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Abstract

We axiomatize the algebraic properties of toroidal compactifications of (mixed) Shimura varieties
and their automorphic vector bundles. A notion of generalized automorphic sheaf is proposed which
includes sheaves of (meromorphic) sections of automorphic vector bundles with prescribed vanish-
ing and pole orders along strata in the compactification, and their quotients. These include, for
instance, sheaves of Jacobi forms and weakly holomorphic modular forms. Using this machinery we
give a short and purely algebraic proof of the proportionality theorem of Hirzebruch and Mumford.
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1 Introduction

For a (connected) Shimura variety M associated with a reductive group P , Hermitian symmetric
domain D+ and neat arithmetic subgroup Γ ⊂ P (Q)+, there is a huge supply of (so called) auto-
morphic vector bundles on M coming from its structure of locally symmetric variety M = Γ/D+.
Each such vector bundle Ξ∗E is obtained from a P (C)-equivariant vector bundle E on M∨, where
M∨ is the compact dual of the Hermitian symmetric domain D+. The recipe is as follows: There
are morphisms of analytic manifolds

M = Γ/D+ ← D+ ↪M∨

where M ← D+ is the defining Γ-torsor and the (Borel) embedding D+ ↪M∨ is P (R)+-equivariant.
Ξ∗E is obtained by restricting E to D+ and then taking the quotient by Γ.
In his seminal work [6] Hirzebruch observed that, if M is compact, the Chern numbers1 of E and
Ξ∗E are proportional by a universal rational factor which may be interpreted as the volume of M
w.r.t. a natural volume form. Using the theory of toroidal compactifications Mumford [12] extended
this result to non-compact M .
The proofs of Hirzebruch and Mumford rely heavily on analytic methods. Since M and M∨ are
both algebraic it is reasonable to expect a purely algebraic proof of the proportionality principle.
The theory developed in this article provides such a proof. First observe that the construction
of automorphic vector bundles is purely algebraic. For consider the right P (C)-torsor (so called
standard principal bundle) M ← B obtained by extension from the Γ-torsor M ← D+ (considered
as right Γ-torsor). It turns out to be algebraic as well, inducing a diagram

M B
πoo p //M∨ (1)

of algebraic varieties where π ∶ B → M is a right-torsor under P and M∨ is now interpreted as a
component of the moduli space of parabolics of P (a flag variety). The morphism p is P -equivariant.
The diagram may be seen as a morphism of Artin stacks

Ξ ∶M → [M∨/P ] .

If M is non-compact, M has an algebraic toroidal compactification M and the morphism Ξ (or
equivalently the diagram (1)) extends

Ξ ∶M → [M∨/P ] .

The algebraically defined automorphic vector bundles are precisely the pull-backs of locally
free sheaves on [M∨/P ] (i.e. P -equivariant vector bundles on M∨) along this morphism.
In this article we axiomatize the situation, extracting a few simple axioms that ultimately imply the
proportionality principle of Hirzebruch and Mumford. These axioms are well-known for Shimura
varieties, and they have purely algebraic proofs themselves in cases in which M naturally represents
a moduli problem of Abelian varieties with extra structure.
Along the lines, we generalize the notion of automorphic vector bundle in the non-compact case
introducing generalized automorphic sheaves that include:

• sheaves of sections of automorphic vector bundles with certain vanishing conditions along the
boundary (e.g. bundles of cusp forms, subcanonical extensions, etc.),

1All polynomials in the Chern classes of highest degree considered as numbers.
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• the (push-forward of the) structure sheaf OD of the boundary or the structure sheaf OY of a
closed stratum thereof,

• line bundles of Jacobi-forms,

• the vector bundles Ωi(M) and jet bundles of automorphic vector bundles,

• line bundles of “weakly holomorphic” modular forms (i.e. meromorphic with poles only along
at the cusps).

We now describe the axiomatization more in detail. All varieties and formal schemes are understood
over a field k of characteristic zero. We define a toroidal formal scheme (Definition 2.1.3) to be a
formal scheme together with an action of Mn

m, where Mm is the multiplicative monoid on the affine
line, which looks like the completion of a (partially) compactified Gn

m-torsor on a variety along a
boundary stratum. In other words, they are completions of a sum of line bundles at the zero section
with the action of Mn

m remembered. An abstract toroidal compactification (Definition 2.3.2)
is defined as a smooth variety M with a divisor of strict normal crossings D together with the
structure of toroidal formal scheme on the completions along all strata (of the stratification defined
by D) in a compatible way w.r.t. the partial ordering of the strata. In Section 2.4 we explain that
toroidal compactifications of mixed Shimura varieties in the sense of Pink [13] indeed give rise to
such objects.
Moreover, we introduce the notion of automorphic data (Definition 3.1.1) on an abstract toroidal
compactification. If D = ∅ this is just the datum of a “compact dual” M∨ and a “standard principal
bundle” B forming a diagram as (1).
As mentioned above, this situation is well-known in the theory of Shimura varieties. In this case B
is called the standard principal bundle and is (philosophically) the bundle of trivializations of
the de Rham realization of the universal motive (associated with a representation ρ of the defining
group P ) together with its natural P -structure. The morphism p in this case is induced by the
variation of the Hodge filtration. If M∨ contains a k-rational point then the quotient stack is
isomorphic to the classifying stack [⋅/Q] of a parabolic Q ⊂ P . Therefore the datum is essentially
the same as a Q-torsor over M .
This situation generalizes to the case in which D is non-trivial. In this case automorphic data
consist of the following: for any stratum Y a diagram

CY (M) BY
πoo p //M∨

Y

where CY means formal completion along Y , and π ∶ BY → CY (M) is again a right-torsor under
a — now not necessarily reductive — linear algebraic group PY and M∨

Y is a component of the
moduli space of quasi-parabolics of PM . The morphism p is again PY -equivariant. Furthermore the
action of MnY

m lifts to BY (the lifted action being part of the datum) such that p becomes invariant.
These data have to be functorial w.r.t. the partial ordering of the strata (cf. Definition 3.1.1 for
the details).
Such a datum is present on toroidal compactifications of Shimura varieties. This is probably less
well-known, see e.g. [7] and [8, 2.5]. It exists (philosophically) because the PM -structure of the de
Rham realization of the universal motive becomes a PY -structure near the boundary stratum Y (in
the formal sense) because of a natural weight filtration on the realization there, leading to a family
of mixed Hodge structures.
The more general situation of an (abstract) toroidal compactification equipped with automorphic
data allows one to define generalized automorphic sheaves (Definition 3.4.3) on M . For this
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purpose the category of PM -equivariant vector bundles on M∨ is not sufficient as input category.
Instead, we define a larger Abelian category, the Fourier-Jacobi category (Definition 3.4.1). The
objects are specified by a collection of functors

FY ∶ ZnY → [ [M∨
Y /PY ]-coh ]

for each stratum Y , where nY = codim(Y ) and where [ [M∨
Y /PY ]-coh ] denotes the category of

(finite dimensional) PY -equivariant vector bundles on M∨
Y . These functors are supposed to fulfill

a finiteness condition, namely they have to be left Kan extensions of functors defined on some
bounded subregion of ZnY . In particular, the sheaves FY (v + λei) become (essentially) constant
for sufficiently large λ and we require that they are isomorphic to FW (pr(v)) restricted to M∨

Y ,
where W is a larger stratum. It is explained in 3.4.3 that such a datum {FY } defines a coherent
sheaf “Ξ∗({FY })” on M . The essential tool to define those sheaves is the theory of descent on
formal/open coverings developed by the author in [9]. This theory enables to glue Ξ∗({FY }) from
sheaves on the various completions. The latter are, by definition, toroidal formal schemes, and the
functor FY describes the parts of CY (Ξ∗({FY })) of varying weight under GnY

m .

Example 1. Let M be the compactification of a (fine) moduli space of elliptic curves with level
structure. There are only two types of strata: Y =M is the open stratum or Y is a point (a cusp).

In the first case PM = GL2 and M∨ = P1 = PM/QM while in the second case PY = (∗ ∗
1
) and

M∨
Y = A1 = PY /Gm. The bundle of (weakly holomorphic) modular forms of weight k (with order

νY ∈ Z at the cusp Y ) is given by the following input datum:

FM ∶= L⊗k

for the open stratum, where L is the standard one-dimensional representation of weight 1 of QM ,
and

FY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

L⊗k∣A1 if v ≥ νY ,
0 otherwise

for the cusps.

Example 2. Let M ′ be the universal elliptic curve over a (fine) moduli space of elliptic curves
with level structure. Let M over M ′ be the pullback of the Poincaré line bundle using the standard
polarization. It is the partial compactification of a Gm-torsor M over M ′. The variety M is a
mixed Shimura variety associated with the group PM = GL2 ⋉W , where W is a Heisenberg group,
i.e. a central extension of G2

a:

0 // U ≅ Ga
//W // V ≅ G2

a
// 0.

(Here GL2 acts on V via the natural 2-dimensional representation and on U via the determinant.)
In this case there is only one boundary stratum Y ≅ M ′ apart from M . Consider the following
input datum:

FM ∶= 0

and

FY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

L⊗k if v = i,
0 otherwise.
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for L as before, extended (as a representation) to the present QM in the only possible way. The
associated generalized automorphic sheaf is then the bundle of Jacobi forms of weight k and index
i (it has support on Y ≅M ′). Here, for simplicity, we ignored the behaviour along the boundary of
M ′ which can be taken into consideration by using a full compactification of M instead.

We finally consider the notion of (logarithmic) connection on automorphic data, and certain (purely
algebraic) axioms:

(F) flatness of the logarithmic connection (3.1.3),

(T) infinitesimal Torelli (3.1.9),

(M) unipotent monodromy condition (3.1.6),

(B) boundary vanishing condition (3.1.10).

For example (F) and (T) imply that — on the open stratum — the formation of automorphic vector
bundles commutes with the formation of sheaves of differential forms and jet bundles (Section 3.3).
If (M) holds, even the sheaves of differential forms and the jet bundles — now on the compact-
ification — can be defined as generalized automorphic sheaves (Section 3.5), as opposed to their
logarithmic variants which are always usual automorphic vector bundles. Finally, if in addition (B)
is satisfied, Hirzebruch-Mumford proportionality holds for the compactification (Section 4.2). In
the compact case (M) and (B) are vacuous, and everything becomes much easier. The reason for
the validity of the axioms for automorphic data on toroidal compactifications of (mixed) Shimura
varieties is sketched in section 3.6.
Finally, we prove the proportionality theorem of Hirzebruch and Mumford in Section 4 in the
following form:

Theorem 4.2.1. Let M be an abstract toroidal compactification of dimension n equipped with
automorphic data with logarithmic connection satisfying the axioms (F, T, M, B) and such that
PM is reductive. There is a constant c ∈ Q such that for all homogeneous polynomials p of de-
gree n in the graded polynomial ring Q[c1, c2, . . . , cn] and all PM -equivariant vector bundles E in
[ [M∨/PM ]-coh ] the proportionality

p(c1(Ξ∗E), . . . , cn(Ξ∗E)) = c ⋅ p(c1(E), . . . , cn(E))

holds true.

The idea of the proof is as follows. Following Atiyah [2], the polynomials in the Chern classes
of vector bundles can be computed as an element in Hn(M,ω) ≅ k, resp. Hn(M∨, ω) ≅ k by a
construction (purely in terms of homological algebra) starting from the extension

0 // Ω1 ⊗ E // J1E // E // 0 (2)

for E and for a similar extension for Ξ∗E . This construction works in every Abelian tensor category.
It suffices therefore to find an Abelian tensor category A which maps via an exact tensor functor
to the categories of coherent sheaves

[ M-coh ] and [ M∨-coh ]

respectively, such that an extension like (2) exists in A and maps to the extensions J1E , and
J1(Ξ∗E), respectively. Furthermore, this Abelian tensor category has to satisfy the property that
ExtnA(O, ω′) is one-dimensional where ω′ is the pre-image of both ωM and ωM∨ .
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In the compact case the category [ [M∨/PM ]-coh ] of PM -equivariant vector bundles on M∨ can be
taken as A. This does not work in general because Ξ∗ωM∨ = ωM(log) and mostly Hn(M,ω(log)) =
0.
In the non-compact case, the Fourier-Jacobi categories can be taken as A. Here the boundary
vanishing condition comes into play which, by an easy homological algebra argument, implies that
ExtnA(O, ω′) is indeed one-dimensional. (Strictly speaking we only construct the tensor product on
a subcategory of “torsion-free” objects in the Fourier-Jacobi-categories and show that Ξ∗ respects
it. For the reasoning above this is however sufficient.)
This article would never have been realized without interesting discussions with Emanuel Schei-
degger, whom I would like to thank very much. Special thanks to Wolfgang Soergel to whom I am
indebted for his aid.

Notation

We write [n] for the unordered set {1, . . . , n} and ∆n for the poset {1 ≤ 2 ⋅ ⋅ ⋅ ≤ n} also regarded as a
category. For a scheme, formal scheme, or stack X we write [ X-coh ] (or sometimes [ OX-coh ])
for the category of coherent sheaves onX and [ X-qcoh ] for the category of quasi-coherent sheaves.

2 Toroidal compactifications

2.1 Toroidal formal schemes

2.1.1. Let k be a field of characteristic 0, fixed for the whole article. Let Mm be A1 with its
unital multiplicative monoid structure over k and, as usual, let Gm ↪Mm be the open subscheme
of the multiplicative group. Denote by ε the unit of Mm or Gm and by µ the multiplication.
Let n be a positive integer and let X be a formal scheme over k with an action of Mn

m, i.e. with a
given morphism

Mn
m ×X ρ // X

such that the diagram

Mn
m ×Mn

m ×X id×ρ //

µ×id

��

Mn
m ×X

ρ

��
Mn
m ×X ρ // X

is commutative and such that the composition

X
ε×id //Mn

m ×X ρ // X

is the identity. By restriction along Gn
m ↪Mn

m there is, in particular, also a Gn
m-action on X.

We have the following lemma whose proof we leave to the reader.

Lemma 2.1.2. Let X = SpfR be an affine formal scheme over k. It is equivalent to give an action
of Mn

m on X or a (topological) Zn≥0-grading on R, i.e. collection of k-sub-vectorspaces Rv ⊆ R for
each v ∈ Zn≥0 such that

1. For all v,w ∈ Zn≥0, we have
Rv ⋅Rw ⊆ Rv+w.

6



2. Each x ∈ R has a unique expression as a converging sum

x = ∑
v∈Zn

≥0

xv

with xv ∈ Rv.

We denote by e1, . . . , en the standard basis of Zn.

Definition 2.1.3. A formal k-scheme X with an action of Mn
m is called toroidal if there is an

affine covering by SpfR’s such that the action restricts to Mm
n × SpfR → SpfR and such that

1. All Rv have the discrete topology.

2. The induced map
R0[Re1 , . . . ,Ren]→ R

has dense image and induces an isomorphism between the completion of R0[Re1 , . . . ,Ren] at
the ideal (Re1 , . . . ,Ren) and R.

3. The Rei (and hence by 2. all Rv) are locally free R0-modules of rank 1.

It follows that, up to restricting to a finer open cover, we have

R ≅ R0Jx1, . . . , xnK

with its natural topological Zn≥0-grading. The xi however are only determined up to R×
0 .

2.1.4. On a toroidal formal scheme X we also have a ring-sheaf OX0 which locally gives the R0’s
and the OX,v which are coherent OX0-submodules of OX . The topological space X together with
OX,0 is a scheme and it is isomorphic to the categorical quotient (in the category of formal schemes)
of X w.r.t. the action of Mn

m. It is denoted by X0. Furthermore there is an obvious section (a
closed embedding) X0 ↪X.

Example 2.1.5. The standard example starts from a Gn
m-bundle on a variety which gets partially

compactified by glueing in the partial compactification Gn
m ↪Mn

m and then completed at the section
given by the origin of Mn

m.

2.2 Modules and differentials

In the following we consider the integers Z as a category via the natural inclusion of posets into
categories. In other words, there is a morphism (and a unique one) n→ n′ if and only if n ≤ n′.
Proposition 2.2.1. Let X with an action of Mn

m be a noetherian toroidal formal scheme. It is
equivalent to give

1. a coherent sheaf of OX-modules M with an extension of the Gn
m-action (not necessarily the

Mn
m-action);

2. a collection of coherent sheaves of OX0-modules Mw for w ∈ Zn together with an associative
system of multiplication morphisms for v ∈ Zn≥0:

OX,v ⊗OX0
Mw →Mv+w

giving for v = 0 just the module-structure, and such that there are N ′,N ∈ Z with the property
that for all w such that for all i, if wi ≥ N and v = ei the morphism is an isomorphism and
for all w such that some wi < N ′ the module Mw is zero;
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3. a functor with values in coherent sheaves of OX0-modules

M ∶ Zn → [ OX0-coh ]
v ↦ M(v)

such that there are N,N ′ ∈ Z with the property that for all i and for all v with vi ≥ N the
morphism M(v → v + ei) is an isomorphism and for all v such that vi < N ′ for some i the
module M(v) is zero. In other words the functor is isomorphic to the left Kan extension of a
functor ∆n

N−N ′ → [ OX0-coh ] where ∆N−N ′ is considered as an interval [N ′,N] ⊂ Z.

Proof (sketch). 1↔ 2: Given a module M the associated Mv is just the OX0-submodule of elements
transforming with weight v under Gn

m. Conversely, the module M is given as the product of the
modules Mv.
2↔ 3: A collection Mv is associated with the functor v ↦M(v) ∶=Mv ⊗OX,−v. Here for arbitrary
v ∈ Zn we set

OX,v ∶=⊗
i

O⊗viX,ei
.

A morphism v → w in Zn is mapped to the morphism

Mv ⊗OX,0 OX,−v →Mw ⊗OX,0 OX,−w

induced by
OX,w−v ⊗OX,0 Mv →Mw.

The functoriality of the functor M is equivalent to the associativity of the multiplication on the
module M .

Definition 2.2.2. Let X with an action of Mn
m be a noetherian toroidal formal scheme. Coherent

OX-modules with compatible Gn
m-action as in Proposition 2.2.1 form an Abelian category which we

denote by [ OX-tcoh ].

Lemma 2.2.3. Under the correspondence above, we have that the M(v) are torsion-free OX,0-
modules and the M(v → w) are monomorphisms for all v ≤ w, if and only if M is torsion-free.

Proof. Left to the reader.

Remark 2.2.4. We define the full subcategory Fun(Zn, [ OX0-coh ])f.g. of Fun(Zn, [ OX0-coh ])
as those functors M which have the property stated in Proposition 2.2.1, 3. Hence we have an
equivalence

[ OX-tcoh ] ≅ Fun(Zn, [ OX0-coh ])f.g..

2.2.5. Let M be a coherent sheaf on X with a compatible action of Gn
m. We have its associated

functor M ∶ Zn → [ OX0-coh ]. As said, there is an N such that M(∑αiei) is (essentially)
constant in αi if αi > N . We denote this sheaf by limα→∞M(v + αei). Note that also expressions
like limα1→∞,...,αj→∞M(v+α1ei1+⋯+αjeij) do make sense (up to isomorphism). Given an injection
β ∶ [j] ↪ [n] we will regard this construction w.r.t to the missing indices in the image of β as a
functor

lim
β
∶ Fun(Zn, [ OX0-coh ])f.g. → Fun(Zj , [ OX0-coh ])f.g..

We just write “lim” for this construction w.r.t. all indices.
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2.2.6. For coherent, torsion-free sheaves M and N we can describe the tensor product M ⊗N
with its natural Mn

m action by the functor

(M ⊗N)(v) = ∑
v1+v2=v

M(v1)⊗N(v2)

where the sum is formed in (limM)⊗ (limN).

2.2.7. For any injection β ∶ [j]↪ [n] define a sheaf OX[β−1] as the sheafification of the pre-sheaf
defined (for small enough U) by

U ↦ OX(U)[x−1
k1 , . . . , x

−1
kn−j

]

where {k1, . . . , kn−j} is the complement of im(β) and the xi are generators of OX,ei . To a coherent
(in the sense of modules on ringed spaces) OX[β−1]-module with Gn

m-action we may still associate
(in the same way as in Proposition 2.2.1) a functor in Fun(Zn, [ OX0-coh ]). This yields a fully-
faithful functor

[ OX[β−1]-tcoh ]→ Fun(Zn, [ OX0-coh ])
which has the property that the functors in the image are constant in the direction of the eki .
The corresponding localization for modules is given by the lim-construction of 2.2.5. More precisely,
the diagram

[ OX-tcoh ] //

≅
��

[ OX[β−1]-tcoh ]� _

��
Fun(Zn, [ OX0-coh ])f.g.

limβ // Fun(Zj , [ OX0-coh ])f.g.
p∗β // Fun(Zn, [ OX0-coh ])

is commutative. Here p∗β is the pullback induced by the projection pβ ∶ Zn → Zj induced by β.

The sheaf OX[β−1] can be completed afterwards w.r.t. any of the ideals generated by OX,ei for
i ∈ im(β). (For i /∈ im(β) the completion would be zero.) This process of inverting elements and
completion might be repeated. Any sheaf R of OX -algebras so obtained (which still carries an
action of Gn

m) still yields a fully-faithful functor

[ R-tcoh ]→ Fun(Zn, [ OX0-coh ])

whose image consists of functors that are constant in the direction of the eβ(i) for those i such that
(locally) a generator xi has been inverted. An inverse functor on the essential image might be quite
complicated to describe. Its values are given as a subset of the infinite product that was considered
in Proposition 2.2.1 but the sequences might be e.g. bounded below in some direction, point-wise
w.r.t. another direction. Since we will not need it we will not elaborate on this.
A Gn

m-equivariant coherent OX[∅−1]-module M̃ (where ∅ ∶ [0] → [n] is the inclusion of the empty
set) is equivalent to just an OX0-module via M̃ ↦ M̃(0). Each OX0-module M0 in turn has a
canonical extension to an OX -Module with Mn

m-action, given by means of the functor

M0(v) =
⎧⎪⎪⎨⎪⎪⎩

M0 if v ∈ Zn≥0,

0 otherwise,

or equivalently by M ∶=M0 ⊗OX,0 OX with its natural Mn
m-action. We denote the full subcategory

of [ OX-tcoh ] consisting of canonical extensions by [ OX-tcoh-can ].
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2.2.8. There is the following exact sequence (equivariant w.r.t. the action of Mn
m) of coherent

sheaves on X:

0 // Ω̂X0 ⊗OX0
OX // Ω̂X

// ∑iOX,ei ⊗OX0
OX // 0

where ∑iOX,ei ⊗OX0
OX is isomorphic to the bundle Ω̂X/X0

. The bundle Ω̂X is not a canonical

extension. There is the larger bundle Ω̂X(log) which is locally generated by Ω̂X and by the rational
differentials dxi

xi
. The latter are invariant under the action of Mn

m. We proceed to describe the

associated functors of the Mn
m-equivariant vector bundles Ω̂X and Ω̂X(log).

Consider the Atiyah extensions on X0 associated with the line bundles OX,ei

0 // Ω̂X0
// Ei

pi // OX0
// 0

and their amalgamed sum

0 // Ω̂X0
// E

⊕pi // ⊕iOX0
// 0 (3)

Then Ω̂X(log) is just the canonical extension of E, i.e. it is given by the functor

Ω̂X(log)(v) =
⎧⎪⎪⎨⎪⎪⎩

E if v ≥ 0,

0 otherwise.

In local coordinates one checks the following:

Proposition 2.2.9. The functor associated with Ω̂X is given by

Ω̂X(v) =
⎧⎪⎪⎨⎪⎪⎩

{e ∈ E ∣ ∀i ∶ vi = 0⇒ pi(e) = 0} if v = ∑ viei ≥ 0,

0 otherwise,

as a subfunctor of Ω̂X(log).

2.3 Abstract toroidal compactifications

2.3.1. Let M be a smooth k-variety. Consider an open embedding M ↪ M into a smooth
k-variety (mostly assumed to be proper), such that D ∶= M ∖M is a divisor with strict normal
crossings. Consider the coarsest statification M = ⋃Y ∈S Y into locally closed subsets such that all
components of D are closures of a stratum in the finite set S. The variety M itself will be the
unique open stratum. Denote by nY the codimension of Y . Consider furthermore a toroidal action
ρY of MnY

m on the formal completion MY ∶= CY (M) of M along Y which hence establishes Y as

the invariant subscheme MY,0. For a pair of strata Y,Z we write Z ≤ Y if Z ⊂ Y .

Definition 2.3.2. The embedding M ↪M together with the collection {ρY }Y is called a (partial,
if M is not proper) toroidal compactification if for each pair Z ≤ Y of strata we have an injective
map βZY ∶ [nY ]↪ [nZ] such that the natural morphism of formal schemes

MZ
//MY

is equivariant w.r.t. the action of MnY
m , where MnY

m acts via βZY and ρZ on MZ .
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Remark 2.3.3. The map βZY is uniquely determined by the condition in the definition and hence
for strata W ≤ Z ≤ Y we have βWZβZY = βWY .

We will regard objects on M such as coherent sheaves etc. always with a compatible action of the
GnY
m (not necessarily MnY

m ) on their completion on MY for all strata Y in a compatible way.

Definition 2.3.4. In particular, let [ OM -tcoh ] be the category of coherent sheaves with compat-
ible GnY

m -actions on the various completions. Denote by [ OM -tcoh-can ] the full subcategory of
those sheaves with compatible GnY

m -actions whose completions are all canonical extensions (2.2.7).

For example Ωi(M), T (M) and OM are naturally objects in [ OM -tcoh ]. The former two are not
canonical extensions, however.

2.3.5. Each closed stratum Y is itself a (partial) toroidal compactification. The completion CZ(Y )
is the following formal subscheme of CZ(M). Its affine pieces are given (with the notation from
Definition 2.1.3) by R0JRe1 , . . . ,RenZ K modulo the ideal generated by Reβ(1) , . . . ,Reβ(nY )

(where

β = βZY ). The formal scheme CZ(Y ) carries an action of GnZ−nY
m . Here the missing indices not

in the image of β can be numbered in any way. We denote the corresponding injective map by
β⊥ZY ∶ [nZ − nY ] ↪ [nZ]. With the restriction β′WZ ∶ [nZ − nY ] ↪ [nW − nY ] of the transition maps
βWZ for W ≤ Z ≤ Y the scheme Y becomes a toroidal compactification. The following commutative
diagram shows the compatibility of the chosen numberings:

[nZ − nY ] � �
β′WZ //

� _

β⊥ZY
��

[nW − nY ]� _

β⊥WY
��

[nZ] �
� βWZ // [nW ]

Lemma 2.3.6. Let E be a coherent sheaf on M with compatible GnY
m -actions on the respective

completions EY on MY . Then for any stratum Z ≤ Y and v ∈ ZnY we have that

EY (v)

is the coherent sheaf on Y which (w.r.t. to the restricted structure of toroidal compactification of
2.3.5) corresponds to the functor w.r.t. Z:

z ↦ EZ(βZY (v) + β⊥ZY (z)).

Proof. Left to the reader.

2.3.7. For the following we will work on the topological space underlying M itself and consider
coherent sheaves F on MY as coherent CY (OM)-modules (in the sense of ringed sheaves) on M .
Note that we have

(CY (OM))(U) = OMY
(U ∩ Y ).

Note that this is not quasi-coherent as OM -module, except for the open stratum M itself. We write
CY (OM)∣Y for the sheaf

U ↦ OMY
(Y ∩U)

and similarly for a sheaf of OMY
-modules F on MY we will write F ∣Y for the so defined restriction

considered as a sheaf on M .

11



Lemma 2.3.8 (Glueing lemma). Let the following data be given:

1. For each stratum Y a functor

FY ∶ ZnY → [ Y -tcoh-can ]

which satisfies the conditions of Proposition 2.2.1, 3., where [ Y -tcoh-can ] is the category
of toroidal coherent sheaves on Y which are canonical extensions (see 2.3.4)2.

2. For all Z ≤ Y an isomorphism of functors

κZY ∶ ι∗ZY FY
∼Ð→ lim

βZY
FZ (4)

which are compatible w.r.t. Y ≤ Z ≤W in the obvious way. Here ιZY ∶ Z ↪ Y is the natural
closed embedding.

Then there exists a coherent sheaf E on M with compatible actions of GnY
m on CY (E) for all Y ,

with isomorphisms of functors
λY ∶ CY (E)(−)∣Y ≅ FY (−)∣Y

which for each Z ≤ Y are compatible with the functors κZY in the sense that for all v ∈ ZnY the
diagram

CY (E)∣Y
λY //

��

[FY ]∣Y
κ̃ZY
����

CY (CZ(E)[β−1
ZY ])∣Z

λZ // (CY ([p∗βZY limβZY FZ]))∣Z

(5)

is commutative. Here [FY ] is the coherent sheaf of CY (OM)-modules determined by the functor
FY , and similarly [p∗βZY limβZY FZ] is the coherent sheaf of CZ(OM)[β−1

ZY ]-modules determined by
the functor p∗βZY limβZY FZ . The morphism κ̃ZY is the composition

[FY ]∣Y ↪ CY (CZ([FY ])[β−1
ZY ]) ∼Ð→ CY ([p∗βZY ι

∗
ZY FY ]) ∼Ð→ CY [p∗βZY lim

βZY
FZ]

where the second isomorphism is induced by the fact that all FY (v) are canonical extensions along
Z (cf. also 2.2.7). In particular E is isomorphic to FM on the open stratum M . The sheaf E is
uniquely determined (up to unique isomorphism) by this property and the isomorphisms κ.

Proof. We apply [9, Main theorem 7.6]. The sheaves of OM -algebras RY of [9, 7.2] are isomorphic

to the restriction of the sheaf CY (OM) to any open subset U ⊂M such that U ∩ Y = Y , the sheaf
that we denote by CY (OM)∣Y .
For any pair of strata Z ≤ Y the sheaf of OM -algebras RY,Z of [9, 7.2] is, by definition, equal to

CY (RZ ⊗O
M
OU) where U is any open subset such that U ∩ Y = Y and where the tensor product

is formed in the category of ring sheaves. The sheaf of OM -algebras CY (RZ ⊗O
M
OU) is also

isomorphic to a completion of the localization CZ(OX)[β−1
Y Z] since Y ∖ Y is given in formal local

coordinates in CZ(Y ) by the zero locus of xk1 , . . . , xkj where {k1, . . . , kj} is the complement of
im(β).

2In fact, only the restriction to Y of these sheaves matter. For technical reasons — to be able to describe the
glueing — we consider their canonical extensions here.
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By the nature of toroidal compactification of M we have an action of GnY
m on RY and an action of

GnZ
m on RY,Z which are compatible (via βZY ) with the inclusion

RY ↪ RY,Z .

The category of RY -coherent sheaves with GnY
m -action is equivalent to the category

Fun(ZnY , [ OY -tcoh ])f.g..

Hence the given collection of functors {FY }Y gives such objects by restricting FY to Y .
From the category of RY,Z-coherent sheaves with GnZ

m -action we have still a fully-faithful embedding
into the sub-category of

Fun(ZnZ , [ OZ-tcoh ])
consisting of the functors which are constant in the directions ei for i /∈ im(βZY ). The glueing datum
required by [9, Lemma 7.5] can therefore be given by diagram (5). Hence, [9, Main theorem 7.6]
provides the requested sheaf of OM -modules which is by construction an object in [ OM -tcoh ].

2.4 Toroidal compactifications of (mixed) Shimura varieties

2.4.1. The standard examples of abstract toroidal compactifications in the sense of Definition 2.3.2
are toroidal compactifications of Shimura varieties [1]. Since we are interested only in the situation
over a field, we can use the theory of canonical models of toroidal compactifications of mixed
Shimura varieties due to Pink [13, 2.1]. We will use the language of [7] (cf. also [8, 2.5]) with is
concerned with extensions of the theory over the integers (in the case of good reduction of Hodge
type mixed Shimura varieties). For the automorphic data referred to in the next section we rely on
[8, 2.5] also for the rational case. In that case the ideas for the proofs of the theorems in [8, 2.5.]
(which are given in [7]) are essentially due to Harris [3–5].

2.4.2. For each pure (or mixed) rational Shimura datum X = (PX,DX, hX) in the sense of [8,
2.2.3]3 or [13, 2.1], and for each sufficiently small compact open subgroup K ⊂ PX(A(∞)) there is
an associated Shimura variety M(KX) which is a smooth quasi-projective variety defined over the
reflex field E(X).
Furthermore, for each smooth K-admissible rational polyhedral cone decomposition ∆ for X (cf.
[8, 2.2.23]) there is a (partial) toroidal compactification M(K∆X) which contains M(KX) as an open
subvariety whose complement is a divisor with strict normal crossings, if K is sufficiently small.
This and the following is a summary of [8, Main Theorem 2.5.9]. If ∆ is chosen (and this is always
possible) to be projective and complete then M(K∆X) is a smooth projective variety defined over
the reflex field E(X). This situation thus gives rise to a stratification of M(K∆X) as considered in
2.3.1. Each stratum corresponds furthermore to an orbit of rational polyhedral cones in ∆. For
each stratum Y in this stratification there is a mixed Shimura datum Y = (PY,DY, hY) such that
PY is a subgroup of PX (if X is pure, this is a certain normal subgroup of the Q-parabolic of
PX describing the corresponding boundary component in the Baily-Borel compactification). The
boundary component Y is determined only up to conjugation. Furthermore, ∆ restricts to a
rational polyhedral cone decomposition ∆Y for Y. The partial toroidal compactification of the
mixed Shimura variety M(KY∆Y

Y) has a matching stratum Ỹ and there is an isomorphism of formal
schemes (assuming that K is small enough)

CY M(K∆X) ≅ C
Ỹ

M(KY∆Y
Y).

3where the integrality property has to be ignored.
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Furthermore, the mixed Shimura variety M(KY Y) is a torus torsor over another mixed Shimura
variety M(K′

Y Y/U) where U is a subgroup of UY (a subgroup of the center of the unipotent
radical of PY determined by the mixed Shimura datum) and the action of the torus extends to
M(KY∆Y

Y) (cf. [8, 2.5.8]). The acting torus gets canonically identified with GnY
m (up to numbering

of the coordinates) by means of the integral basis of the nY -dimensional rational polyhedral cone
describing Y . By construction of the toroidal compactification this action extends to MnY

m in such a
way that C

Ỹ
M(KY∆Y

Y) becomes a toroidal formal scheme in the sense of 2.1.3. The functoriality of

the theory implies that the actions of the tori match for pairs of strata Z ≤ Y . Thus M ∶= M(K∆X)
is an abstract toroidal compactification in the sense of Definition 2.3.2.

3 Automorphic data

3.1 Automorphic data on an abstract toroidal compactification

Let M be an abstract toroidal compactification (Definition 2.3.2).

Definition 3.1.1. Automorphic data on the abstract toroidal compactification M consist of a
collection {PY ,M∨

Y ,BY , . . .}Y indexed by the strata Y of M with

1. a linear algebraic group PY (not necessarily reductive);

2. an open and closed subscheme M∨
Y of the moduli space of quasi-parabolic subschemes of PY .

We will call these spaces generalized flag varieties. If PY is reductive then they are
projective. We consider the right action of PY on M∨

Y by conjugation;

3. a diagram of formal schemes

MY BY
πoo p //M∨

Y

in which π is a right PY -torsor and p is a PY -equivariant morphism;

4. a lift of the MnY
m -action to BY in a PY -equivariant way, and such that p is MnY

m -invariant.
We assume that BY is a canonical extension, i.e. isomorphic to Π−1BY for some bundle on Y

with its induced MnY
m -action, where Π ∶MY → Y is the projection; (If a k-rational point of M∨

exists, corresponding to a quasi-parabolic QY , such a datum is equivalent to a QY -principal
bundle on Y .)

together with

5. for strata Z ≤ Y closed embeddings of algebraic groups αZY ∶ PZ ↪ PY which induce open
embeddings M∨

Z ↪M∨
Y , and PZ- and MnY

m -equivariant morphisms ρZY ∶ BZ → BY such that
the diagram of formal schemes

MZ

��

BZ
πoo

��

p //M∨
Z� _

��
MY BY

πoo p //M∨
Y

commutes. The morphisms have to be functorial w.r.t. three strata W ≤ Z ≤ Y .
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In other words, if M∨ contains a k-rational point QM , automorphic data is roughly given by a
QM -torsor on M such that the structure group restricts to QY on the formal completion along Y
in an MnY

m -equivariant way. Here QY is the quasi-parabolic in M∨
Y (k) mapping to QM .

3.1.2. The diagram 3.1.1, 3. for Y = M can be equivalently described by a morphism of Artin
stacks (omitting the subscripts Y )

Ξ ∶M → [P /M∨] .

Let E be a vector bundle on [P /M∨], i.e. a P -equivariant vector bundle on M∨. The pull-back
Ξ∗E is called the automorphic vector bundle associated with E . It can be explicitly described as
follows: Note that there is a equivalence of categories between P -equivariant vector bundles on B
and vector bundles on M . The vector bundle Ξ∗E is the vector bundle on M corresponding to the
P -equivariant vector bundle p∗E . This construction will be generalized in Section 3.4 (cf. 3.4.4 for
the special case).

3.1.3. Consider the following sequence of vector bundles on BY (which are all MnY
n -equivariant

and canonical extensions). We assume given a logarithmic Ehresmann connection on BY , i.e. a
section sY which is PY -equivariant and MnY

n -equivariant:

0 // OBY ⊗ Lie(PY ) = T π−vert
BY

// TBY (log) // π∗TMY
(log)

sYrr
// 0.

Note that PY acts on OBY by translation and on Lie(PY ) via Ad. Since everything is MnY
n -

equivariant and a canonical extension, this is equivalent to giving a PY -equivariant section of the
sequence

0 // Oπ−1Y ⊗ Lie(PY ) // Oπ−1Y ⊗ TBY (log) // π∗(OY ⊗ TMY
(log))

s′Yqq
// 0. (6)

Furthermore these sections are supposed to be compatible w.r.t. the relation Z ≤ Y on strata.
Such a datum will be called automorphic data with logarithmic connection on the toroidal
compactification M .

3.1.4. We define the PY -sub-vector bundle T horz
BY

as the image of sY , and get a PY -equivariant
decomposition:

TBY (log) = T π−vert
BY

⊕ T horz
BY

.

The connection is called flat, if

(F) T horz
BY

is closed under the Lie bracket4.

We denote the corresponding projection operators by P vert
π and P horz

π . If sY is flat, it induces a
homomorphism of ring-sheaves

ν ∶ π−1DMY
(log)→ DBY (log). (7)

4Note that the Lie bracket on TBY restricts to TBY (log).
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Remark 3.1.5. Let Y be a stratum of positive codimension and Di the components of the divisor
with Y ⊂Di. We have a PY -equivariant commutative diagram with exact rows and columns

0

��

0

��
⊕iOπ−1Y

1↦ξ′i,Y
��

⊕iOπ−1Y
1↦ξi,Y
��

0 // Lie(PY )⊗Oπ−1Y // TBY (log)⊗Oπ−1Y //

��

π∗(OY ⊗ TMY
(log))

s′Yqq
//

��

0.

0 // Lie(PY )⊗Oπ−1Y // Tπ−1Y
//

��

π∗TY
//

��

0

0 0

where we denote by ξi,Y , resp. ξ′i,Y the restriction of xi
∂
∂xi

for xi a local equation for Di, resp.

π−1Di, to Y , resp. π−1Y . Those are independent of the choice of the parameter xi. We have

ResDi(sY ) = ξ′i,Y − s′Y (ξi,Y ) = P vert
π (ξ′i,Y )

which is a PY -invariant Lie(P )-valued function on π−1Y . This may be taken as the definition of
the residue. If it is trivial, the datum can be given by a flat connection on the restriction of BY to
Y . For strata Z ≤ Y , we have

ρ−1
ZY (ResDi(sY )) = ResDi(sZ). (8)

3.1.6. Note that, by the structure of toroidal compactification, we have a sequence dual to
sequence (3)

0 // ⊕nY
i=1OMY

⋅ cani,MY
// TMY

(log) // Π∗TY
// 0

where cani,MY
are the fundamental vector fields for the GnY

m -action on MY , and Π is the projection
to Y . Similarly for BY .
Since cani,BY ∣π−1Y = ξ′i,Y , we have therefore

ResDi(sY ) = P vert
π (cani,BY )∣π−1Y .

The following axiom will be called the unipotent monodromy condition:

(M) For any i, we have P vert
π (cani,BY ) ∈ Lie(U (i)) ⊗OBY , where Lie(U (i)) is a Lie subalgebra of

Lie(PY ) given by a 1-dimensional normal unipotent subgroup Ga ≅ U (i) ⊂ PY .

Since everything is Mn-equivariant, we could state the condition equivalently as ResDi(sY ) ∈ u(i)Y ⊗
Oπ−1Y .

Remark 3.1.7. Axioms (F) and (M) are only concerned with the bundles MY ← BY . For k = C
suppose that Π and the local equations xi of weight ei converge on M(C) in a neighborhood U ⊃ Y .
Then for each base point b ∈ B lying over a point in U , the bundle B with flat connection corresponds
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to a homomorphism π1(M) → P (C) (Monodromy at b). Let Mi be the image in P (C) of a loop
around Di. We have then

Mi = exp(−2π
√
−1 ⋅ P vert

π (cani,BY )(b))

(the choice of
√
−1 corresponds to the orientation of the loop.) The compatibility (8) shows that Mi

lies in the unipotent subgroup U (i)◁PY (C) ⊂ P (C) for any Y ⊂Di. This explains the name of the
axiom (M).

Axiom (M) has the following immediate consequence:

Lemma 3.1.8. We have p(P vert
π (cani,BY )) ∈ p∗T

(i)
M∨ (or equivalently p(P horz

π (cani,BY )) ∈ p∗T
(i)
M∨),

where T
(i)
M∨ is the subbundle of TM∨ induced by a Lie subalgebra u

(i)
Y ⊆ Lie(PY ) given by a 1-

dimensional normal unipotent subgroup Ga ≅ U (i) ⊂ PY .

Note that because of the normality of U (i) the bundle T
(i)
M∨ is PY -equivariant itself.

3.1.9. The automorphic data satisfies Torelli5, if we have in addition

(T) a direct sum decomposition

TBY (log) = T p−vert
BY

(log)⊕ T horz
BY

where T p−vert
BY

(log) is the intersection of T p−vert
BY

with TBY (log) in TBY .

Since the morphism π−1Y → M∨
Y is a submersion (because P maps π−1Y into itself) TBY (log) →

p∗TM∨
Y

is still surjective, and we have again an exact sequence with section

0 // T p−vert
BY

(log) // TBY (log) // p∗TM∨
Y

sss
// 0.

whose image is T horz
BY

.
Hence Torelli (T) induces an isomorphism

p∗TM∨ ≅ π∗TM(log)

and in the same way as before, if sY is in addition flat, it induces a homomorphism of ring-sheaves

µ ∶ p−1DM∨
Y
→ DBY (log). (9)

3.1.10. We also consider the following axiom (called the boundary vanishing condition):

(B) For all strata Y /=M we have: H i([M∨
Y /PY ] , ωM∨

Y
) = 0 for i ≥ dim(Y )

(cf. Section 3.2 for the notation). Here ωM∨
Y
= Ωn

M∨
Y

is the highest power of the PY -equivariant sheaf

of differential forms on M∨
Y .

5this rather corresponds to classical infinitesimal Torelli theorems
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3.2 Generalized flag varieties and representations of quasi-parabolic subgroups

3.2.1. For a linear algebraic group P and a quasi-parabolic subgroup Q we have several functors
between Q-representations, P -representations and (equivariant) coherent sheaves on the quasi-
projective variety M∨ = Q/P (generalized flag variety)6. These functors are best understood in
the language of Artin stacks. We will not use this theory explicitly but mention it as a guiding
principle because it so much clarifies the relations. All representations are, of course, understood
to be algebraic. We have the following diagram of morphisms of Artin stacks where all stacks are
quotient stacks (even schemes in the right-most column):

[⋅/Q] ∼
a // [M∨/P ]

b
��

M∨

d

��

coo

[⋅/P ]
f .. Spec(k)
e

nn

(10)

We denote the categories of (quasi-)coherent sheaves on a stack X by [ X-(q)coh ] or sometimes
by [ OX-(q)coh ]. For the particular stacks above, we get

[ [⋅/Q]-coh ] category of finite-dimensional algebraic Q-representations in k-vector spaces;
[ [⋅/P ]-coh ] category of finite-dimensional algebraic P -representations in k-vector spaces;

[ [M∨/P ]-coh ] category of P -equivariant finite dimensional vector bundles on M∨;
[ M∨-coh ] category of coherent sheaves on M∨;

[ Spec(k)-coh ] category of finite-dimensional k-vector spaces,

and similarly for the categories of quasi-coherent sheaves.
The corresponding pull-back and (derived) push-forward functors between the categories of (quasi-)coherent
sheaves are given as follows.

a∗ associates with a Q-representation V a locally free P -equivariant sheaf on M∨. The total
space can be described as (V × P )/Q where Q acts on V and P . It defines an equivalence of
the category of finite-dimensional Q-representations and coherent P -equivariant sheaves on
M∨.

a∗ is the inverse of a∗, evaluation at the choosen base point of M∨.

b∗ global sections on M∨, remembering the induced P -action. The right derived functors give
the cohomology on M∨ equipped with the induced P -action.

b∗ associates with a P -representation V the coherent sheaf V ⊗OM∨ with the natural P -action.

c∗ forgets the P -action.

d∗ global sections on M∨. The right derived functors are the cohomology on M∨.

d∗ associates with a vector space V the coherent sheaf V ⊗OM∨ .

e∗ induction IndP{e}(−), associates with a vector space V the P -representation V ⊗O(P ).

e∗ forgets the P -action.

6Hence, in contrast to the last section, we explicitly assume for simplicity that M∨ has a k-rational point with
corresponding quasi-parabolic Q.
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f∗ associates with a P -representation the vector space of P -invariants. This functor is exact if
P is reductive. Otherwise the right derived functors are the (Hochschild) group cohomology
of P with values in the respective representation.

f∗ equips a vector space V with the trivial P -representation.

The composed functor a∗b∗ is the forgetful functor considering a P -representation as aQ-representation.
Its right adjoint, the composed functor b∗a∗, is therefore also called IndPQ(−) but it is not exact in
general.

For a stackX, we denote byH i(X,E) the higher derived functors of π∗ evaluated at the (quasi-)coherent
sheaf E , where π is the structural morphism. For example H i([⋅/P ] ,E) denotes the (Hochschild)
cohomology of P with values in the representation E .
We will use the following Lemma and its obvious consequences when one of the functors is exact
without further mentioning.

Lemma 3.2.2. For all compositions of push-forward functors along morphisms of Artin stacks we
have corresponding Grothendieck spectral sequences of composed functors.

Proof. See e.g. [14, Tag 070A]. Cf. also [10] for more elementary statements regarding the stacks
appearing in this section.

3.3 Jet bundles on generalized flag varieties

3.3.1. We start with a general discussion of jet bundles and differential operators. Let X be a
smooth k-variety and X(n) the n-th diagonal, i.e.

X(n) ↪X ×X

is the subscheme defined by J n where J is the ideal sheaf of the diagonal. Let E be a vector bundle
on X.
We have the two projections:

X(n)

pr2

""

pr1

||
X X

One defines the n-th jet bundle JnE by

JnE = pr1,∗ pr∗2 E

which is always equipped with a surjective map

JnE → E ,

induced by the unit E → ∆∗∆∗E where ∆ ∶ X ↪ X(n) is the diagonal. Since OX(n) = pr∗1OX =
pr∗2OX there is also a splitting of this map in the case E = OX :

OX → JnOX .
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3.3.2. For two vector bundles E and F the sheaf of differential operators (of degree ≤ n) is defined
as

D≤n(E ,F) ∶=HOMOX (JnE ,F).

The bundle JnE has a second OX -module structure coming from pr2, which we denote as an action
on the right. We have

JnOX ⊗ E ≅ JnE

where the tensor-product is formed w.r.t. this second OX -module structure.

3.3.3. There is an inclusion
D≤n(E ,F)↪HOMk(E ,F)

into the sheaf of k-linear (not OX -linear) morphisms of sheaves. For an open subset U ⊂ X, a
section s ∈H0(U,E) here is considered to be a morphism

OU → EU

and the composition

OU → pr1,∗ pr∗1OU = pr1,∗ pr∗2OU → pr1,∗ pr∗2 EU = JnEU

yields a section in H0(U,JnE) and then, via application of an element of H0(U,HOM(JnE ,F)),
a section in H0(U,F). The second OX -module structure on JnE here dualizes to pre-composition
with a section of OX . We write D≤n

X ∶= D≤n(OX ,OX). The ring sheaf DX ∶= colimnD≤n
X is generated

byOX and TX with the only relations coming from the Lie bracket of vector fields and differentiation
of functions.
Similarly to the case of jet bundles, we have

D≤n(E ,O) = D≤n
X ⊗ E∗

where the tensor product is formed w.r.t. the right-OX -module structure.

3.3.4. In the special case X = P , where P is an algebraic group, we have a natural isomorphism
(compatible with the filtration by degree):

DP = colimnD≤n
P ≅ OP ⊗U(Lie(P ))

where U(Lie(P )) is the universal enveloping algebra of the Lie algebra Lie(P ). Elements of Lie(P )
are considered to be vector fields using the action by left-translation. They are invariant under
the action of P on P by right-translation. The isomorphism is hence P -equivariant under right-
translation, where P acts on the right hand side only on OP . It is P -equivariant under left-
translation if G on the right hand side acts on OP by left-translation and via Ad on Lie(P ).

3.3.5. The construction in 3.3.4 is a special case of the following. Let P be an algebraic group
and X = Q/P , where Q is a quasi-parabolic subgroup of P . These are the generalized flag varieties,
denoted M∨

Y in the last section thus assuming here that they have a k-rational point [Q] in the
sequel. Denote by π ∶ P → Q/P the projection.

Proposition 3.3.6. Let E be a Q-representation and

E = Q/(P ×E)
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the corresponding P -equivariant vector bundle on Q/P . Then we have

D(E∗,O) ≅ Q/(P × (U(Lie(P ))⊗U(Lie(Q)) E))

where Q acts on U(Lie(P )) via Ad and on E via the given representation. This isomorphism is
compatible with the filtration by degree.

Proof. Sections on U ⊂ Q/P of the bundle Q/(P × (U(Lie(P ))⊗U(Lie(Q)) E)) can be considered as
Q-invariant sections on π−1U of the constant bundle U(Lie(P ))⊗U(Lie(Q))E and similarly sections
on U in E∗ are Q-invariant sections of the constant bundle E∗ on π−1U . The action

H0(π−1U,U(Lie(P ))⊗U(Lie(Q)) E) ×H0(π−1U,E∗)→H0(π−1U,E∗)

given by
g(X ⊗ v) ⋅ f ↦ g(Xv(f)),

where X acts as differential operator on the function v(f) ∈ OP (π−1U), is Q-invariant and therefore
induces a morphism

H0(π−1U,U(Lie(P ))⊗U(Lie(Q)) E)Q → D(E∗,O)(U).

Using local coordinates one checks that it is an isomorphism.

Definition 3.3.7. We define

JnE ∶= ((U(Lie(P ))⊗U(Lie(Q)) E
∗)≤n)∗.

Corollary 3.3.8 (to Proposition 3.3.6). The PY -equivariant sheaf on M∨
Y associated with the

representation JnE is JnE.

3.3.9. There is a logarithmic version of the sheaves of differential operators defined in the last
section. Let X = M be a smooth k-variety equipped with a divisor with normal crossings. We
define

D≤n(OX ,OX)(log) ⊂ D≤n(OX ,OX)

as the subsheaf of differential operators generated by OX and the vector fields in TX(log), and
define D≤n(E ,F)(log) similarly. We set

JnlogE ∶= D≤n(E ,OX)(log)∨.

The following theorem was shown in [4] for the case of Shimura varieties.

Theorem 3.3.10. Let M be a toroidal compactification equipped with automorphic data with log-
arithmic connection satisfying the axioms (F,T ). Let V be a representation of QM , and V ∶= Ξ∗Ṽ
the corresponding automorphic vector bundle on M (cf. 3.1.2). Then the automorphic vector bundle
associated with JnV is precisely JnlogV.

Proof. Let Ṽ denote the bundle Q/(P × V ) on Q/P . It suffices to show, dually, that the auto-
morphic vector bundle associated with the P -equivariant vector bundle D≤n(Ṽ ∗,O) on Q/P is
D≤n(log)(V∗,O).
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Let Y be a stratum. For the proof it suffices to take Y = M , however, we will need the more
refined discussion later. There are PY -equivariant homomorphisms of ring sheaves (which respect
the filtrations by degree), cf. (3.1.3–3.1.9):

µ ∶ π−1DMY
(log) → DBY (log)

ν ∶ p−1DM∨
Y
→ DBY (log)

given by the flat connection sY (and the Torelli axiom). They are compatible with the left- and
right-module structures under π−1OMY

, resp. p−1OM∨
Y

. Furthermore, we have

OBY ⋅ ν(p−1D≤n
M∨
Y
) = Dhorz

BY
= OBY ⋅ µ(π−1D≤n

MY
(log)),

where Dhorz
BY

is the sub-ring sheaf of DBY (log) generated by OBY and T horz
BY

.

The bundle D≤n(Ṽ ,O) on M∨
Y is isomorphic to

D≤n
M∨
Y
⊗OM∨

Y

Ṽ ∗

where the tensor product has been formed w.r.t. the OM∨
Y

-right-module structure on D≤n
M∨
Y

.

Furthermore, we have a PY -equivariant isomorphism:

p∗(D≤n
M∨
Y
⊗OM∨

Y

Ṽ ) ≅ (OBY ⋅ µ(π−1D≤n
MY

(log)))⊗̂OBY p
∗Ṽ

(Lemma 3.3.11 below). Now, PY acts on OBY ⋅ µ(π−1D≤n
MY

(log)) exclusively on the first factor, i.e.

(OBY ⋅ µ(π−1D≤n
MY

(log)))PY ≅ D≤n
MY

(log)

using the identification of PY -invariant sections of a PY -bundle on BY with the sections of a vector
bundle on MY . Conclusion:

(p∗(D≤n
M∨
Y
⊗OM∨

Y

Ṽ ))PY ≅ D≤n
MY

(log)⊗̂OMY (p∗Ṽ )PY .

Lemma 3.3.11. The subsheaf OBY ⋅ν(p−1D≤n
M∨
Y
) of DBY (log) is also a right-OBY -submodule sheaf,

and we have:
p∗(D≤n

M∨
Y
⊗OM∨

Y

Ṽ ) ≅ (OBY ⋅ ν(p−1D≤n
M∨
Y
))⊗̂OBY p

∗Ṽ

where the tensor product in both cases is formed w.r.t. the right-module structure.

Proof. This follows by induction on the degree from the fact that ν is compatible with the right-
p−1OM∨

Y
-module structure.

3.4 Fourier-Jacobi categories

Definition 3.4.1. Let M be a toroidal compactification equipped with automorphic data. We define
the Fourier-Jacobi category [ M-FJ ] of M . The objects are collections of functors

FY ∶ ZnY → [ [M∨
Y /PY ]-qcoh ]

for each stratum Y , and natural transformations µZY for each pair Y ≤ Z of strata, satisfying the
following conditions:
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1. For each j there is an N ∈ Z such that for all v with vj ≥ N the objects

FY (v)

do not depend on vj and for all v ≤ v′ with vj , v
′
j ≥ N the morphisms

FY (v → v′)

do not depend on vj and v′j and are identities if vi = v′i for all i /= j. In other words, the FY
are isomorphic to a left Kan extension of a functor ZnY≤N → [ [M∨

Y /PY ]-qcoh ]7.

We denote the respective constant value by limλ→∞ FY (v + λej). Note that also expressions
like limλ1,λ2→∞ FY (v + λ1ej + λ2ek) etc. make sense.

2. For all Z ≤ Y with corresponding map βZY ∶ [nY ]↪ [nZ] and morphism αZY ∶ PZ → PY there
are isomorphisms

µZY (v) ∶ α∗ZY FY (v) ∼Ð→ lim
λk1 ,...,λkl→∞

FZ(βZY (v) + λk1ek1 +⋯ + λklekl)

for all v ∈ ZnY . Here {k1, . . . , kl} is the complement of im(βZY ). These isomorphisms are
supposed to be natural transformations of functors in v and to be functorial w.r.t. three strata
W ≤ Z ≤ Y .

The morphisms in the category [ M-FJ ] are collections of morphisms of functors {FY → F ′
Y }Y

for all strata which are compatible with the isomorphisms µZY (v).
In the same way, we define categories [ Y -FJ ], where the objects only consist of functors FZ for
Z ≤ Y . We also define [ Y -FJ ], whose objects are just functors FY satisfying property 1. All
Fourier-Jacobi categories are Abelian categories.

Definition 3.4.2. We define the following full subcategories of the Fourier-Jacobi categories:

1. [ M-FJ-≥ ]: We ask in addition that for each stratum Y there is an N ∈ Z such that

FY (v) = 0

if some vj < N . Such elements shall be called bounded below. It means that FY is actually
a left Kan extension from a functor ∆nY

n → [ [M∨
Y /PY ]-qcoh ] for some n ∈ N, where ∆n is

considered as an interval [N,N + n] ⊂ Z.

2. [ M-FJ-coh ]: As before but with the additional condition that FY (v) is finite dimensional
for all Y and v. Such elements shall be called coherent.

3. [ M-FJ-≥ N ], [ M-FJ-≥ N-coh ]: As before but with fixed N .

4. [ M-FJ-tf ]: All bounded-below objects, such that in addition for all v ≤ w the morphism
FY (v)→ FY (w) is a monomorphism. Such elements shall be called torsion-free.

7This would rather only say that the FY become constant up to isomorphism, but there is no harm in requiring
that they are actually constant.
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5. [ M-FJ-lf ]: All torsions-free objects, such that for any Y and any diagram in ZnY of the
form

v //

��

v + ei

��
v + ej // v + ei + ej

the corresponding diagram

FY (v) //

��

FY (v + ei)

��
FY (v + ej) // FY (v + ei + ej)

is Cartesian. Such elements shall be called locally free.

6. [ M-FJ-lf-coh ]: All locally free and coherent objects.

3.4.3. Obviously the definition of Fourier-Jacobi category mimics the situation for vector bundles
on toroidal compactifications and we now proceed to define an exact functor

Ξ∗ ∶ [ M-FJ-coh ]→ [ M-tcoh ]

as follows: For each FY (v) ∈ [ PY -Vect on M∨
Y ] we form p∗(FY (v))PY ∣Y which is a vector bundle

on Y . It carries an action of MnZ−nY
m on

CZ(p
∗
Y (FY (v))PY ∣Y ) ≅ (p∗Z(α∗ZY FY (v))PZ)∣Y

which is a canonical extension (cf. 2.2.7).
The so defined functors

F ′
Y ∶ ZnY → [ Y -tcoh-can ]

(where Y is equipped with its structure as restricted toroidal compactification) together with the
maps induced by the µZY satisfy the requirements of Lemma 2.3.8. Hence we get a coherent sheaf
Ξ∗({FY }) on M which carries a GnY

m action on CY (Ξ∗({FY })).
We call the sheaves in the image of Ξ∗ generalized automorphic sheaves.

Example 3.4.4. The easiest case is

Ξ∗V ∶= (p∗MV )PM

where V is a bundle on [ M-FJ-coh ] = [ [M∨/PM ]-coh ]. It is a vector bundle which is a
canonical extension itself and can be described by the collection of functors

FY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

α∗YMV for v ∈ ZnY≥0

0 otherwise.

Sheaves of this form are locally free and are called automorphic vector bundles.
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Remark 3.4.5. The Fourier-Jacobi categories are related to the classical Fourier-Jacobi expansions
as follows. For each F ∈ [ M-FJ ] and stratum Y there is a morphism Fourier-Jacobi expansion:

H0(M,Ξ∗F )→ ∏
v∈ZnY

H0(M,Ξ∗Fv),

where Fv is the following element of F ∈ [ M-FJ ]. On Y it is defined by

Fv,Y (w) =
⎧⎪⎪⎨⎪⎪⎩

FY (v) for w = v,

0 otherwise

and is a similar restriction of F on strata Z ≤ Y and 0 on all other. Note that Ξ∗Fv has support
on Y .

Definition 3.4.6. For the category [ M-FJ-tf-coh ] we define a tensor product mimicing the
tensor product of 2.2.6. Let F and G be objects of [ M-FJ-tf-coh ]. We define

(F ⊗G)Y ∶ v ↦ ∑
v1+v2=v

FY (v1)⊗GY (v2)

where the sum is formed in (limv→∞ FY (v))⊗ (limv→∞GY (v)).

Lemma 3.4.7. The exact functor (cf. 3.4.3)

Ξ∗ ∶ [ M-FJ-coh ]→ [ M-tcoh ]

preserves the tensor product when restricted to [ M-FJ-tf-coh ].

Proof. It suffices to see this on the open parts MY ∣Y of the MY . The verification is left to the
reader.

3.4.8. For each pair (Y, v) where Y is a stratum and v ∈ ZnY there exist restriction functors:

(v)∗Y ∶ [ M-FJ-≥ N-coh ] → [ [M∨
Y /PY ]-coh ]

(v)∗Y ∶ [ M-FJ ] → [ [M∨
Y /PY ]-qcoh ]

(v)∗Y ∶ [ M-FJ-≥ N ] → [ [M∨
Y /PY ]-qcoh ]

given by F ↦ FY (v). Those are exact and have each an exact right-adjoint (v)Y,∗ which is given as
follows. The functor ((v)Y,∗V )Y is given by the right Kan-extension v∗, where v ∶ {⋅}↪ ZnY , resp.
v ∶ {⋅}↪ ZnY≥N also denotes the inclusion of v. In other words, we have

((v)Y,∗V )Y (w) =
⎧⎪⎪⎨⎪⎪⎩

V if w ≤ v (and wi ≥ N for all i in the ≥ N -cases)

0 otherwise.

Note that v ≤ w means that vi ≤ wi for all i. For any stratum Z ≤ Y we define

((v)Y,∗V )Z(v) ∶= α∗ZY ((v)Y,∗V )Y (pr(v))

where pr ∶ ZnZ → ZnY is the projection induced by βZY . In the bounded case it is set identically
zero if vi < N for some i. For all other strata Z the functor ((v)Y,∗V )Z is set identically zero. The
so defined object (v)Y,∗V together with the obvious isomorphisms satisfies conditions 1. and 2. of
the definition of the Fourier-Jacobi category (Definition 3.4.1).
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3.4.9. For each stratum Y and each N ∈ Z, there are exact restriction functors

ι∗N ∶ [ Y -FJ-coh ]→ [ Y -FJ-≥ N-coh ]

which have an exact left-adjoint

ιN,! ∶ [ Y -FJ-≥ N-coh ]↪ [ Y -FJ-coh ]

which is given by the natural inclusion (or, in other words, by extension by zero or left Kan extension
for the individual FZ).

Corollary 3.4.10. For each stratum Y , integer N , and v ∈ ZnY≥N , there are fully-faithful functors
of categories

(v)Y,∗ ∶D☆([ [M∨
Y /PY ]-coh ])↪D☆([ M-FJ-≥ N-coh ])

and
ιN,! ∶D☆([ M-FJ-≥ N-coh ])↪D☆([ M-FJ-coh ])

for ☆ ∈ {b,+,−,∅}.

Proof. We have in each case a pair of adjoint functors in which the unit, resp. the counit, is an
isomorphism. Since all four functors are exact, they induce functors on the derived categories
without modification, and form again pairs of adjoint functors (because the counit/unit-equations
still hold). Since also the unit, resp. the counit, is still an isomorphism we get the requested
fully-faithfulness of the left- (resp. right-) adjoint.

In particular, for Y = M and N = 0 we get that the canonical extension functor ι0,! (0)M,∗ (cf.
Example 3.4.4) is fully-faithful on the level of derived categories.

Remark 3.4.11. The statement of Corollary 3.4.10 is also true for the functors

(v)Y,∗ ∶D☆([ [M∨
Y /PY ]-qcoh ])↪D☆([ M-FJ-≥ N ])

and
ιN,! ∶D☆([ M-FJ-≥ N ])↪D☆([ M-FJ ])

for ☆ ∈ {b,+,−,∅}.

We also have the following two lemmas, which however will not be needed in the sequel.

Lemma 3.4.12. The categories [ M-FJ-≥ N ] and [ M-FJ ] do have enough injectives (while
[ M-FJ-≥ ] does not in general).

Proof. For any object F = {FY } we define an injective resolution by

∏
(Y,v),vi≤NY

(v)Y,∗I((v)∗Y F )

where I((v)∗Y F ) is an injective resolution of (v)∗Y F in the category [ [M∨
Y /PY ]-qcoh ]. Note that

right-adjoints of exact functors and ∏ preserve injective objects. Here NY is some appropriate
upper bound for the stratum Y . Note that because of the bound, the product exists (as opposed
to general products in [ M-FJ-≥ N ] and [ M-FJ ]).
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Lemma 3.4.13. The functors

D☆([ M-FJ-≥ N-coh ])↪D☆([ M-FJ-≥ N ])

D☆([ M-FJ-coh ])↪D☆([ M-FJ-≥ ])
are fully-faithful for ☆ ∈ {b,−}.

Proof. Follows from (the dual of) [11, Theorem 13.2.8].

These two lemmas imply, in particular, that Db([ M-FJ-≥ N-coh ]) is locally small and therefore
also Db([ M-FJ-coh ]), because all of its objects lie in the image of one of the fully-faithful
embeddings Db([ M-FJ-≥ N-coh ])↪Db([ M-FJ-coh ]).

3.5 Jet bundles in Fourier-Jacobi categories

3.5.1. We write as usual MY ∶= CY (M) and MY ∣Y for the formal open subscheme on Y . Recall
the definition of the vector bundle ΩM(log) on a variety with a normal crossings divisor. Locally the

bundle CY (ΩM(log))∣Y is the bundle Ω̂MY ∣Y (log) (defined in 2.2.8) on the toroidal formal scheme

MY ∣Y , but not on MY ! Recall from 2.2.8 the description of the associated functor of Ω̂MY ∣Y (log)
on MY ∣Y .
By Theorem 3.3.10 the vector bundle ΩM(log) on M can therefore be obtained by glueing and is

associated with the following element in [ M-FJ-lf-coh ]:

FY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

ΩM∨
Y

if v ≥ 0,

0 otherwise.

Note that for Z ≤ Y the restriction α∗ZY ΩM∨
Y

is canonically isomorphic to ΩM∨
Z

because αZY is
supposed to be an open embedding by definition.
If the given automorphic data with flat logarithmic connection satisfies the unipotent monodromy
condition (M) (cf. 3.1.6) then the subbundle ΩM can be described by the following functor

FY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

{ξ ∈ ΩM∨
Y

∣ ∀i ∶ vi = 0⇒ pi(ξ) = 0} if v ≥ 0,

0 otherwise.
(11)

Here pi is given as follows: By the unipotent monodromy axiom there are PY -equivariant subbundles

T
(i)
M∨
Y
⊂ TM∨

Y
given by the Lie algebras ui of 1-dimensional normal unipotent subgroups Ui ⊂ GY . The

morphism pi is then defined as the projection dual to this inclusion. By the unipotent monodromy

axiom (M) we have OBY ⋅ π−1(cani,MY
) ≅ p∗(T (i)

M∨
Y
) under the natural PY -equivariant isomorphism

π∗TMY
(log) ≅ p∗TM∨

Y
.

It follows therefore from the proof of Theorem 3.3.10 that ΩM is associated with this subfunctor.

3.5.2. Assume for the rest of the section that there exists a k-valued point in M∨ and let QM
be the corresponding quasi-parabolic subgroup of PM . The discussion in 3.5.1 enables us to refine
Theorem 3.3.10. Given a QM -representation V or equivalently a PM -equivariant vector bundle Ṽ
on M∨ we define the object (JnṼ )′ in [ M-FJ-lf-coh ] by

(JnṼ )′Y ∶ v ↦ Jn(Ṽ )v
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where we define a ZnY -indexed filtration on Jn(Ṽ ) induced by the dual of the following ZnY -
indexed filtration on (U(Lie(PY ))⊗U(Lie(QY ))V

∗)≤n: It is given by the tensor product of the trivial
filtration on V ∗ and the filtration on U(Lie(PY )) which is the quotient of the induced filtration on
T (Lie(PY )) (tensor algebra) of the following filtration on Lie(PY ):

Lie(PY )(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lie(PY ) v ≥ 0

ui vi = −1 and vj ≥ 0 ∀j /= i
0 otherwise.

(This is essentially the dual of (11).)

Theorem 3.5.3. Let V be a representation of QM , and let V ∶= Ξ∗Ṽ be the corresponding auto-
morphic vector bundle on M . Then the generalized automorphic sheaf associated with the element
(JnṼ )′ in [ M-FJ-lf-coh ] is precisely JnV.

3.5.4. Define ωM(log) ∶= Λn(ΩM(log)), where n = dim(M). By Proposition 3.3.10, this is an
automorphic line bundle associated with ωM∨ and by the above discussion the subbundle ωM ⊂
ωM(log) is a generalized automorphic sheaf on M given by ω = {ωY } with

ωY ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

ωM∨
Y

if vi ≥ 1 ∀i,
0 otherwise.

In other words it is given by ι1,! (0)M,∗ ωM∨ , where (0)M,∗ is considered as a functor with values in
[ M-FJ-≥ 1-coh ]. Note that ωM∨

Y
is associated with theQY -representation Λn(Lie(PY )/Lie(QY ))∗.

We also define the following generalized automorphic sheaves ωY associated with the functor in
[ Y -FJ-coh ]:

(ωY )Y ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

ωM∨
Y

if v = 0,

0 otherwise.

It extends (as canonical extension along smaller strata) to an element ωY in [ Y -FJ-coh ] (cf.
3.4.8). In other words ωY is given by ι0,! (0)Y,∗ ωM∨

Y
, where (0)Y,∗ is considered as a functor with

values in [ M-FJ-≥ 0-coh ].

Lemma 3.5.5. There is an exact sequence in [ M-FJ-coh ]

0 // ω // ωM∨ // ⊕Y codim 1 strata ωY
// ⊕Y codim 2 strata ωY

// ⋯

where the sums go over certain multi-sets of strata which we will not specify because we do not need
them explicitly.

Proof. By induction.

3.6 Automorphic data on toroidal compactifications of (mixed) Shimura vari-
eties

3.6.1. The toroidal compactifications of (mixed) Shimura varieties are naturally equipped with
automorphic data with logarithmic connection in the sense of Definition 3.1.1. We sketch the
relation with the theory of mixed Shimura varieties and their toroidal compactifications in this
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section, hinting at the reasons for the axioms to be satisfied. The boundary vanishing axiom which
will be investigated more in detail.
Firstly we may fix the particular boundary components Y (in the sense of mixed Shimura data)
in its conjugacy class such that for Z ≤ Y we get a boundary map Z →Y, i.e. a closed embedding
PZ ↪ PY together with a compatible open embedding DY ↪ DZ. By [8, Main Theorem 2.5.12] for
each of these boundary components Y there exists a “compact” dual M∨(Y) (which is only proper
for Y = X, i.e. Y =M , if X is itself pure) defined over the reflex field E(X). It is of the form M∨

Y as
in the definition of automorphic data, i.e. it is a PY-equivariant component in the classifying space
of quasi-parabolics for PY. For the definition of automorphic data, we will consider all varieties
and groups as schemes over the reflex field E(X).

3.6.2. The following is a summary of [8, Main Theorem 2.5.14]. For each stratum Y there is
a PY,E(X)-principal bundle B(KY∆Y

Y) over the mixed Shimura variety M(KY∆Y
Y) together with an

equivariant map to the “compact” dual:

M(KY∆Y
Y) B(KY∆Y

Y)poo π //M∨(Y)

Because of the functoriality (the torus action comes from a morphism of mixed Shimura data) the
morphism p is MnY

m -equivariant and the morphism π is MnY
m -invariant. These data are compatible

in the sense that if we have strata Z ≤ Y then there is a commutative diagram

CZ M(K∆X)

��

∼ // C
Z̃

M(KZ∆Z
Z)

��

C
p−1Z̃

B(KZ∆Z
Z)poo

��

//M∨(Z)

��
CY M(K∆X) ∼ // C

Ỹ
M(KY∆Y

Y) C
p−1Ỹ

B(KY∆Y
Y)poo //M∨(Y)

where the maps are functorial w.r.t. relations W ≤ Z ≤ Y of strata.
The flat logarithmic connection can be defined analytically by means of the flat section ξ on the
universal cover given as follows:

DY × PY(A(∞))/KY

��

ξ∶[τ,g]↦[τ,1,g]

++
PY(Q)/DY × PY(A(∞))/KY PY(Q)/DY × PY(C) × PY(A(∞))/KY

//oo PY(C)/QY (C)

It has logarithmic singularities along the extension of B(KY∆Y
Y) to M(K∆X) and by GAGA is therefore

algebraic. The fact that the corresponding algebraic connection is defined over E(X) can be
deduced from [3, 3.4]. In purely algebraic constructions of Shimura varieties as moduli spaces it
comes from the Gauss-Manin connection on the cohomology bundle and thus can be constructed
in a purely algebraic way.

3.6.3. The Torelli axiom (T) follows analytically because the composition

DY × PY(A(∞))/KY → PY(C)/QY (C)

is an open embedding after projection to the first factor (the Borel embedding). In purely algebraic
constructions of Shimura varieties the axiom corresponds to infinitesimal Torelli theorems of the
parametrized objects which can be proven purely algebraically.
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3.6.4. The unipotent monodromy axiom (M) is satisfied because the cone σ describing a boundary
component sits per definition in UY,R(−1) and UY ≅ Gu

a is a normal subgroup of PY (cf. e.g. [8,
2.2] for its definition). By construction the fundamental vector fields cani of the action of GnY

m on
M(KY∆Y

Y) lifted to the universal cover correspond to the basis-vectors of (UY ∩KY )(−1) spanning
σ. In cases in which the mixed Shimura variety is constructed using a moduli problem of 1-motives
as in [8, 2.7], the unipotent monodromy axiom can be read off from the construction.

Proposition 3.6.5 (Boundary vanishing condition (B)). Let Y be a mixed Shimura datum (e.g.
one of the boundary components Y), let n be the dimension of M∨(Y), let Q be one of the
quasi-parabolics parametrized by M∨(Y), let ω be the Q-representation corresponding to the PY-
equivariant bundle ωM∨(Y) ∶= Ωn

M∨(Y) on M∨(Y), and let u be the dimension of UY. Then we

have:
H i([⋅/Q] , ω) = 0

for all i ≥ n − u provided that u + v /= 0.

Note that all boundary strata Y which come from rational polyhedral cones in the unipotent cone
of Y satisfy dim(Y ) ≥ n − u.

Proof. W.l.o.g. we may assume that the base field of the category of Q-representations is C and
that all algebraic groups involved are defined over C. We have the following zoo of connected linear
algebraic groups (cf. [8, 2.2] or [13]):

S = G2
m, the Deligne torus

P = PY = G ⋅ V ⋅U, where
G = GY is a maximal reductive subgroup
V = VY ≅ G2v

a

U = UY ≅ Gu
a

h ∶ S→ G any homomorphism in hY(DY), which w.l.o.g. can be assumed to factor via G

R = K ⋅R+ = G ∩Q
is the parabolic in G (with its Levi decomposition) associated with h

R+,R− ≅ Gn0
a

V = V + ⋅ V −

V + = Q ∩ V
Q = R ⋅ V + is the quasi-parabolic in P associated with h and defining M∨(Y)

By definition of a mixed Shimura datum the Lie algebras of these groups have the following weights
under S (acting via Ad ○h):

Lie(U) (−1,−1) Lie(V +) (−1,0)
Lie(V −) (0,−1)

Lie(R+) (−1,1)
Lie(K) (0,0)

Lie(R−) (1,−1)
We have the following sequence of affine morphisms

M∨(Y) = P /(R ⋅ V +)→ G ⋅ V /(R ⋅ V +)→ G/R

of relative dimensions u = dim(U), and v = dim(V −), respectively. G/R is a projective flag variety
of dimension n0 = dim(R−). Note that ω is isomorphic to the representation (with Q acting via Ad
on the Lie algebras)

(Λn0 Lie(R−)⊗Λv Lie(V −)⊗Λu Lie(U))∗ . (12)
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STEP 1: We have
H i([⋅/Q] , ω) =H i([⋅/(V + ⋅R+)] , ω)K

because K is reductive. Furthermore since ω is 1-dimensional and hence trivial as a V + and R+

representation, we have as K-representations

H i([⋅/(V + ⋅R+)] , ω) =H i([⋅/(V + ⋅R+)] ,C)⊗ ω.

STEP 2: The subgroups V + and R+ commute (because there is no part of the Lie algebra of
weight (−2,1)). Hence H i([⋅/(V + ⋅R+)] ,C) is just the cohomology of Gn0+v

a w.r.t. the trivial
representation. Hence H i([⋅/V + ⋅R+] ,C) = Λi(Lie(V +)∗ ⊕ Lie(R+)∗) as natural Aut(V + ⋅ R+)-
modules [10, p.64, Remark 2]. Therefore H i([⋅/(V + ⋅R+)] ,C) = 0 for i > n0 + v and

Hn0+v([⋅/(V + ⋅R+)] ,C) = Λn0+v(Lie(V +)∗ ⊕ Lie(R+)∗) ≅ C.

STEP 3: Since the last isomorphism is compatible w.r.t. the natural Aut(V + ⋅R+)-actions, we see
that Hn0+v([⋅/(V + ⋅R+)] ,C) is one-dimensional of weight

(v + n0,−n0)

under S. The representation ω is isomorphic to (12) and hence one-dimensional of weight

(u − n0, u + v + n0).

Therefore
Hn0+v([⋅/(V + ⋅R+)] ,C)⊗ ω has weight (u + v, u + v)

and thus cannot have any K-invariants as long as u + v /= 0.

4 Hirzebruch-Mumford proportionality

4.1 Chern classes

4.1.1. Let X be a smooth projective complex variety of dimension n. There are several ways
of constructing the Chern classes of vector bundles on X. We will use the following, cf. [2]. Let
E be a vector bundle on X. It defines an Atiyah extension (where J1 is the first jet bundle (cf.
Section 3.3))

0 // Ω1
X ⊗ E // J1E // E // 0.

Tensoring with E∗ and pulling back along the unit OX → E∗ ⊗ E we get an extension

0 // Ω1
X ⊗End(E) // A // OX // 0.

This induces a morphism
OX → Ω1

X ⊗End(E)[1]
in Db([ OX-coh ]). The coefficients of the characteristic polynomial of this “endomorphism” give
morphisms

ci(E) ∶ OX → Ωi
X[i].

Furthermore, any polynomial p in the graded polynomial ring Q[c1, c2, . . . , cn] (where deg(ci) = i)
of degree n gives a morphism

p(c1(E), . . . , cn(E)) ∶ OX → Ωn
X[n] =∶ ωX[n].
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The corresponding extension p(c1(E), . . . , cn(E)) ∈ Extn(OX , ωX) can be constructed explicitly
using only locally free sheaves. Using the trace map tr ∶ Extn(OX , ωX)→ k of Serre duality, we get
elements tr(p(c1(E), . . . , cn(E))) ∈ k. The compatibility with other constructions of Chern classes
using algebraic cycles shows that even tr(p(c1(E), . . . , cn(E))) ∈ Q.

4.2 Proportionality

Theorem 4.2.1 (Hirzebruch-Mumford proportionality). Let M be an abstract toroidal compact-
ification of dimension n equipped with automorphic data with logarithmic connection satisfying
the axioms (F, T, M, B) (cf. Section 3.1) and such that P = PM is reductive. There is a con-
stant c ∈ Q such that for all homogeneous polynomials p of degree n in the graded polynomial ring
Q[c1, c2, . . . , cn] and all P -equivariant vector bundles E in [ [M∨/P ]-coh ] the proportionality

p(c1(Ξ∗E), . . . , cn(Ξ∗E)) = c ⋅ p(c1(E), . . . , cn(E))

holds true.

Proof. Starting from the sequence in [ M-FJ-coh ] (cf. 3.5.2 for the definition of J1(E)′):

0 // (Ω1)′ ⊗ E // J1(E)′ // E // 0

by the procedure described in the last section we can construct an element

p̃(E) ∈ Extn[ M-FJ-coh ](O, ω).

Note that in the construction only the tensor product of locally free objects is involved and the
exactness of ⊗ on sequences involving those.
Consider the following two compositions of functors

Db([ M-FJ-coh ]) Db(Ξ∗) // Db([ OM -coh ])

Db([ M-FJ-coh ])
(0)∗M // Db([ M-FJ-coh ]) Db([ [M∨/PM ]-coh ]) forget // Db([ OM∨-coh ])

Those induce linear maps (composing further with tr)

Extn[ M-FJ-coh ](O, ω)→ k

which map p̃(E) to

p(c1(Ξ∗E), . . . , cn(Ξ∗E)) and p(c1(E), . . . , cn(E))

respectively. Here it is used that Ξ∗ is an exact functor which is compatible with the tensor product
when restricted to locally free (or even torsion-free) objects, that by Theorem 3.5.3 the image of
J1(E)′ under Ξ∗ is precisely J1(Ξ∗E), and that the image under the second functor is J1(E) where
the PM -action on E is forgotten (by definition of J1(E)′).
Since there are non-zero Chern polynomials on M∨, to establish the Theorem, it therefore suffices
to show that Extn[ M-FJ-coh ](O, ω) is one dimensional. This is Proposition 4.2.2 below. In the

compact case, i.e. if M =M , this is easier and Lemma 4.2.3 can be applied directly.
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Proposition 4.2.2. In the setup of Theorem 4.2.1, if PM is reductive, we have

dim(Extn[ M-FJ-coh ](O, ω)) = 1.

Proof. By Proposition 3.5.5 we have an exact sequence

0 // ω // ωM∨ // D // 0

and a finite resolution of the form

0 // D // ⊕Y codim 1 strata ωY
// ⊕Y codim 2 strata ωY

// ⋯ (13)

We get the long exact sequence

Extn−1(O,D) // Extn(O, ω) // Extn(O, ωM∨) // Extn(O,D)

(all Ext-groups are computed in the category [ M-FJ-coh ]). By Lemma 4.2.3 below the di-
mension of Extn(O, ωM∨) is one. Hence it suffices to show that Extn−1(O,D) = Extn(O,D) = 0.
Splitting up the exact sequence (13) into short exact sequences one sees that it suffices to show
that Exti(O, ωY ) = 0 for i ≥ dim(Y ) and for Y /= M . We have fully-faithful embeddings (cf.
Corollary 3.4.10)

Db([ [⋅/PY ]-coh ]) � �
(0)Y,∗ // Db([ M-FJ-≥ 0-coh ])) � �

ι0,! // Db([ M-FJ-coh ])

such that the image of ωM∨
Y
= (Λn(Lie(PY )/Lie(QY )))∗ under the composition is ωY .

Furthermore we have
O = ι0,! ι∗0O.

Hence
HomDb([ M-FJ-coh ])(ι0,! ι∗0O, ι0,! (0)Y,∗ ωM∨

Y
[i])

= HomDb([ M-FJ-≥ 0-coh ])(ι∗0O, (0)Y,∗ ωM∨
Y
[i]) (fully-faithfulness)

= HomDb([ [M∨
Y /PY ]-coh ])(OM∨

Y
, ωM∨

Y
[i]) (adjunction)

Therefore the Proposition follows from boundary vanishing condition (axiom B):

H i([M∨
Y /PY ] , ωM∨

Y
) = 0 for i ≥ dim(Y ).

Lemma 4.2.3. In the setting of Theorem 4.2.1 we have

dim(Extn[ M-FJ-coh ](O, ωM∨)) = 1.

Proof. We have a fully-faithful embedding (cf. Corollary 3.4.10)

Db([ [M∨/PM ]-coh ])↪Db([ M-FJ-coh ]).

The functor RHom(O,−) is the same as the composition

Db([ [M∨/PM ]-coh ])→Db([ [⋅/PM ]-coh ])→Db([ Spec(k)-coh ])
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where the first functor is the right derived functor of taking global sections and the second is the
functor of PM -invariants. However, the last functor is exact (because PM is reductive) and therefore
we have

Extn[ M-FJ-coh ](O, ωM∨) =Hn(M∨, ωM∨)PM .

Since Hn(M∨, ωM∨) is one-dimensional by Serre duality and thus PM acts trivially because its
center does act trivially on M∨, the Lemma follows. Note that axiom (T), cf. 3.1.9, implies that
n = dim(M) = dim(M∨).
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