i ×/I I ×/J j), Z(j)).

Now there is a homotopy equivalence of diagrams of simplicial sets (cf. also Exercise A.2)

(j ↦ N(i ×/I I ×/J j))→ (j ↦ N(i ×/J j))

This implies (using the properties 1.–5. of 5.10) that ∫j Homl(N(i ×/I I ×/J j), Z(j)) is weakly
equivalent to

∫
j
Homl(N(i ×/J j), Z(j)) = ∫

j
∏

Hom(α(i),j)
Homl(∆0, Z(j)) = Homl(∆0, Z(α(i))).

By property 1. this functor is weakly equivalent to α∗Z ∶ i ↦ Z(α(i)). Since this functor is exact,
also G is exact and as derived functor isomorphic to α∗Z.
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Corollary 5.19. Let (C,W ) be a localizing pair such that an adjunction like in 5.7 exists with the
properties as in 5.10. Then the association

D ∶ I ↦ Fun(I,C)[W −1
I ]

defines a left-derivator on all diagrams I.

Remark 5.20. The assumption (of a localizing pair) that C[W −1] be locally small was not used in
the proof. If one is content with working with derivators which have values in categories which are
not necessarily locally small, one can relax this condition.

We leave it to the reader to state the dual version of the results in this section using a dual version
of the properties in 5.10.

Exercises

For the exercises you’ll need the following folklore theorem:

Theorem 5.21. Let A be an abelian category (cf. A.4).

1. Let X●,● be a double-complex in A which is concentrated in the left semiplane. If A satisfies
(AB4) then the (horizontal) spectral sequence

Hq(Xp,●)⇒ Tot⊕,p+q(X●,●)

converges.

2. Dually (and rotated by 180○), let X●,● be a double-complex in A which is concentrated in the
right semiplane. If A satisfies (AB4*) then the (horizontal) spectral sequence

Hq(Xp,●)⇒ Tot∏,p+q(X●,●)

converges.

Exercise 5.1. Verify the following formula for simplicial sets:

N(i ×/I I) = (ιop)!(pop)∗δ.

Exercise 5.2. For X ∈ Fun(∆op,C(A)) check the formula

δ ⊗X = Tot⊕X●,●

from Example 5.9. For X● ∈ Fun(I,C(A)) check the formula

∫
i
R(N(i ×/I I))⊗X●(i) = ConeI(X●)

from Example 5.14.
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Hint. In both cases an easy explicit computation using the explicit formula A.11 for computing
ends as cokernels.

Exercise 5.3. Let A be an (AB4) and (AB4*) abelian category. Prove using Theorem 5.21 that
properties 1.–5. of 5.10 hold true. You will need both spectral sequences.

Exercise 5.4. Give a meaning to the following statement and prove it: The category of cosimplicial
objects Fun(∆,C) is equivalent to the category of adjunctions

SET ∆op R
,, C

N
nn .

The exercises in the sequel give an alternative proof of the existence of homotopy Kan extensions
using only (AB4):

Exercise 5.5. Let A be an (AB4) abelian category. Prove that for a natural transformation γ ∶
F → G we get a natural morphism ConeI(γ) ∶ ConeI(F ) → ConeI(G). Moreover show that if γ is
a point-wise quasi-isomorphism then γ′ is a quasi-isomorphism.

Hint. Use the spectral sequence 1. from Theorem 5.21.

Exercise 5.6. Let α ∶ I → J be a functor between diagrams, and let F ∶ J → C(A) be a functor.
Define a morphism α′ ∶ ConeI(α∗F )→ ConeJ(F ) which is functorial in F .

Exercise 5.7. Let α,β ∶ I → J be two functors between diagrams, let F ∶ J → C(A) be a functor,
and let ν ∶ α ⇒ β be a natural transformation. We get an associated natural transformation
ν′ ∶ α∗F ⇒ β∗F .
Prove that

α′ ∶ ConeI(α∗F )→ ConeJ(F )

and
β′ ○ConeI(ν′) ∶ ConeI(α∗F )→ ConeI(β∗F )→ ConeJ(F )

are homotopic maps of complexes.

Exercise 5.8. Let A be an (AB4) abelian category. Prove the following two assertions:

1. There is natural map can . ∶ Cone{⋅}(F )→ F (⋅) which is a quasi-isomorphism.

2. s′ ∶ Cone{⋅} s
∗F → ConeI F is a quasi-isomorphism if I contains a final object s ∶ {⋅}→ I.

Hint. For 1. use the spectral sequence from Theorem 5.21 again. For 2., use 5.7.
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Exercise* 5.9. Let A be an (AB4) abelian category, let I be a diagram, and let F ∈ Fun(I,C(A)).
Give a direct proof that

hocolimI(F ) = ConeI(F ),

i.e. the functor F ↦ ConeI(F ) is left-adjoint to p∗ ∶ C(A)[W −1]→ Fun(I,C(A))[W −1
I ].

Hint. Let p ∶ I → {⋅} be the projection. Define counit and unit as the following compositions:

c ∶ ConeI p
∗F

p′ // Cone{⋅} F
can . // F ,

u ∶ F XF
tFoo oF // p∗ ConeI F .

Here XF is defined as follows: For i ∈ I define:

XF (i) ∶= ConeI×/I{i} ι
∗
i F

and for µ ∶ i→ j define
XF (µ) ∶= µ′ ∶ ConeI×/I i ι

∗
i F → ConeI×/Ij ι

∗
jF,

where µ denotes, by abuse of language, the functor I ×/I i→ I ×/I j.
Consider the 2-cartesian diagram

I ×/I i
ιi //

pi

��

⇙ν
I

{i} // I

Define tF (i) to be the composition

ConeI×/I i ι
∗
i F

ConeI(ν′) // ConeI×/I i p
∗
i F (i) p′ // Cone{⋅} F (i) can . // F (i).

and
o(i) ∶= ι′i ∶ ConeI×/I i ι

∗
i F → ConeI(F ),

which is compatible with the constant morphisms and the XF (µ).
Prove that tF constitutes a morphism of diagrams and is point-wise a homotopy equivalence hence
a quasi-isomorphism. (Note that however the homotopy-inverse can not be arranged as a morphism
of diagrams.)
Show the unit/counit equations. The first equation will be true even in C(A). The second equation
is true up to homotopy. Construct this homotopy explicitly.
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6 Model categories and homotopy (co)limits

References: [3, 8, 9, 15, 17, 20, 21, 29]

6.1. The replacements needed to compute derived functors and in particular homotopy (co)limits
are mostly special cases of a much richer structure, the structure of a model category. This structure
also implies that (C,W ) is indeed a localizing pair, in particular that HomC[W−1](−,−) are actually
sets. As a motivation from the point of view of homological algebra recall that injective, resp.
projective objects were a suitable replacement to compute the derived functors of a left- resp.
right-exact functor. Let us focus on the case of injectives for a moment. By definition I is injective
if and only if in a diagram

X
β //� _

α
��

I

��
Y //

β̃

??

0

where α is a monomorphism, there is a lift β̃ making the diagram commutative. We say that X → Y
has the left-lifting property w.r.t. I → 0 or equivalently that I → 0 has the right-lifting property
w.r.t. X → Y . One might ask, which complexes I● do have the property that in a diagram

X●
β //

� _

α

��

I●

��
Y● //

>>

0

were α is a monomorphism (= degree-wise monomorphism) and a weak-equivalence there exists a
lift as indicated. This depends a little on whether we consider bounded or unbounded complexes.
If we consider bounded below complexes then the property translates precisely to the condition
that In is injective for all n (see Exercises 4.3 and 6.3).
If we consider unbounded complexes (at least in the case of A = R −MOD) then we get so called
DG-injective complexes (cf. [3, 17]) and it turns out that this is the better notion of injective
replacements to work with. At least DG-injective complexes have the property that In is injective
for all n but not conversely! More generally we call γ ∶ I● → J● an injective fibration (denoted
α ∈ Fibinj), if in a diagram

X●
β //

� _

α

��

I●

γ

��
Y● //

>>

J●

there exists a lift. We might formulate this in the following way: Let S be a class of morphisms
of C. Then call r(S) (resp. l(S)) the class of morphisms which have the right (resp. left) lifting
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property w.r.t. all morphisms in S. If we call a morphism α of complexes an injective cofibration
if it is a monomorphism (denoted α ∈ Cofinj) then we have

r(Cofinj ∩W ) = Fibinj . (7)

Additionally, we also have the on the first sight rather surprising symmetric property:

l(Fibinj ∩W ) = Cofinj (8)

as well as
W = r(Cofinj) ⋅ l(Fibinj), (9)

where ⋅ means composition.

Definition 6.2. A structure
(C,Cof,Fib,W )

where C is a complete and cocomplete6 category and Cof, Fib, and W are subclasses of morphisms
(called cofibrations, fibrations and weak equivalences, respectively) of C, is called a model category,
if the following axioms hold:

1. Properties (7) and (8) are satisfied.

2. Any morphism α ∶ X → Y can be factored as α = β ○ γ, where γ is a weak equivalence and a
cofibration (we say a trivial cofibration) and β is a fibration, as well as α = β′ ○ γ′ where γ′

is a cofibration and β′ is a fibration and a weak equivalence (we say a trivial fibration). This
factorization can be made functorial.

3. Cof,Fib and W are closed under retracts.

4. W satisfies the 2-out-of-3 property.

For the precise meaning of axioms 3. and 4. see [17].

A consequence of these axioms is that (C,W ) form a localizing pair, in particular the associated
homotopy category C[W −1] is locally small. Also (9) follows.

6.3. The injective structure (C(A),Cofinj ,Fibinj ,W ) forms a model category for A = R −MOD
[17] or, if we consider bounded below complexes, for arbitrary A [29]. The injective replacement of
X● (in the case of 6.1) can be reconstructed as the factorization required by axiom 2.:

X●
trivial cofibration // I●

fibration // 0

6we assume this as in [17] for simplicity
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of the morphism X● → 0. In general in a model category, an object X such that X → ⋅ is a fibration
is called fibrant. An object X such that ∅ → X is a cofibration is call cofibrant. Here ∅ is the
initial and ⋅ is the final object.
Analogously, there is a projective model structure (C(A),Cofproj ,Fibprop,W ) with

Cofproj = dimension-wise split mono with DG-projective cokernel

Fibproj = point-wise epimorphisms

at least if A = R−MOD or if we consider bounded above complexes. There are also model category
structures for (C(A),W ) for unbounded complexes in more general abelian categories [3].

6.4. The fact that injective resp. projective resolutions were useful to compute derived functors
generalizes as follows:
Assume that F and G are adjoint functors between abelian categories

A
F

,, B
G

ll

(observe that this implies that F is right-exact and G is left-exact).
It follows

1. G(Fibinj) ⊂ Fibproj (this expresses that G preserves surjections with injective kernel, too.)

2. G(Fibinj ∩W ) ⊂ Fibproj ∩W (this expresses roughly that on injectives G preserves quasi-
isomorphisms, too.)

or equivalently, dually (cf. Exercise 6.1)

3. F (Cofproj) ⊂ Cofinj (this expresses that F preserves injections with projective cokernel, too.)

4. F (Cofproj ∩W ) ⊂ Cofinj ∩W (this expresses roughly that on projectives F preserves quasi-
isomorphisms, too.)

This obviously generalizes to situations where we have two arbitrary model structures:

Definition 6.5. An adjunction

C
F

,, D
G

ll

such that
(C,CofC ,FibC ,WC) (D,CofD,FibD,WD)

are model categories is called a Quillen adjunction if the properties (analogous to) 1.–4. above
are satisfied. F is called a left Quillen functor and G is called a right Quillen functor.
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Now, we get derived functors for free:

Lemma 6.6 (Ken Brown). If F,G form a Quillen adjunction then the fibrant, resp. cofibrant
resolution is a replacement functor adapted to G resp. to F .

Hence by 2.6 and 4.7 LF and RG exist and form an adjunction:

C[W −1
C ]

LF .. D[W −1
D ]

RG
nn .

Example 6.7. Also (T OP,W ) is part of (in fact several) model category structures. The most
common is called the Quillen model structure and consists of

Fibq = Serre fibrations,

Cofq = Retracts of relative cell complexes.

See [17] for the meaning of relative cell complex. In particular CW-complexes are cell complexes
relative to ∗ hence cofibrant.

Example 6.8. There is also the Quillen model structures on (SET ∆op
,W ), where W is the

class of w such that R(w) is a weak equivalence of topological spaces. Here all objects are cofibrant
and fibrations are the Kan fibrations of simplicial sets.
And there is the Thomason model structure on (SCAT ,W∞), where W∞ is the class of w such
that R(N(w)) is a weak equivalence of topological spaces. Between those we have the adjunctions
(cf. 5.3)

SCAT
Ex2N .. SET ∆op

RSd2

mm
R

11 T OP
Npp

which all induce equivalences of the corresponding homotopy categories (see [30] for the definition
of Ex and Sd).

Using model category structures, the constructions of sections 1 and 3 appear in a much more clear
fashion:

Definition 6.9. A model category (C,Cof,Fib,W ) is called left proper (resp. right proper) if
weak equivalences are preserved by pushout along cofibrations (resp. by pullback along fibrations).

The model category structures (C(A),Cofproj/inj ,Fibproj/inj ,W ), if they exist, are left and right
proper. Also (T OP∗,Cofq,Fibq,W ) is left and right proper.

Proposition 6.10. Let (C,Cof,Fib,W ) be a left proper model category with zero object. Then
coker ∶ Fun(→,C) → C maps weak equivalences to weak equivalences on the subcategory consisting
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of cofibrations. Also colim ∶ Fun(⌜,C) → C maps weak equivalences to weak equivalences on the
subcategory consisting of diagrams where the top morphism is a cofibration.
Let (C,Cof,Fib,W ) be a right proper model category with zero object. Then ker ∶ Fun(→,C) →
C maps weak equivalences to weak equivalence on the subcategory consisting of fibrations. Also
lim ∶ Fun(⌟,C) → C maps weak equivalences to weak equivalences on the subcategory consisting of
diagrams where the bottom morphism is a fibration.

From this proposition the following observations can be made:

• This proves Proposition 3.3 in case that X and Y are cofibrant, for example CW-complexes.
Then the map X ↪ Cyl(α) is in Cofq.

• The factorization from axiom 3. of a model category

X
cofib. // X ′

trivial fib.
��

X
α // Y

is a replacement functor adapted to coker.

• The (first three terms of the) cofiber sequences are just given by7

{ Xα cofib.// Y // coker(α) }

• We have

hocolim

⎛
⎜⎜⎜
⎝

X //

��

Y

0

⎞
⎟⎟⎟
⎠
= L coker(X → Y )

and dually:

• The factorization from axiom 3. of a model category

X
α //

trivial cofib.
��

Y

X ′ fib. // Y

is a replacement functor adapted to ker.

7If C is not left proper then X and Y have to be cofibrant, too.
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• The (last three terms of the) fiber sequences are just given by8

{ ker(α) // X
α fib. // Y }

• We have

holim

⎛
⎜⎜⎜
⎝

0

��
X // Y

⎞
⎟⎟⎟
⎠
= Rker(X → Y )

In the case of chain complexes we have model categories in which cofibrations resp. fibrations are
monomorphisms resp. epimorphisms. We thus also reobtain the observations of section 1.

6.11. Our next goal is to show that for every model category there exist arbitrary homotopy limits
and colimits and left and right Kan extensions satisfying the axioms of a derivator. The main idea
is to realize the adjunction characterizing the (co)limit

Fun(I,C)
colim

,, C
c

nn

as a Quillen adjunction!
By the observation above this will be satisfied if we can find a model structure on Fun(I,C) such
that WI (point-wise weak equivalences) are the weak equivalences and FibprojI are the point-wise

fibrations. (CofprojI would then be determined by the property CofprojI = l(FibprojI ∩WI).) Reason:
Obviously const. will preserve weak-equivalences and fibrations and hence the above will be a
Quillen adjunction (see 6.1). The hocolim exists!
In the same way one defines (Fun(I,C),CofinjI ,FibinjI ,WI) which makes lim a (potential) right
Quillen functor.
The remaining question is: Are (Fun(I,C),CofprojI ,FibprojI ,WI) and (Fun(I,C),CofinjI ,FibinjI ,WI)
model categories?
We will sketch an unconditional proof for this, if I is directed, i.e. there is a functor I → N
such that preimages of identities are identities (in other words: objects can be indexed by natural
numbers such that every non-trivial morphism decreases the index), or if I is inverse i.e. Iop is
directed. Most model categories of interest are in fact cofibrantly generated and presentable.
Such model categories are called combinatorial. Under this condition, there is a formal proof that
the above structure defines a model category which does not use any assumption on I. Cofibrantly
generated means that there are sets C ⊂ Cof and T ⊂ Cof ∩W such that already Fib = r(T ) and
Fib∩W = r(C). Obviously there is the dual notion of “fibrantly generated” which however is seldom
used because most naturally occurring model category structures do not satisfy this property.

8If C is not right proper then X and Y have to be fibrant, too.
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Theorem 6.12 ([20, Appendix]). If I is a diagram (small category) and

(C,Cof,Fib,W )

is a combinatorial model category, then

(Fun(I,C),CofprojI ,FibprojI ,WI) (Fun(I,C),CofinjI ,FibinjI ,WI)

are combinatorial model categories, too.

These model structures are called the projective and injective structure, respectively. This is
a bit unfortunate because they should not be confused with the injective and projective model
structures on chain complexes, although there is a certain analogy.

Theorem 6.13. If
(C,Cof,Fib,W )

is any model category then
(Fun(I,C),CofprojI ,FibprojI ,WI)

is a model category if I is directed and

(Fun(I,C),CofinjI ,FibinjI ,WI)

is a model category if I is inverse.

These are actually special cases of the so called Reedy model structures [17].

Proof (idea): We focus on the case of directed categories. The approach is completely elementary.
In this case it is possible to describe the class CofprojI explicitly, as follows. Consider an object
i ∈ I and the category Ii of morphisms j → i in I which are different from the identity. It is a
full subcategory of the slice category I ×/I i and comes equipped with a functor ιi ∶ Ii → I. For an
functor F ∈ Fun(I,C), we define the latching object

LiF ∶= colimIi ι
∗
i F.

There is a natural morphism LiF → F (i). The sought-for description of projective cofibrations is
then

CofprojI =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α ∶ F → G

RRRRRRRRRRRRRRRRRRRRR

∀i
LiF

Liα //

��

LiG

��
F (i) // push-out

cofib. // G(i)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
In other words, cofibrations are those morphisms α ∶ F → G such that for all i ∈ I the induced
dotted arrow is a cofibration. It is easy to see that properties (7) and (8) are satisfied. The point
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is that morphisms α ∶ F → G in Fun(I,C) can be constructed inductively using the indexing of the
objects of I. If for all indexes m < n we have constructed α(j) for objects j ∈ I of index m, and if
i is an object of I of index n then we may define α(i) as an arbitrary morphism which makes

LiF
Liα //

��

LiG

��
F (i) α(i) // G(i)

commute. Note that in the definition of Li only objects j of index < n occur.

Corollary 6.14. If Dia is a class of diagrams (small categories) such that

(Fun(I,C),CofprojI ,FibprojI ,WI)

is a model structure for all I ∈ Dia, then the associated pre-derivator

DC ∶ I ↦ Fun(I,C)[W −1
I ]

is a left derivator with domain Dia.

Of course, there is the analogous dual statement. In particular, if (C,Cof,Fib,W ) is a combinatorial
model category then DC is a (left and right) derivator.

Proof. The validity of (Der1) and (Der2) is relatively obvious.
(Der3 left) We have seen the existence of colimits. The existence of left Kan extensions associated
with a functor α ∶ I → J between diagrams in Dia follows the same way, just because the functor
α∗ is a left Quillen functor, too:

α∗ ∶ (Fun(I,C),CofprojI ,FibprojI ,WI)→ (Fun(I,C),CofprojI ,FibprojI ,WI)

(Der4 left) It remains to see that for α ∶ I → J in Dia and all j ∈ J Kan’s formula

hocolimI ι
∗ ≅ j∗Lα!

holds. We know that this is true for the underived functors. Hence it suffices to show that in the
following diagram of model categories (all equipped with the projective model structure)

Fun(I,C)
α!

��

ι∗ // Fun(I ×/J j,C)

colim
��

Fun(J,C) j∗ // C
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the two compositions of the derived functors are also isomorphic (via the map induced by the 2-
commutative square). Since α! and colim are left Quillen functors, it suffices to see that i∗ and ι∗

are left Quillen functors, too (see Exercise 6.2). Or, equivalently, that j∗ and ι∗ are right Quillen
functors.
By definition of the projective model structure, it suffices to show that j∗ and ι∗ respect point-wise
fibrations and trivial fibrations.
By Kan’s formula (underived version) the exchange morphism associated with the 2-commutative
diagram

k ×/J j

��

ι′ //

⇙
{j}� _
j

��
{k} � � k // J

k∗j∗ → lim(ι′)∗

is an isomorphism. Now k ×/J j = HomJ(k, j) is a discrete category, hence the limit respects
fibrations and trivial fibrations, because the latter are stable under taking arbitrary products in
any model category [15, Proposition 7.2.5].
By definition of the projective model structure, we need to show that ι∗ respects point-wise fi-
brations and trivial fibrations. By Kan’s formula the exchange morphism associated with the
2-commutative diagram

i ×/I I ×/J j

��

ι′′ //

⇙
I ×/J j

ι

��
i �
� i // I

i∗ι∗ → lim(ι′′)∗

is an isomorphism.
Now there is an adjunction (see exercise A.2)

α(i) ×/J j
s ..

i ×/I I ×/J j
p

nn

Therefore also p∗ and s∗ are adjoint, and hence p∗ = s∗, or, applying lim to this equation:

lim
i×/II×/J j

= lim
α(i)×/J j

s∗.

Now HomJ(α(i), j) is again a discrete category hence, as above, the limit respects fibrations and
trivial fibrations.
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Remark 6.15. Cisinski proved [4] that for any model category

(C,Cof,Fib,W )

the associated pre-derivator
DC ∶ I ↦ Fun(I,C)[W −1

I ]
is a derivator with domain SCAT .
The idea is as follows: We have seen that DC is, say, a left derivator with domain the directed
diagrams. The case of a general diagram I is traced back to this case. For this argument a similar
correspondence

(∆○)op/N○(I)
ι

yy

p

''
I (∆○)op

to that used in the proof of 5.11 plays the key role. The only difference is that everything is
constructed w.r.t. the inverse diagram ∆○ which has strictly increasing maps {0, . . . , n}↪ {0, . . . ,m}
as morphisms. (∆○)op/N○(I) is then an directed diagram!
The first step is to prove that

hocolimI X ∶= hocolim(∆○)op/N○(I) ι
∗X

defines a homotopy limit of X over I. This is reasonable to expect because ι is D-coacyclic for any
derivator (we will learn about this notion in 8.3).

Exercises

Exercise 6.1. Prove that properties 3.–4. of a Quillen adjunction (see 6.4) are formally equivalent
to properties 1.–2. using the lifting properties and the adjunction.

Exercise 6.2. Prove that a composition F2 ○ F1 of left-Quillen functors is a left-Quillen functor
and that we have

LF2 ○LF1 = L(F2 ○ F1).
Similarly for right-Quillen functors.

Exercise 6.3. Show the converse of Exercise 4.3: Suppose that α ∶ X● → Y● is a morphism of
bounded below complexes in an abelian category (with enough injectives) which has the left lifting
property w.r.t. morphisms I● → J● of bounded below complexes with point-wise injective kernel

X●

α

��

// I●

��
Y● //

88

J●
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Show that α is a point-wise monomorphism and a quasi-isomorphism.

Exercise 6.4. Prove Ken Brown’s Lemma 6.6.

Exercise* 6.5. Prove Proposition 6.10.

46



7 Bousfield Kan revisited

References: [10]

Let C,D, and E be model categories (we will not explicitly indroduce notation for the classes of
fibrations, cofibrations and weak equivalences). In this section, we will give a more conceptual
explanation of Bousfield-Kan’s formula. The reader is assumed to familiar with model categories.

Definition 7.1. An adjunction in two variables

C ×D → E
A,B ↦ A⊗B

Dop × E → C
A,B ↦ Homr(A,B)

Cop × E → D
A,B ↦ Homl(A,B)

is called a Quillen adjunction in 2 variables (or ⊗ is called a left Quillen bifunctor), if the
following equivalent conditions hold:

1. If α ∶ X → X ′, and β ∶ Y → Y ′, are cofibrations in C, and D, respectively, then the induced
dotted arrow

X ⊗ Y //

��

X ′ ⊗ Y

��
X ⊗ Y ′ // push-out

cofib. // X ′ ⊗ Y ′

is a cofibration. It is a trivial cofibration if, in addition, either α or β is a weak equivalence.

2. If α ∶ X → X ′ is a cofibration, and β ∶ Y → Y ′ is a fibration in D, and E, respectively, then
the induced dotted arrow

Homr(X ′, Y ) fib. // pull-back //

��

Homr(X ′, Y ′)

��
Homr(X,Y ) // Homr(X,Y ′)

is a fibration. It is a trivial fibration if, in addition, either α or β is a weak equivalence.
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3. If α ∶X →X ′ is a cofibration, and β ∶ Y → Y ′ is a fibration in C, and E, respectively, then the
induced dotted arrow

Homl(X ′, Y ) fib. // pull-back //

��

Homl(X ′, Y ′)

��
Homl(X,Y ) // Homl(X,Y ′)

is a fibration. It is a trivial fibration if, in addition, either α or β is a weak equivalence.

We have

Theorem 7.2. Let C be either C(A) or T OP∗, equipped with one of the model structures of ??.
Consider SET ∆op

equipped with the Quillen model category structure (cf. 6.8).
Then the functors of 5.7

⊗ ∶ SET ∆op × C → C
S,Y ↦ RA(S)⊗ Y

Homr ∶ Cop × C → SET ∆op

X,Y ↦ (n↦ Hom(An ⊗X,Y ))

Homl ∶ (SET ∆op)op × C → C
S,Y ↦ Hom(RA(S), Y )

form a Quillen adjunction in 2 variables.

Remark 7.3. This is almost saying that C is a simplicial model category, except that we do not
care about the precise relation of Homr(X,Y ) to HomC(X,Y ).

Corollary 7.4. Also the extension-to-diagrams adjunction of 5.8

⊗ ∶ Fun(Iop, (SET ∆op)) × Fun(I,C) → C

S,Y ↦ ∫
i
S(i)⊗ Y (i)

Homr ∶ Fun(I,C)op × C → Fun(Iop,SET ∆op)
X,Y ↦ {i↦ Homr(X(i), Y )}

Homl ∶ Fun(Iop, (SET ∆op))op × C → Fun(I,C)
S,Y ↦ {i↦ Homl(S(i), Y )}
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form a Quillen adjunction in 2 variables where Fun(Iop, (SET ∆op)) is equipped with the projective
model structure and Fun(I,C) is equipped with the injective model structure.

Proof. We leave it as an exercise to derive this from Theorem 7.2.

Remark 7.5. Actually the corollary does also hold with projective and injective exchanged, see
[10].

Note that if we have a left Quillen functor ⊗ in two variables then, in particular, for a fixed X
the functor X ⊗ − is a left Quillen functor. Using this, we can easily prove the following: (for
(C(A),W ) this had been shown in Exercise 5.3 in an elementary way)

Corollary 7.6. (C,W ) satisfies the properties 2.–5. of 5.10, provided we restrict to cofibrant objects.

Proof. 2. follows from the fact that the maps ∆i →∆0 are trivial Kan fibrations. 3. follows because
δ⊗− maps trivial cofibrations to trivial cofibrations, hence by Ken Brown’s Lemma it maps also all
weak equivalences between cofibrant objects to weak equivalences. 4. follows because Homl(S,−)
maps trivial cofibrations to trivial cofibration, hence by Ken Brown’s Lemma it maps also all weak
equivalences between cofibrant objects to weak equivalences. 5. holds in any model category.

Remark 7.7. The Bousfield-Kan formula, Theorem 5.11, now also follows directly, provided we
know that the object i ↦ N(i ×/I I) is a cofibrant replacement of the constant diagram i ↦ ∆0 in

the projective model structure on Fun(Iop,SET ∆op). See e.g. [15, Proposition 14.8.8] for a direct
proof of this fact.

7.8. Consider the pair (T OP∗,W ) and the diagram

⌜ ∶=
⎛
⎜
⎝

⋅ //

��

⋅

⋅

⎞
⎟
⎠

Let us (re)calculate the homotopy colimit over this diagram (from a very high-brow perspective,
indeed...):
Consider a diagram (point-wise cofibrant):

X ∶=
⎛
⎜⎜⎜
⎝

A
α //

β
��

B

C

⎞
⎟⎟⎟
⎠

Since we have

colim⌜X =
⎛
⎜⎜⎜
⎝

∆0 ∆0
oo

∆0

OO ⎞
⎟⎟⎟
⎠
⊗

⎛
⎜⎜⎜
⎝

A //

��

B

C

⎞
⎟⎟⎟
⎠

(10)
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we may compute the homotopy colimit by replacing the left hand side diagram by a cofibrant
diagram.
Claim: The replacement

⎛
⎜⎜⎜⎜
⎝

∆1 ∆0
δ0oo

∆0

δ1

OO
⎞
⎟⎟⎟⎟
⎠

is a cofibrant replacement in Fun(⌜op,SET ∆op) of the constant diagram with value ∆0. Proof: Con-
sidering the explicit description of cofibrant objects in the projective model structure for directed
diagrams (see proof of Proposition 6.13) we get the conditions:

• everthing has to be cofibrant (this is automatic for SET ∆op
),

• the induced morphism ∆0∐∆0 →∆1 has to be a cofibration (∆0∐∆0 is the latching object
for the upper left corner object),

• and, of course, everything has to be contractible (because we want a replacement of the
constant diagram with value ∆0).

∆0 and ∆1 are contractible and, by definition, ∆0∐∆0 →∆1 is a cofibration of simplical sets!
We proceed to compute the tensor product (10). Inserting geometric realization and using the
explicit formula for coends (cf. A.11) we get

(B ⊔A × I ⊔C)/ ∼

with (a,0) identified with α(a) in B and (a,1) identified with β(c) in C. This shows nicely how
the (topological) homotopy push-out looks like in general. We have seen the special case in which
C = 0 = ∆0 in section 3.
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8 The homotopy theory of (homotopy) limits and colimits

References: [4–6, 12]

8.1. Consider a morphism α ∶ I → J . One of the questions, we want to adress in this section, is:

“When do we have isomorphisms pI,!α
∗ → pJ,!, resp. pI,∗α

∗ → pJ,∗”?

To determine this, we assume only the abstract axioms of a derivator. In particular our reasoning
will be valid for (co)limits as well as for homotopy (co)limits.
pI,!α

∗ → pJ,! is, by definition, an isomorphism precisely if the diagram

I
α //

��

J

��
{⋅} {⋅}

(11)

is homotopy exact.

Lemma 8.2. If α is right adjoint then (11) is homotopy exact.

Proof. If β,α are an adjunction then also α∗, β∗ are an adjunction (the characterization 2. of
adjoints of Lemma A.1 is preserved under a 2-functor), hence α∗ ≅ β!, hence pI,!α

∗ ≅ pI,!β! ≅ pJ,!.

Actually we can give a precise characterization (provided that all α! and α∗ exist). For this we
need a definition:

Definition 8.3. A morphism α ∶ I → J is called a D-equivalence if the induced morphism pI,∗p
∗
I ←

pJ,∗p
∗
J (or equivalently the morphism pI,!p

∗
I → pJ,!p

∗
J) is an isomorphism.

A morphism α ∶ I → J is D-acyclic if for all j ∈ J the projection I ×/J j → {⋅} is a D-equivalence.
A morphism α ∶ I → J is D-coacyclic if for all j ∈ J the projection j ×/J I → {⋅} is a D-equivalence.

Proposition 8.4.
I //

��

J

��
{⋅} {⋅}

is homotopy exact if and only if α is D-coacyclic.

Proof. The homotopy exactness is equivalent to the condition of

p∗J → α∗p
∗
I
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being an isomorphism. This is turn is equivalent to

id→ j∗α∗p
∗
I

being an isomorphism for all j which in turn is equivalent to

id→ pj×/JI,∗p
∗
j×/JI

being an isomorphism by (Der4).

8.5. The first observation is rather trivial. If there is a natural transformation between α → β then
the maps

pI,!p
∗
I → pJ,!p

∗
J

(induced by the counit β!β
∗ → id resp. α!α

∗ → id ) are actually equal or equivalently the corre-
sponding maps:

pJ,∗p
∗
J → pI,∗p

∗
I .

Therefore: If α is a D-equivalence then so is β. We call a homotopy equivalence between I and
J functors α ∶ I → J and β ∶ J → I such that there are chains of natural transformations

αβ ⇒ µ1 ⇐ µ2⋯⇒ idJ

and
βα⇒ ν1 ⇐ ν2⋯⇒ idJ .

Therefore: homotopy equivalences are D-equivalences for all D.

Example 8.6. 1. Left and Right adjoints are homotopy equivalences and hence D-equivalences
for any D.

2. If a category I has a final resp. initial object then pI ∶ I → {⋅} is in fact a left resp. right
adjoint and hence pI is a D-equivalence.

Remark 8.7. The proposition implies in view of Lemma 8.2 that a right adjoint must be D-
coacyclic. But for a right adjoint α ∶ I → J (with left adjoint β) actually the category j ×/J I has
the final object (β(j), u ∶ j → α(β(j))) hence j ×/J I → {⋅} is a D-equivalence.

8.8. Obviously the notion of D-equivalence and hence D-acyclic morphisms depends on D. But
we might ask about the class of D-equivalences that are D-equivalences for any D? The answer is
given by the following Theorem of Cisinski:

Theorem 8.9. The class of functors α ∶ I → J between small categories which are D-equivalences
for any derivator D are precisely those which induce a weak equivalence of nerves N(I)→ N(J).
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Idea of proof. A class of functors W between small categories is called a Grothendieck localizer
if

1. W is weakly saturated

2. If I has a final object then pI ∶ I → {⋅} is in W .

3. If
I //

��

J

��
K

is a commutative diagram and all induced functors I ×/K k → J ×/K k are in W then so is α.

It is actually an exercise to show that D-equivalences form a localizer. Cisinski proves that W∞ is
the smallest localizer. They form a localizer because they are the DSCAT equivalences (ref.).

Corollary 8.10. The class of functors α ∶ I → J which preserve homotopy (co)limits in any
derivator are precisely those such that N(I ×/J j) (resp. N(j ×/J I)) is contractible for all j.

Remark 8.11. This is really a statement about homotopy limits and colimits. For example it is
easy to show that colim∆opX for a simplicial object X is the same as the coequalizer

X1
,,22 X0

This is not at all true for homotopy colimits (see for example 5.16).

8.12. In 6.8 we have seen that:

H ∶= DSET op = DCAT = DT OP

because the corresponding model categories are all Quillen equivalent.
This may be used to obtain an action of simplicial sets on any derivator (as we have seen concretely
in the application ...), however only “up to homotopy”, in other words there is a morphism of
derivators

⊗ ∶ H ×D → D
I,X ↦ pI,!p

∗
IX

where I ∈ DCAT (⋅).
Its adjoint w.r.t. the second variable is given by

Hom ∶ Hop ×D → D
I,X ↦ pI,∗p

∗
IX
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and Cisinski shows [6] that at least for derivators that come from model categories they have an
adjoint in the first variable:

RHom ∶ Dop ×D → H
X,Y ↦ RHom(X,Y )

such that Hom(X,Y ) = π0(RHom(X,Y )).
From this it follows that that ⊗ preserves homotopy left Kan extensions in both variables.

Exercises

Exercise 8.1. Show that D-equivalences form a localizer.

Exercise* 8.2. Let C be T OP or C(A) and D the associated derivator. Prove that the adjunction
of 5.7 is compatible with the one in 8.12. Here you have to regard H as DSET ∆op .

Exercise* 8.3. Show directly (without using the existence of RHom) that ⊗ preserves homotopy
left Kan extensions in both variables.

Exercise* 8.4. Prove that ι (cf. 6.15 and 5.15)

(∆○)op/N○(I) ι // I

is D-coacyclic for any D.
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A Some facts from category theory

References: [22]

A.1 Adjoints

Lemma A.1. For two functors

C
F

,, D
G

ll

The following data are in bijection:

1. Natural isomorphisms of functors Cop ×D → SET :

hX,Y ∶ Hom(FX,Y )→ Hom(X,GY ) (12)

2. Natural transformations
ε ∶ FG→ idC (counit)

η ∶ idD → GF (unit)

such that the compositions

FX
FηX // FGFX

εFX // FX

GY
ηGY // GFGY

GεY // GY

are identities for all X ∈ C and Y ∈ D.

Note that the second characterization makes sense in any 2-category.
An adjoint (or adjunction) is always understood together with the bijection (12) or equivalently
together with either counit or unit. Either of these data characterizes an adjoint up to a unique
natural isomorphism.

A.2 Grothendieck (op)fibrations

A.2. Grothendieck fibration. Let p ∶ D → S be a morphism of categories, f ∶ S → T be a morphism
in S. A morphism ξ ∶ E ′ → E over f with the property that the composition with ξ induces an
isomorphism

Homg(F ,E ′) ≅ Homf○g(F ,E)

for any g ∶ R → S and F ∈ DR is called cartesian.
p is called a Grothendieck fibration, if for any f ∶ S → T and E an object in DT there exists a
cartesian E ′ → E .
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A.3. Grothendieck opfibration. This is the dual notion. Let p ∶ D → S be a morphism of categories,
f ∶ S → T be a morphism in S. A morphism ξ ∶ E → E ′ over f with the property that the composition
with ξ induces an isomorphism

Homg(E ′,F) ≅ Homg○f(E ,F)

for any g ∶ T → U and F ∈ DU is called cartesian.
p is called a Grothendieck opfibration, if for any f ∶ S → T and E an object in DS (i.e. such
that p(E) = S) there exists a cocartesian E → E ′
p ∶ D → S is a Grothendieck opfibration, iff pop ∶ Dop → Sop is a Grothendieck fibration. We say
that p is a bifibration if is a fibration and opfibration at the same time.

A.4. There is actually an equivalence of concepts: Grothendieck fibrations D → S and pseudo-
functors S → CAT .

A.3 Comma categories

For a diagram of categories and functors

I

α
��

K
β // J

the comma category I ×/J K (often denoted (α/β) or I/j if K = {j} for an object j of J) is defined
by

Ob(I ×/J K) = {i ∈ I, j ∈ J,µ ∶ F (i)→ G(j)}
HomI×/JK((i, µ, j), (i′, µ′, j′)) = {f ∈ HomI(i, i′), g ∈ HomJ(j, j′) ∣ α(f)µ = µ′β(g)}

It sits in an obvious 2-commutative diagram:

I ×/J K //

��

⇙µ

I

α

��
K

β // J

Note that, in general, I ×/J K is not equivalent to K ×/J I (unless J is a groupoid).
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A.5. (I×/JK,µ) is a 2-pullback, that is, it has the following universal property: Given any diagram

L

##

G

��

F

))I ×/J K //

��

⇙µ

I

α

��
K

β
// J

together with a 2-morphism (natural transformation)

ν ∶ αF Ô⇒ βG,

there is a unique functor H ∶ L→ I ×/J K making the triangles commute and such that ν = µ ∗H.

Example A.6. If J is a category and j, k ∈ Ob(J)

j � _

��
k �
� // J

then j ×/J k = HomJ(j, k).

Exercises

Exercise A.1. Prove that for for I and i ∈ I, there is an adjunction

I ×/I i
,, imm

Exercise A.2. For
I

F
��
J

F
��

L
G // K

there is an adjunction
L ×/K J ×/J I

.. L ×/K Inn

with counit the identity.
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Exercise A.3. Prove that I ×/J K → I is a Grothendieck fibration and that I ×/J K → K is a
Grothendieck opfibration.

Exercise A.4. For a Grothendieck fibration T →K and k ∈K there is an adjunction

T ×/K k -- T ×K knn

A.4 Abelian categories

Definition A.7. A category A is abelian, if the following axioms hold:

(AB0) A has a zero object.

(AB1) A has binary products, binary coproducts, kernels and cokernels.

(AB2) Any monomorphism in A is a kernel and any epimorphism is a cokernel.

Definition A.8. We will frequently use the following additional axioms for an abelian category A:

(AB3) Arbitrary coproducts exist in A (it follows that A is cocomplete).

(AB4) A satisfies (AB3) and arbitrary coproducts are exact.

and dually:

(AB3*) Arbitrary products exist in A (it follows that A is complete).

(AB4*) A satisfies (AB3*) and arbitrary products are exact.

A.5 (Co)limits and Kan extensions

A.9. Let α ∶ I → J be a (in general small) categories. There is a functor

α∗ ∶ Fun(J,C)→ Fun(I,C)

given by composition with α. A particular case is the functor p ∶ I → {⋅}.

p∗ ∶ C → Fun(I,C)

A left adjoint of α∗, denoted α! if it exists, is called a left Kan extension of α. A right adjoint of
α∗, denoted α∗ if it exists, is called a right Kan extension of α. p!X is also called the colimit
of X: colimI X, and p∗X is also called the limit of X: limI X. Note that an adjoint is, if it exists,
uniquely determined up to a unique natural isomorphism. And this is a point-wise statement, in
the sense that even if it does not exist for all objects X then the value for those for which it does
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exist is uniquely determined up to a unique isomorphism. In the case of the limit and colimit we
say that the limit and colimit exist for an X.
For α ∶ I → J and an object j ∈ Ob(J) we consider the 2 commutative diagram (cf. A.3)

I ×/J j
ιj //

p

��

⇙
I

α

��
j �
� j // J

Proposition A.10 (Kan). Let α ∶ I → J be a functor of diagram (i.e. small categories). If for all
the categories I ×/J j the colimit of ι∗jX exists then α!X exists and is given by

α!X ∶= (j ↦ colimI×/J j ι
∗
jX)

Proof.

The formula might be expressed by saying that the natural morphism (exchange morphism associ-
ated with the canonical morphism ι∗α∗ → p∗j∗)

p!ι
∗
j → j∗α!

is an isomorphism.
Recall that the colimit colimI X may be computed as the cokernel (or coequalizer) of the following
pair of maps

∐µ∶∆1→I X(s(µ))
s ..

d
00 ∐i∶∆0→I X(i)

A.6 Dinatural transformations and (Co)ends

Let α,β ∶ Iop × I → C be a functor. A dinatural transformation

α⇒ β

is a morphism for each i ∈ I
α(i, i)→ β(i, i)

such that for all µ ∶ i→ j the following diagram commutes:

α(i, i) // β(i, i)
β(1,µ)

$$
α(i, j)

α(1,µ) $$

α(µ,1)
::

β(j, i)

α(j, j) // β(j, j)
β(µ,1)

::
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Be aware that dinatural transformations cannot be composed!
For a functor α ∶ Iop×I → C we denote by ∫ i α(i, i) an object characterised up to unique isomorphism
by

Hom(∫
i
α(i, i), Y ) = { dinatural transformations α → Y }

is called the coend of α. Here Y is considered to be the constant functor Iop × I → C with image
Y .
Note that dinatural transformations α → Y are actually collections ci ∶ α(i, i)→ Y such that

α(i, i)
ci

""
α(i, j)

α(1,µ) $$

α(µ,1)
::

Y

α(j, j)
cj

<<

commutes.
For a functor α ∶ Iop × I → C which is actually constant in Iop, we get

∫
i
α(i, i) = colimI α(i,−)

where i ∈ Iop is any object.

A.11. If coproducts and cokernels exists in C then also coends exists and is the cokernel (or
coequalizer)

∐µ∶∆1→I α(s(µ), d(µ))
s ..

d
00 ∐i∶∆0→I α(i, i)

which generalizes the formula for the cokernel.

There is an obvious dual construction which is called the end.

Exercises

The following will be our main use for (co)ends:

Exercise A.5. If there is an adjunction of two variables

⊗ ∶ C ×D → E Homl ∶ Cop × E → C Homr ∶ Dop × E → D,
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we have the following adjunction of two variables

Fun(Iop × J,C) × Fun(I,D) → Fun(J,E)

X,Y ↦ (j ↦ ∫
i
X(i, j)⊗ Y (i))

Fun(Iop × J,C)op × E → Fun(I,D)
X,Z ↦ (i↦ ∫

j
Homl(X(i, j), Z(j)))

Fun(I,D)op × Fun(J,E) → Fun(Iop × J,C)
Y,Z ↦ (i, j ↦ Homr(Y (i), Z(j)))

Exercise A.6. In the situation of exercise A.5 prove that if a Kan extension along α ∶ I → J exists,
then

∫
i
X(i)⊗ (α∗Y )(i) = ∫

j
((αop)!X)(j)⊗ Y (j)

Exercise A.7 (A variant of Yoneda’s Lemma). Let SET × C → C be the canonical adjunction in
two variables given by S ⊗X =∐s∈SX. The adjoints are Homl(S,Y ) =∏s∈S Y and Homr = HomC.
Prove that for all A ∈ [I,C] and j ∈ I:

∫
i
Hom(i, j)⊗A(i) = A(j) ∫

j
Homl(Hom(i, j),A(j)) = A(i)

Exercise A.8. In the situation of exercise A.7 prove that the following formula defines a left Kan
extension for α ∶ I → J :

(α!A)(j) ∶= ∫
i
Hom(α(i), j)⊗A(i).
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