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1 Introduction

The goal of these notes is to compute the Fourier coefficients of the following Eisenstein
series and to present their relation with the Weil representation.
Let q ≡ 3 modulo 4 a prime and k = Q(

√
−q). Let

χ : Q∗\A∗ → {±1}
a 7→ (a,−q)A :=

∏
ν

(a,−q)ν
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be the associated quadratic character where (x, q)ν is the local Hilbert symbol.
Write τ = µ+ νi ∈ H. There are 2 Eisenstein series of weight 1 associated with k:

E±(τ ; s) = ν
s
2

∑
σ∈Γ∞\SL2(Z)

(cτ + d)−1|cτ + d|−sΦ±q (σ)

where for σ =

(
a b
c d

)
, we have

Φ±g (σ) =

{
χq(a) if c ≡ 0 modulo q,

±iq−1/2χq(c) if c 6≡ 0 modulo q.

Here Γ∞ = {±
(

1 x
1

)
| x ∈ Z}. The Eisenstein series is a modular form of weight 1 w.r.t.

the group Γ0(q) and character χq(a) lifted to Γ0(q).
The series converge for <(s) > 1 and have an analytic continuation to the whole complex
plane. The normalized series

E∗±(τ ; s) := q
s+1
2 Λ(s+ 1, χ)E±(τ ; s)

where

Λ(s, χ) = π
s+1
2 Γ(

s+ 1

2
)L(s, χ)

satisfy the functional equation

E∗±(τ ;−s) = ±E∗±(τ ; s)

From the functional equation follows that E− vanishes identically for s = 0. We will explain
this in more detain the sequel of these notes.
Actually E∗+(τ ; 0) is holomorphic and we have

E∗+(τ ; 0) = 2hk + 4
∞∑
n=1

ρ(n)e(nτ) (1)

where ρ(n) is the number of integral ideals of norm n. This is a special case of the Siegel-Weil
formula that we will explain in section 6.1.
We are interested in the derivative d

d s
E∗−(τ, s)|s=0. One purpose of these notes is to compute

its Fourier expansion. The result is:

Theorem 1.1.
d

d s
E∗−(τ, s)|s=0 =

∑
t∈Z

at(ν)e(tτ)

where

at(ν) =


−ep log(p)(ordp(t) + 1)ρ(tpep−2)) if t > 0,Diff(t) = {p},
0 if t > 0, |Diff(t)| > 1,

−hk
(

log(q) + log(ν) + 2Λ′(1,χ)
Λ(1,χ)

)
if t = 0,

−2Ei(4πtν)ρ(−t) if t < 0.
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with

β1(t) =

∫ ∞
1

u−1e−ut du

and
Diff(t) = {p | χp(−t) = −1}

Here ep is the ramification index of p in k, i.e. 2 if p = q and 1 otherwise.
Note that the positive Fourier coefficients are holomorphic (i.e. do not depend on ν).

2 Adelic versus classical modular forms

To understand the Eisenstein series, it will be convenient to work adelically. Let us briefly
recall the translation of classical modular forms to adelic automorphic forms.

Write K∞ ∼= S1 for the subgroup of SL2(R) of elements ka+bi =

(
a b
−b a

)
with a2 + b2 = 1.

Let Γ ⊂ SL2(Z) be a congruence subgroup. Recall that a modular form of weight k ∈ Z
w.r.t. Γ is a function f : H→ C transforming as

f(gτ) = j(g, τ)kf(τ)

for all g =

(
a b
c d

)
∈ Γ and j(g, τ) = cτ + d. Usually it has to satisfy a growth condition at

infinity, which we will not state here.
Now let A =

∏′
ν Qν be the ring of adeles for Q and SL2(A) the group of adelic 2x2-matrices

of determinant 1. We sometimes write Af for the finite adeles (in which the factor R is
omitted). First, since Γ is a congruence subgroup, we find a compact open subgroup Kf

of SL2(Af ) such that Kf ∩ SL2(Q) = Γ. Then observe that by strong approximation (i.e.
SL2(Q) lies dense in SL2(Af )

1), we have:

SL2(A) = SL2(Q) SL2(R)Kf

Recall that there is a bijection between smooth (non-holomorphic) modular forms f : H→ C
for Γ of weight k and smooth functions (see [1] for the definition of smooth in this context)

φf : SL2(Q)\ SL2(A)→ C

with the property
φf (gkfkα) = αkφf (g)

for kα ∈ K∞, kf ∈ Kf , given as follows:

φf (gQg∞kf ) := f(g∞ · i)j(g∞, i)−k

1Sketch of proof. Reduce to show that SL2(Z) lies dense in SL2(Ẑ). This follows, if we can show that

SL2(Z) → SL2(Z/NZ) is surjective because SL2(Ẑ) = lim SL2(Z/NZ). Then observe that SL2(Z/NZ)
is generated by elementary matrices. Using the Chinese remainder theorem it suffices to show this for
SL2(Z/pnZ), where Gaussian elimination works. Elementary matrices clearly lift to SL2(Z).
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f can be reconstructed as
f(τ) = φ(g∞1f )j(g∞, i)

k

where τ = µ+ νi and g∞ ∈ SL2(R) is any element with g∞i = τ , for example

f(τ) = φ(

(
ν1/2 µν−1/2

ν−1/2

)
∞

1f )ν
−k/2.

One can match the growth conditions at cusps in both languages, which we will not do here.
If χ : Γ → S1 is a character that is trivial on another congruence subgroup satisfying
Γ′ = K ′f ∩ SL2(Q), we may regard χ as a character of χ : Kf → S1 via the isomorphism
Kf/K

′
f
∼= Γ/Γ′. Then modular forms f which transform via χ under Γ correspond precisely

to functions φf : SL2(Q)\ SL2(A)→ C which satisfy:

φf (gkfkα) = αkχ(kf )φf (g)

for kf ∈ Kf .

Example 2.1. Let

K0(q) = {
(
a b
c d

)
∈ SL2(Ẑ) | c ≡ 0 modulo q}

with

Γ0(q) = K0(q) ∩ SL2(Q) = {
(
a b
c d

)
∈ SL2(Z) | c ≡ 0 modulo q}.

We have the following character

χ : K0(q) → S1(
a b
c d

)
7→ χq(a)

Note that a cannot be divisible by q. Here χq(a) was defined in section 1.

3 Parabolic induction for SL2 and Eisenstein series.

We will now explain the general theory of Eisenstein series for SL2 in the adelic language.
Let χ =

∏
ν χν : A∗/Q∗ → S1 be a continuous character and assume that χ∞ has values in

±1.
Consider the group M ⊂ SL2 consisting of diagonal matrices and the group N of unipotent
upper triangular matrices. We denote B = M · N the group of upper triangular matrices
which is a Borel subgroup.
We consider the character

χ| · |sA : A∗/Q∗ → C∗.

It may be extended to B(A) using the decomposition B(A) = M(A)N(A).
Let I(χ| · |sA) be the normalized induced representation from B(A) to SL2(A), i.e.
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I(χ| · |s) =


f : SL2(A)→ C smooth, K∞-finite, satisfying

f(

(
α x

α−1

)
g) = |α|s+1χ(α)f(g)


(the +1 comes from the normalization). Likewise, we define IR(χ∞| · |s) and IQp(χp| · |sp).
For almost all p, the character χp is trivial on Z∗p and hence the function

ξ0
p(

(
α x

α−1

)
k) = |α|s+1

p χ(α)

for k ∈ SL2(Zp), defined using the Iwasawa decomposition, is well-defined. It follows that

I(χ| · |sA) =
⊗
ν

′
Iν(χν | · |ν)

where the restricted tensor product is formed w.r.t. the vectors ξ0
p .

We have the following vectors in I∞(χ∞| · |s)

ξk∞(

(
α x

α−1

)
kz) = zk|α|s+1χ∞(α).

Here either k is even and χ∞ trivial, or k is odd and χ∞ is the sign character. These vectors
form a basis of I∞(χ∞| · |s). We will see in section 5 how it decomposes into irreducibles.
The theory of Eisenstein series realizes the SL2(A)-principal series representations (‘repre-
sentation’ to be understood in the appropriate sense) IA(χ| · |sA) in the space of automorphic
forms.

3.1. Let
Φ(s) ∈ IA(χ| · |sA)

be such that its restriction to K = KfK∞ is independent of s. It follows from the above
that such a section is uniquely determined by its value φ(0) and is given by

Φ(s)(

(
α x

α−1

)
k) = |α|s+1 χ(α) Φ(0)(k),

where k ∈ K∞ SL2(Ẑ). Given such a section, we define the Eisenstein series by

EΦ(g; s) :=
∑

γ∈B(Q)\ SL2(Q)

Φ(s)(γg).

One can show that it converges to a smooth K∞-finite function in g, if <(s) > 1, which
depends holomorphically on s. It is then obviously left invariant under SL2(Q).
Therefore it defines a morphism of SL2(A)-representations:

E : IA(χ| · |sA) → A(SL2(Q)\ SL2(A))

Φ(s) 7→ E(Φ(s),−)

The spaces IR(χ) can be understood in terms of Weil representations. We will introduce
them in the next section.
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4 The Weil representation

4.1. Let R be a locally compact topological ring in which 2 is invertible. In the following R
will be one of Qp,R,A,Af ,Fp.
Choose a continous additive character Ψ : R→ S1 such that R becomes self-dual w.r.t. the
bicharacter

x, y 7→ Ψ(xy).

Choose a self-dual measure dx on R w.r.t. this character. On L2(R) we have the structure
of a Hilbert space with Hermitian product given by:

〈f, g〉 =

∫
R

f(x)g(x) dx.

The Fourier transform of a function f ∈ L2(R)

f̂(x) :=

∫
R

f(y)Ψ(−xy) d y

defines a unitary operator in Aut(L2(R)) and we have

̂̂
f(x) = f(−x).

Let V now a free rank n module over R with a bilinear form inducing an isomorphism
V → V ∨. We choose a measure d x on V , too, which is self-dual w.r.t. the bilinear form on
V . The Fourier transform of a function f ∈ L2(V )

f̂(x) :=

∫
R

f(y)Ψ(−x · y) d y

where x · y is the bilinear form on V therefore also satisfies

̂̂
f(x) = f(−x).

Lemma 4.2. If R = Qp and let M ⊂ VQp be a Zp-lattice. Denote ϕM its characteristic
function. We have

ϕ̂M = |M |ϕM∨ .

Here |M | is the volume of M w.r.t. the self-dual measure. If the bilinear form on V w.r.t.
a basis of M has matrix S, we have

|M | = (| det(S)|p)
n
2 .

4.3. Define the Heissenberg group H(V ) := S1× V × V , where S1 = {z ∈ C | |x| = 1} with
multiplication

(t1, v1, w1)(t2, v2, w2) = (t1t2Ψ(v1 · w2), v1 + v2, w1 + w2).
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We let SL2 act on V 2 from the right as follows:

(v, w)

(
a b
c d

)
= (av + cw, bv + dw).

SO(V ) also acts and the two operations commute.

To each σ =

(
a b
c d

)
∈ SL2(R) we associate the following quadratic form on V ×V given by

Qσ(v, w) :=
1

2
((av + cw) · (bv + dw)− v · w)

Let Aut0(H(V )) be the subgroup of automorphisms of H(V ) that fix S1 and commute with
the action of SO(V ). We have the exact sequence

0 // V × V // Aut0(H(V )) // SL2(R) // 0

which is the decomposition into outer and inner automorphisms of Aut0(H(V )) (everything
acts on the right).
The association:

(t, v, w) · σ 7→ (tΨ(Qσ(v, w)), av + cw, bv + dw)

defines a splitting SL2(R)→ Aut0(H(V )) of that sequence.
We define a representation of H(V ) on L2(V ) by the formula

((t, v, w)ϕ)(x) = tψ(w · x)ϕ(x+ v)

It is clear that this is a unitary representation.

4.4. The Stone-von Neumann theorem says that H(V ) is (up to topological issues) the
only irreducible unitary representation of H(V ) such that S1 acts naturally. Therefore the
map

NAut(L2(V ))(H(V )) → Aut(H(V ))

σ̃ 7→ σ̃−1hσ̃

has to be surjective. Actually we have an exact sequence

0 // S1
// NAut(L2(V ))(H(V )) // Aut(H(V )) // 0 (2)

because the representation of H(V ) is irreducible.
An element σ̃ is a lift of σ if

h σ̃ ϕ = σ̃ (h · σ)ϕ (3)

for any ϕ ∈ L2(V ).
Consider the following elements

m(a) :=

(
a

a−1

)
n(b) :=

(
1 b

1

)
w :=

(
1

−1

)
7



The group of all matrices of the form m(a) (the diagonal torus) will be denoted by M , the
group of matrices of the form n(b) by N . Their product will be denoted by B.
We guess lifts of these elements to Aut(L2(V )):

(m(a)ϕ)(x) := |a|
n
2ϕ(ax)

(n(b)ϕ)(x) := Ψ(
b

2
x2)ϕ(x)

wϕ(x) := ϕ̂(−x)

where n is the dimension of V . The factor |a|n2 has been introduced to make the operator
m(a) unitary. To justify these formulas, one only has to check that equation (3) holds true
for these choices. This is an easy exercise.
These elements fulfill the obvious relations:

n(b)m(a) = m(a)n(ba−2)

wm(a) = m(a−1)w

4.5. Assume now that R is a field. Then we have the Bruhat decomposition

SL2(R) = BwB ∪B

and the set BwB is precisely the set of matrices

(
a b
c d

)
, where c is not zero. Each element

σ ∈ BwB has a unique representation in the product NwB, namely:(
a b
c d

)
= n(

a

c
)wm(−c)n(

d

c
).

Hence we may define a lift on BwB by setting:

r(

(
a b
c d

)
) := n(

a

c
)wm(−c)n(

d

c
). (4)

A simple calculation shows

(r(

(
a b
c d

)
)ϕ)(y) = |c|

n
2

∫
V

ϕ(ay + cx)ψ(Qσ(y, x)) dx. (5)

Now, if we have a relation σ1σ2 = σ3 between these elements, we get from sequence (2) that

r(σ1)r(σ2) = γ(σ1, σ2)r(σ3)

for an element γ(σ1, σ2) ∈ S1.

Proposition 4.6. γ(σ1, σ2) depends only on c−1
1 c3c

−1
2 ∈ R which we denote γ(c−1

1 c3c
−1
2 ).

γ(µ) is determined by the equation:

f̂µ = γ(µ)|µ|−
n
2 f−µ−1 (6)

where the Fourier transform has to be interpreted in the sense of distributions. Here fµ(x) :=
Ψ(µ

2
x2).
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Proof. Inserting the definition (4) and multiplying from the left by elements of the form
m(a) and n(b), we are left to determine the γ-factor:

wn(
d1

c1

)n(
a2

c2

)w = γ(σ1, σ2) r(σ′3)

in other words γ(σ1, σ2) depends only on d1
c1

+ a2
c2

= c−1
1 c3c

−1
2 which we denote by γ(d1

c1
+ a2

c2
)

accordingly.
We therefore have to investigate the relation

wn(µ)w = γ(µ) r(

(
−1
µ −1

)
)

We apply both sides to a function ϕ and evaluate at 0. The left hand side gives

f̂µ · ϕ̂(0) = 〈fµ, ϕ̂〉

for the function fµ(x) = Ψ(µ
2
x2) (note that this is an even function). The right hand side

given, using formula (5):

γ|µ|
n
2

∫
V

ϕ(µx)ψ(Qσ(0, x)) dx

where Qσ(v, w) = 1
2
((−v + µw) · (−w)− v · w) = −µ

2
w2.

= γ|µ|−
n
2

∫
V

ϕ(x)ψ(
−µ−1

2
x2) dx = γ|µ|−

n
2 〈f−µ−1 , ϕ〉

Hence
〈fµ, ϕ̂〉 = γ|µ|−

n
2 〈f−µ−1 , ϕ〉

4.7. We fix with the following natural (up to a choice of i ∈ C) character on R:

R: Ψ∞(x) := e2πix,

Qp: Ψp(x) := e−2πi[x], where [x] =
∑

i<0 xip
−i is the principal part,

(it has level/conductor 1),

A: Ψ =
∏

ν Ψν .

Theorem 4.8. If dim(V ) is even, there is a function ρ : BwB → S1 such that setting for
σ ∈ BwB:

ω(σ) := ρ(σ) r(σ)

we have:

1. For an equation σ1σ2 = σ3 in BwB, the equation

ω(σ1)ω(σ2) = ω(σ3)

holds true
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2. ω extends uniquely to a unitary representation SL2(R) → Aut(L2(VR)). It fixes the
Schwartz-space S(VR) (i.e. smooth functions of rapid decay, if R = ∞, and locally
constant with compact support, if R = Qp).

3. We have the following explicit formulas:

(ω(m(a))ϕ)(x) = χV (a)|a|
n
2ϕ(ax) (7)

(ω(n(b))ϕ)(x) = Ψ(
b

2
x2)ϕ(x) (8)

(ω(w)ϕ)(x) = γ̃(Q) ϕ̂(−x) (9)

where Q(x) = 1
2
x2 is the quadratic form on V , and χV (a) = (a,D)R, where D is the

discriminant.

The representation ω is called the Weil representation associated with V and Ψ.

Proof. 2. follows from 1. because Weil [4, Lemme 6] shows by elementary group theoretic
arguments that SL2(R) is generated abstractly by BwB and the obvious relations σ1σ2 = σ3

for σj ∈ BwB. The main reason is that BwB forms an open algebraic subvariety of SL2.
To prove 1. we will define ρ(σ) = ρ(c) in such a way that the equation

ρ(c1) ρ(c2) = γ(c−1
1 c3c

−1
2 ) ρ(c3) (10)

holds true. 1. then follows from the definition of γ.
The defining equation for γ(µ) shows that it depends only on Ψ and the quadratic form
Q : x 7→ µ

2
x2 that is involved in the definition of fµ Hence we consider now an arbitrary

finite free module V over R and consider the usual Fourier transform L2(V ) → L2(V ∨).
Then for any non-degenerate quadratic form Q we may define γ̃(Q) as the elememt in S1

such that
Ψ̂(Q) ∼ (y 7→ γ̃(Q)Ψ(−Q(B−1y)))

holds, where ∼ means equality up to a positive real scalar and B : V → V ∨ is the symmetric
morphism associated with Q. In other words, we have γ(µ) = γ̃(µQ) in the case considered
in this section.
Consider a relation σ = σ′σ′′ in BwB. Then by definition, denoting Q the quadratic form
x 7→ 1

2
x2, we have:

r(σ′)r(σ′′) = γ̃(
c

c′c′′
Q)r(σ).

Defining ω(σ) := (c,D) γ̃(Q)−1 r(σ) we get using Lemma 4.9, 6.:

ω(σ′)ω(σ′′) = (c′, D) γ̃(Q)−1 (c′′, D) γ̃(Q)−1 γ̃(
c

c′c′′
Q) r(σ)

= (c′, D) γ̃(Q)−1 (c′′, D) γ̃(Q)−1 (
c

c′c′′
, D) γ̃(Q) r(σ) = (c,D) γ̃(Q)−1 r(σ) = ω(σ).

To get the formulas stated in the Theorem note that (−1, D)γ̃(Q)−1 = γ̃(Q).
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Choose a basis and write this quadratic form as Q(x) =
∑

i αix
2
i . Then we write also

γ̃(α1, . . . , αn) for γ̃(Q). We writeD (discriminant) for (−1)n−1
∏

i αi. Let ε(Q) =
∏

i<j(ai, aj)R
be the Hasse invariant of Q.

Lemma 4.9. For arbitrary R (in our list):

1. γ̃(α1, . . . , αn) =
∏

i γ̃(αi).

2. γ̃(α) depends only on α modulo squares.

3. γ̃(1,−1) = 1 or, if R = Qp and V contains a unimodular lattice for Q, then γ̃(Q) = 1.

4. γ̃(1) γ̃(−a) γ̃(−b) γ̃(ab) = (a, b)R.

5. γ̃ν(Q) = γ̃ν(1)n−1 γ̃ν((−1)n−1D) ε(Q).

6. If n is even, we have
γ̃(µQ) = (µ,D)Rγ̃(Q).

Proof. 1. and 2. follow directly from the definiton.
3. and 4. are proven in Weil’s article [4].
5. and 6. follow by induction from 3. and 4.

We state here even more explicit calculations:

Lemma 4.10. Let ρ = exp(2πi
8

).

1. For p odd:

γ̃p(α) =

{
1 if α is a unit,

p−
1
2

∑
x∈Z/pZ exp(−2πiα

′x2

p
) if α = pα′ is a unit.

Therefore, according to the theory of Gauss sums:

γ̃p(α) =


1 if α is a unit ,

(α′, p)p if α = pα′ is a unit and p ≡ 1 (4),

−i(α′, p)p if α = pα′ is a unit and p ≡ 3 (4).

2. For ∞:
γ∞(1) = ρ γ∞(−1) = ρ−1

3. For p = 2:

γ̃2(α) =

{
2−

1
2

∑
x∈Z/2Z exp(−2πiαx

2

4
) if α is a unit,

4−
1
2

∑
x∈Z/4Z exp(−2πiα

′x2

8
) if α = pα′ is a unit.

α 1 3 5 7 2 6 10 14
γ̃2 ρ−1 ρ ρ−1 ρ ρ−1 ρ−3 ρ3 ρ
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We note also the product formula for a quadratic form Q defined over Q which can be proven
using Poisson summation: ∏

ν

γ̃ν(Q) = 1.

From this product formula follows, for example, the law of quadratic reciprocity as well as
the statement that a definite unimodular lattice over Z can only exist if 8| dim(V ). Also the
sign in the Gauss sum can be obtained by knowing γ∞ only.
For more explicit formulas for Weil representations see also [3].

5 Relation of parabolic induction with the Weil repre-

sentation

Let R be one of Qp,R,A.
Let V be a Q-vectorspace with binary quadratic form and discriminant D, and let χV : x 7→
(x,D)R the character given by the Hilbert symbol.

Lemma 5.1. For any (K∞-finite if R=R,A) vector ϕ ∈ S(VR) (the Schwartz space), the
function

λ(ϕ) : g 7→ (ω(g)ϕ)(0)

is in IR(χV ).

Proof. Follows from the explicit formulæ of the Weil representation: We have by (7):

Φϕ(m(a) g) = χV (a) |a| (ω(g)ϕ)(0) = χV (a) |a|Φϕ(g)

and by (8):

Φϕ(n(b)g) = Ψ(
b

2
02) (ω(g)ϕ)(0) = Φϕ(g)

In other words we get a morphism of SL2(R)-representations

λ : S(VR)→ IR(χV )

Denote the image by I(VR).
Fix now χ any continuous quadratic character A∗/Q∗ → {±1}.

Theorem 5.2 (Kudla).

IQν (χν) =
⊕
[Vν ]

IQν (Vν)

where [Vν ] runs over the isomorphism classes of binary quadratic spaces over Qν such that
χVν = χν (if p is odd, there are two of them, if χν is non-trivial, and one otherwise, see
Appendix B).
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Consider the following conditions on a collection of {Vν}ν , where all Vν have the same
dimension. Assume that the character of Vν is given by χν .

(Coh) There is a global quadratic space V such that V ⊗Q Qν
∼= Vν .

(Coh’) There is a global quadratic space V such that V ⊗Q Qν
∼= Vν for almost all ν.

(B) Almost all Hasse invariants εp(Vν) are 1 and
∏
εp(Vν) = 1

(B’) Almost all Hasse invariants εp(Vν) are 1.

Theorem 5.3. We have
B⇔ Coh B′ ⇔ Coh′

We call {Vν}ν a coherent collection if B (or equivalently Coh) holds and an incoherent
collection if B’ holds, but

∏
εp(Vν) = −1.

Corollary 5.4. We have

IA(χ) =
⊕
[V ]

IA(V )⊕
⊕

[{Vν}ν ]

IA({Vν}ν)

where [V ] runs over the isomorphism classes of binary quadratic spaces over Q such that
χV = χ and {Vν}ν runs over incoherent collections of binary quadratic spaces with χVν = χν.

Proof. This follows because the tensor product is the restricted one w.r.t. the functions ξ0
p .

Those lie in the subspace coming from the representation with Hasse invariant 1.

We will now explicitly determine the image in IQν (χV ) of some special functions ϕ ∈ S(VQν ).

Proposition 5.5. Let VQp be a quadratic vector space and M ⊂ VQp a unimodular Zp-lattice
and let ϕM be the characteristic function of M . Note that the existence of M implies that
the character χVp is unramified, i.e. χVp(Z∗p) = 1 and that the Hasse invariant is 1. Then
we have

λ(ϕM) = ξ0
p .

Proof. Unraveling the definition, we have to show that

(ω(

(
α x

α−1

)
k)ϕM)(0) = χ(α)

for k ∈ SL2(Zp). By formulas (7–8) this boils down to

(ω(k)ϕM)(0) = 1

but actually we even have
ω(k)ϕM = ϕM

for SL2(Zp) is generated by B(Zp), under which ϕM is clearly invariant because M is uni-
modular, and w. The Fourier transform leaves ϕM invariant because of Lemma 4.2.
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5.6. Let K0(p) be the group introduced in 2.1. χ defines a character K0(p)→ S1. Consider
the subspace of I(χ| · |s) of those functions, which are right equivariant w.r.t this character.
This space is 2 dimensional, generated by 2 functions which are determined by

ξ1
p(1) = 1 ξ1

p(w) = 0 ξwp (1) = 0 ξwp (w) = 1

Proof. By the Iwasawa decomposition any function in I(χ| · |s) is determined by their values
on K0(p)\ SL2(Zp). Being right equivariant means that even the values on the following
double cosets are determined by one of them:

K0(p)\ SL2(Zp)/K0(p) = B(Fp)\ SL2(Fp)/B(Fp)

There are just 2 such cosets, represented by 1 and w.

Proposition 5.7. Let p ≡ 3 (4) be a prime and VQp = Q2
p with quadratic form of the form

Q : ε1x
2 + ε2py

2. (This implies that the lattice M := Z2
p is maximal integral.) We have

M∨ = Zp⊕ 1
p
Zp. In this case λ(ϕM) lies in the subspace of I(χ| · |s) of functions which right

equivariant w.r.t this character and is equal to

λ(ϕM) = ξ1
p + γ̃(Q)p−

1
2 ξwp .

We denote these functions by Φ±p according to whether γ̃(Q) = ±i. These are precisely the
ones described in the introduction (cf. also section 7).

Proof. We have the decomposition K0(p) = N−(pZp)M(Zp)N(Zp), where N− is the opposite
unipotent. Using the formulas of the Weil representation (7–9) and Lemma 4.2 we get:

(ω(m(a))ϕM)(0) = χ(a) for a ∈ Zp∗

(ω(n(b))ϕM)(0) = 1

(ω(n−(pc))ϕM)(0) = (ω(w n(pc)w−1)ϕM)(0) = (ω(w n(pc))|M |γ̃(Q)−1ϕM∨)(0)

= (|M∨| |M |ϕM)(0) = 1

It follows that λ(ϕM) is right equivariant w.r.t. this character. It remains to determine

λ(ϕM)(1) = 1

and by equation (9) and Lemma 4.2, we have ω(w)ϕM = γ̃(Q)|M |ϕM∨ , hence

λ(ϕM)(w) = γ̃(Q)p−
1
2 .

Proposition 5.8. Let VR be a positive definite real vector space of dimension 2. Then there
is a unique function ϕ1

∞ such that
λ(ϕ1

∞) = ξ1
∞.
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Proof. ξ1
∞ is the unique vector (up to scalar) in I∞(χ∞), on which K∞ acts by kz ·ξ1

∞ = z ·ξ1
∞.

Hence we have to look for vectors in S(VR) which transform the same way. Let

H :=

(
−i

i

)
∈ sl2(C).

Since K∞ = {ke(λ) = e(λH) | λ ∈ R} it is the same to ask for an element ϕ∞ with

Hϕ∞ = kϕ∞.

Now we have:

(dω(

(
0 1
0 0

)
)ϕ)(x) = 2πi

x2

2
ϕ(x)

as is easily obtained by deriving equation (8). Using the equation

(
0 0
−1 0

)
= w−1

(
0 1
0 0

)
w,

we get that dω(

(
0 0
−1 0

)
) is the Fourier transform of the operator dω(

(
0 1
0 0

)
), therefore

dω(

(
0 0
−1 0

)
) =

1

4πi
∆

where ∆ is the Laplace operator w.r.t. the quadratic form on VR. Hence

H = πx2 − ∆

4π

For a positive definite space the differential equation

πx2ϕ(x)− 1

4π
∆ϕ(x) =

n

2
ϕ(x)

has a unique solution (up to scalar) namely the Gaussian

ϕ1
∞(x) = e−πx

2

.

Since ϕ1
∞(0) = 1, we must have indeed Φ(ϕ1

∞) = ξ1
∞.

Functions of higher weights 3, 5, 7, . . . one obtains for example by applying the weight raising
and lowering operators:

1

2
dω(

(
1 i
i −1

)
)

1

2
dω(

(
1 −i
−i −1

)
)

The eigenspaces are, however, not one-dimensional anymore.

Remark 5.9. Similarly, we get that the functions Φk
∞ for k = −1,−3,−5, . . . arise from the

negative definite space, whereas all even functions Φk
∞ for k = . . . ,−2, 0, 2, . . . arise from the

indefinite space. Hence we reobtain the well-known statement that for χ∞ = sign, the princi-
pal series representation I∞(χ∞) decomposes into 2 “limit of discrete series representations”,
whereas for χ∞ = 1 it is irreducible.
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6 Fourier expansion of the Eisenstein series

Let a factorizable section of Φ =
∏

Φν of IA(χ|·|sA) as in 3.1 be given, such that its restriction

to K∞ SL2(Ẑ) is independent of s. We assume that the standard additive character Ψ : A→
S1 has been chosen (4.7).
The function

x→ EΦ(n(x) g)

is continuous on the compact group A/Q and hence has a Fourier expansion. Defining

ct(g; s) :=

∫
A/Q

E(n(x) g)Ψ(−tx) dx

for t ∈ Q, we get

EΦ(g) =
∑
t∈Q

ct(g; s)

These Fourier “coefficients” satisfy

ct(

(
1 x

1

)
g; s) = Ψ(tx) ct(g; s).

Lemma 6.1. If f is a modular form of weight k with Fourier expansion

f(τ) =
∑
t∈Q

at(ν)e(tτ)

then the Fourier “coefficients” associated with φf are determined by:

ct(

(
ν1/2 µν−1/2

ν−1/2

)
∞

1f ; s) = νk/2at(ν)e(tτ)

where τ = µ+ νi.

We now proceed to calculate the Fourier expansion of E:
We write

B(Q)\ SL2(Q) = {e} ∪ {w n(b) | b ∈ Q}

We have hence
EΦ(g; s) = Φ(s)(g) +

∑
b∈Q

Φ(s)(w n(b) g)

and hence

ct(g; s) =

∫
A/Q

Φ(s)(n(x) g)Ψ(−tx) dx+
∑
b∈Q

∫
A/Q

Φ(s)(w n(b+ x) g)Ψ(−tx) dx

=

∫
A/Q

Φ(s)(g)Ψ(−tx) dx+

∫
A

Φ(s)(w n(x) g)Ψ(−tx) dx

16



Note that the first coefficient is non-zero only if t = 0. I.e.

ct(g; s) = δt,0Φ(s)(g) +Wt(Φ(s), g)

where

Wt(Φ(s), g) :=

∫
A

Φ(s)(w n(x) g)Ψ(−tx) dx

If Φ(s) is factorizable, as above, we have:

Wt(Φ(s), g) =
∏
ν

Wν,t(Φν(s), g)

where

Wν,t(Φν(s), g) =

∫
Qν

Φν(s)(w n(x) g)Ψν(−tx) dx

is called the Whittaker integral.
The functions Wt(Φ(s), g) and hence the whole Eisenstein series can always be meromor-
phically continued to all s ∈ C. We will not discuss this here, although it will follow for
the specific Eisenstein series from the explicit calculations. For the local factors, analytic
continuation is easier to see, and we will write Wν,t(Φ, g; s) for the analytically continued
function.

6.2. Let k = Q(
√
−q) with q ≡ 3 (4) prime be the imaginary quadratic field of the

introduction. We consider the quadratic space V := k with quadratic form given by the
norm N . The associated character is χV (a) = (a,−q).
There is one and only one way to turn {Vν}ν into an incoherent collection with the same
character such that

• There remains a vector Φ ∈ I({Vν}ν) which is χ-equivariant under K0(q).

Namely we have to change Vq which has Hasse invariant ε = 1 (because N represents 1) into
the space V −q with the same discriminant and Hasse invariant ε = −1. From the explicit
formula 4.10 follows that

γ̃(Q) = −ε(Q) i

where Q is the corresponding quadratic form. Therefore by Propositions 5.5–5.8, in both
cases there is a function ∏

p

ϕpϕ∞

such that applying Φ, we get the section

Φ± := Φ±q
∏
p 6=q

ΦpΦ
1
∞

according to the case. We will now compute the Fourier coefficients explicitly for the Eisen-
stein series associated with these two sections.
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6.3. For t ∈ Z write
ρ(t) = {a ⊂ Ok | N(a) = t}.

This is a multiplicative function and indeed we have

ρ(t) =
∏
ν

ρν(t)

where

ρν(t) =

{
ordp(t) + 1 ν = p 6= q, χp(p) = 1 (i.e. for p split in k)
1
2
(1 + χν(t)) otherwise

Proof. We have ρp(t) = ρ(pordp(t)) except for p = q. But if ρq(t) = 0, i.e. if χq(t) = −1 then
also ρ(t) = 0 by the product formula

∏
ν χν(t) = 1.

6.1 The Siegel-Weil formula

This section is not important for the computation that follows and is included to illustrate
Weil’s original purpose of introducing the Weil representation. Let V be a positive definite
quadratic space over Q, MZ a lattice in it, ϕ∞ be the Gaussian, and ϕf = ϕM be the

characteristic function of M = MZ ⊗ Ẑ. We can form the theta function associated with
ϕ := ϕ∞ϕf

θ(ϕ, g) =
∑
v∈V

(ω(g)ϕ)(v) (11)

A simple calculation shows that it corresponds via the correspondence between adelic and
classical modular forms to the series

Θ(τ) =
∑
v∈MZ

e(v2τ)

The fact that it is a modular form follows from Poisson summation. We have the Siegel-Weil
formula which holds unconditionally if dim(V ) > 4:

E(Φ(ϕ), g;
n

2
− 1) =

1

τ(SO(V ))

∫
SO(VA)/ SO(VQ)

θ(hϕ, g) dh

where dh is the Tamagawa measure.
We want to illustrate the equality further, by computing the Fourier expansion of the right
hand side. We have

θ(ϕ, g) =
∑
t∈Q

θt(ϕ, g)

setting

θt(ϕ, g) :=
∑

v∈V,v2=t

(ω(g)ϕ)(v)

This is the Fourier expansion of θ. Hence the Fourier coefficient of the RHS equals∫
SO(VA)/ SO(VQ)

∑
v∈V,v2=t

(ω(g)ϕ)(h−1v) dh
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This is equal to

τ(SO(v⊥))

∫
v∈VA,v2=t

(ω(g)ϕ)(v) d v

Where τ is the volume of SO(v⊥A )/ SO(v⊥Q) and d v is a suitable measure on the sphere. The
integral also decomposes as the product over all ν of∫

v∈VQν ,v2=t

(ω(g)ϕν)(v) d v

Now we have

Lemma 6.4. For t 6= 0 and if dim(V ) > 4:

Wν,t(λ(ϕ), t; 0) = γ̃ν(Q)

∫
v∈VQν ,v2=t

(ω(g)ϕν)(v) d v.

This already proves the equality of the non-zero Fourier coefficients.
The Siegel-Weil formula continues to hold beyond the range dim(V ) > 4 if the Eisenstein
series is analytically continued. If dim(V ) = 1, 2 an additional factor 2 is occurring. We will
see this in a special case for dim(V ) = 2.

6.2 Local computation

The following general Lemma will be used in the unramified and ramified cases alike.

Lemma 6.5. Let p be any prime. Let χ be a quadratic character of Q∗p such that χ(1+Zp) = 1
(this is only a restriction for p = 2) and let Φp ∈ IQp(χ| · |s) be K0(p)-equivariant character
w.r.t χ. Then we have

Wp,t(Φp, 1; s) = XZp(t) Φp(w) +

(
∞∑
i=1

(χ(p)p−s)i
∫
Z∗p
χ(b)Ψp(btp

−i) d b

)
Φ(1)

Proof. Let us abbreviate Wt for the Whittaker integral and Φp for Φp(s), s being fixed. We
decompose Qp = Zp +

⋃∞
i=1 p

−iZ∗p, hence

Wt =

∫
Zp

Φp(w n(b))Ψp(−bt) d b+
∞∑
i=1

∫
p−iZ∗p

Φp(w n(b))Ψp(−bt) d b

The first integral is just equal to Φ(w), if t ∈ Zp and 0 otherwise. On the second, we may
use the Iwasawa decomposition

m(−b−1)n(−b)
(

1
b−1 1

)
= w n(b).

Note that the matrix

(
1
b−1 1

)
is in K0(p) and χ is 1 on it. Therefore:

Φp(w n(b)) = Φp(m(−b−1)n(−b)
(

1
−b−1 1

)
) = χ(−b)|b|−s−1 Φp(1).
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Hence we get:

Wt = XZp(t)Φp(w) +
∞∑
i=1

χ(pi)(p−s−1)ipi
∫
Z∗p
χ(b)Ψp(btp

−i) d b.

Proposition 6.6. If Φp and χ are unramified, i.e. constant (and equal to 1) on SL2(Zp),
resp. Z∗p, we have

Wp,t(Φp, 1; s) = Lp(χ, s+ 1)−1

ord(t)∑
i=0

(χ(p)p−s)i

and 0 if t 6∈ Zp. In particular

Wp,0(Φp, 1; s) = Lp(χ, s+ 1)−1Lp(χ, s).

Proof. Let us abbreviate Wt for the Whittaker integral. By Lemma 6.5, we have if t ∈ Zp:

Wt = 1 +
∞∑
i=1

χ(pi)(p−s)i
∫
Z∗p

Ψp(btp
−i) d b.

Using the Lemma 6.8, we get

Wt =

ord(t)∑
i=0

(χ(p)p−s)i − p−1

ord(t)+1∑
i=1

(χ(p)p−s)i = L(χ, s+ 1)−1

ord(t)∑
i=0

(χ(p)p−s)i

and that Wt = 0 if t 6∈ Zp. This holds also setting ord(t) =∞ for t = 0.

Proposition 6.7. Now assume that q ≡ 3 (4) and χ is the ramified quadratic character with
χ(q) = 1 and that Φ is K0(q)-equivariant w.r.t. χ. We have then:

Wq,t(Φq, 1; s) =


Φq(w)− (q−s)ord(t)+1iq−

1
2χ(t) Φq(1) t ∈ Z∗p,

Φq(w) t = 0,

0 otherwise.

Proof. Let us abbreviate Wt for the Whittaker integral. By Lemma 6.5, we have if t ∈ Zp:

Wt = Φq(w) +

(
∞∑
i=1

χq(q
i)(q−s)i

∫
Z∗q
χ(b)Ψq(btq

−i) d b

)
Φq(1).

Using Lemma 6.9, we get (since χq(q) = 1) if t ∈ Z∗p:

Wt = Φq(w) + (q−s)ord(t)+1iq−
1
2χq(−t)Φq(1)

and Wt = Φq(w) if t = 0 and Wt = 0 otherwise.
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Define
W ∗
ν,t(Φ(s); g) := Λν(χ, s+ 1)Wν,t(Φ(s); g)

where

Λν(χ, s+ 1) =


1

1−χp(p)p−s−1 ν = p 6= q

1 ν = q

π−
s
2
−1Γ( s

2
+ 1) ν =∞

is the normalized L-series associated with χ.
Some “easy” Fourier transforms used above:

Lemma 6.8. ∫
Z∗p

Ψ(−xt) dx =


0 0 > ord(t) + 1

−p−1 0 = ord(t) + 1

1− p−1 0 < ord(t) + 1

Lemma 6.9. If q ≡ 3 (4) is a prime and χ(a) = (a, q) the ramified quadratic character at q
with χq(q) = 1. ∫

Z∗q
χ(x)Ψ(−xt) dx =

{
0 0 6= ord(t) + 1

iq−
1
2χ(t) 0 = ord(t) + 1

Proposition 6.10. For t 6= 0, we have for p 6= q:

W ∗
p,t(Φp, 1; 0) = ρp(t) W ∗

ν,t(Φp, 1; 0) = 0 ⇔ χp(t) = −1,

and for ν = q

W ∗
q,t(Φ

±
q , 1; 0) = ∓2iq−

1
2ρq(±t) W ∗

q,t(Φ
±
q , 1; 0) = 0 ⇔ χq(t) = ∓1,

and for ν =∞

W ∗
∞,t(Φ∞, gτ ; 0) = 2iρ∞(t)ν

1
2 e(tτ) W ∗

∞,t(Φ∞, 1; 0) = 0 ⇔ χ∞(t) = −1.

If W ∗
ν,t(Φ

−
ν , 1; 0) = 0 then

d

d s
W ∗
ν,t(Φ

−
ν , gτ ; 0)|s=0 =


(ordp(t)+1)

2
log(p) ν = p 6= q

iq−
1
2 (ordq(t) + 1) log(q) ν = q

iν
1
2 Ei(4πtν)e(tτ) ν =∞

Proof. For t 6= 0, p 6= q, using Proposition 6.6:

W ∗
p,t(Φp, 1; 0) =

ordp(t)∑
i=0

χp(p)
i =


ordp(t) + 1 χp(p) = 1

1 χp(p) = −1 ordp(t) ∼= 0 (2)

0 χp(p) = −1 ordp(t) ∼= 1 (2)
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Therefore W ∗
p,t(Φp, 1; 0) = ρp(t) = ρp(−t). Note that χp(p) = −1 and ordp(t) ∼= 1 (2) if and

only if χp(t) = −1. If it is 0 then

d

d s
W ∗
p,t(Φp, 1; 0) =

(ordp(t) + 1)

2
log(p)

For t 6= 0, p = q, using Proposition 6.7:

W ∗
q,t(Φ

−
q , 1; 0) = iq−

1
2 (1− χ(t)) = iq−

1
2

{
2 χq(t) = −1

0 χq(t) = 1
.

W ∗
q,t(Φ

+
q , 1; 0) = −iq−

1
2 (1 + χ(t)) = iq−

1
2

{
0 χq(t) = −1

2 χq(t) = 1
.

This says that W ∗
q,t(Φ

±
q , 1; 0) = ∓2iq−

1
2ρq(±t).

If W ∗
q,t(Φ

−
q (0); 1) = 0 then

d

d s
W ∗
q,t(Φ

−
q , 1; 0) = iq−

1
2 (ordq(t) + 1) log(q)

For t 6= 0, ν =∞:
W ∗
∞,t(Φ∞, 1; 0) = 0

if and only if t < 0.
The case ν =∞ will be proven in appendix A.

6.3 Global computation

We retain the explicit situation of paragraph 6.2 and will prove Theorem 1.1 and formula 1.
The task of this section is to compute the product

W ∗
t (Φ±, gτ1f ; s) := Λ(χ, s+ 1)Wt(Φ, gτ1f ; s) = W ∗

∞,t(Φ∞, gτ ; s)
∏
p

W ∗
p,t(Φ

±
p , 1; s)

and investigate its properties at s = 0.
From the equation

w n(b)m(a) = m(a−1)w n(a−2b)

follows that the Whittaker integrals satisfy the property

Wν,t(Φ(s), n(b)m(a)g) = χ(a) |a|s+1 Ψ(tb)Wν,ta2(Φ(s), g)

Hence, in particular:

W∞,t(Φ(s), gτ ) = ν
s+1
2 Ψ(tµ)W∞,tν(Φ(s), 1)

For Φ+, Proposition 6.10 yields for t 6= 0

W ∗
t (Φ+, 1; 0) = π−1ρ(t)4πq−

1
2 e−2πt.
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and hence
Wt(Φ

+, gτ 1f ; 0)∗ = 4ρ(t)q−
1
2ν

1
2 e(tτ).

Denote by Diff(t) the set of ν such that W ∗
ν,t(Φ

−
ν , gτ ; 0) = 0. Because of the product formula

1 = χ∞(t)
∏
p

χp(t)

and Proposition 6.10 for Φ = Φ− an odd number of factors has to vanish at s = 0. Hence
Wt(Φ

−; gτ 1f ; 0) vanishes identically.
If |Diff(t)| > 1, then also the derivative vanishes.

• Case t = 0: We have then for p 6= q:

W ∗
p,0(Φ, 1; s) = Lp(χ, s)

W ∗
q,0(Φ±, 1; s) = ∓iq−

1
2Lq(χ, s)

W ∗
∞,0(Φ, gτ ; s) = iν

1−s
2 π−

s+1
2 Γ(

s+ 1

2
) see [2] for this calculation

W ∗
0 (Φ±, gτ 1f ; s) = ±ν

1−s
2 q−

1
2 Λ(χ, s)

At s = 0, we have:

c±0 (s) = Λ(χ, s+ 1)Φ(0)(gτ 1f ) +W ∗
0 (Φ(0); gτ 1f )

= Λ(χ, s+ 1)ν
s+1
2 ± ν

1−s
2 q−

1
2 Λ(χ, s)

= Λ(χ, s+ 1)ν
s+1
2 ± ν

1−s
2 q−sΛ(χ, 1− s)

At 0 we get
c+

0 (0) = 2ν
1
2L(χ, 1) = 2ν

1
2hk

c−0 (0) = 0

(this proves formula (1)) and

d

d s
c−0 (s)|s=0 = hk

(
log(q) + log(ν) + 2

Λ′(χ, 1)

Λ(χ, 1)

)
• Case t < 0: Then the derivative is equal to

d

d s
W ∗
t (Φ−, gτ 1f ; s)|s=0 =

d

d s
W ∗
∞,t(Φ∞, gτ ; s)|s=0

∏
p

W ∗
p,t(Φ

−
p , 1; 0)

= −2q−
1
2 ρ(−t) ν

1
2 Ei(4πtν) e(tτ)

Note that ρp(−t) = ρp(t) for all p 6= q.
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• Case t > 0, Diff(t) = {p}, p 6= q: We have:

d

d s
W ∗
t (Φ−, gτ 1f ; s)|s=0 = W ∗

∞,t(Φ∞, gτ ; s)|s=0 W
∗
l,p(Φ

−
l , 1; 0)

∏
l 6=p

W ∗
l,t(Φ

−
l , 1; 0)

= − q−
1
2 (ordp(t) + 1) log(p) ρ(tp−1) ν

1
2 e(tτ)

Note that Diff(t) = {p} implies ordt(p) ≡ 1 (2) and χp(p) = −1 and hence χp(p) =
(p,−q)p = −1 implies χq(p) = (p,−q)q = −1 by quadratic reciprocity. Furthermore

χq(−1) = −1 since q ≡ 3 (4). Therefore W ∗
q,t(Φq(0); 1) = 2iq−

1
2ρq(−t) = 2iq−

1
2ρq(tp

−1).

• Case t > 0, Diff(t) = {q}: We have:

d

d s
W ∗
t (Φ−, gτ 1f ; s)|s=0 = W ∗

∞,t(Φ∞, gτ ; s)|s=0W
∗
l,q(Φ

−
l , 1; s)

∏
l 6=q

W ∗
l,t(Φl, 1; s)

= −2 q−
1
2 (ordq(t) + 1) log(q) ρ(t) ν

1
2 e(tτ)

Note that ρq(−t) = 0 implies ρq(t) = 1.

The last two cases may be summarized by saying:

d

d s
W ∗
t (Φ−, gτ 1f ; 0) = −q−

1
2 ν

1
2 ep (ordq(t) + 1) log(p) ρ(tpep−2) e(tτ).

This finishes the proof of Theorem 1.1 taking into account that for t 6= 0:

at(ν)e(tτ) = ν−
1
2 q

1
2

d

d s
W ∗
t (Φ, gτ 1f ; s)|s=0.

7 Comparison with the classical Eisenstein series

7.1. Will will show in this section that the classical analogue of the two Eisenstein series
defined adelically are indeed the Eisenstein series of the introduction. We compute:

EΦ(

(
ν1/2 µν−1/2

ν−1/2

)
∞

1f ; s)ν
−1/2 = ν−1/2

∑
γ∈B(Q)\ SL2(Q)

Φ(s)(γ

(
ν1/2 µν−1/2

ν−1/2

)
∞

1f )

w.l.o.g. we may assume that γ is integral.

= ν−1/2
∑

γ∈B(Z)\SL2(Z)

Φ(s)(γ

(
ν1/2 µν−1/2

ν−1/2

)
∞

1f )

We need the Iwasawa decomposition at ∞:(
a b
c d

)(
ν1/2 µν−1/2

ν−1/2

)
= m(ν

1
2 |cτ + d|−1)n(· · · ) k cτ+d

|cτ+d|
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which plugged into ξ1
∞ yields:

ν
1
2

(s+1)|cτ + d|s+1 cτ + d

|cτ + d|
= ν

1
2

(s+1)|cτ + d|s(cτ + d)

For each p 6= q, we have

Φp(

(
a b
c d

)
) = 1

because the matrix is integral. For p = q, we distinguish whether c ≡ 0 (q) or not. If
c ≡ 0 (q), then since Φq is K0(q)-equivariant, we get

φq(

(
a b
c d

)
) = χq(a)

c 6≡ 0 (q), we can write modulo q(
a b
c d

)
= n(

a

c
)wm(−c)n(

d

c
)

Hence

Φ±q (

(
a b
c d

)
) = χq(−c) Φ±(w) = ±χq(c)iq−

1
2

Together this gives the formula of section 1.

A Unconventional calculation of the Whittaker inte-

grals at ∞
Proposition A.1. For t 6= 0, for the function given by s ∈ C with <(s) ≥ 0 by

W∞,t(Φ∞, 1; s) =

∫ ∞
−∞

Φ∞(w n(b))e(−tb) d b

we have

W∞,t(Φ∞, 1; 0) =

{
2πie−2πt t > 0,

0 t < 0,

and for t < 0
d

d s
W∞,t(Φ(s), 1; s)|s=0 = πie−2πtEi(4πt).

Proof. We have the Iwasawa decomposition:

w n(b) = m((b2 + 1)−
1
2 )n(· · · ) k−b+i

b2+1

and therefore
Φ∞(w n(b)) = −(b− i)|b2 + 1|−

s
2
−1
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and

W∞,t(Φ∞, 1; s) = −
∫ ∞
−∞

(b− i)(1 + b2)−
s
2
−1e(−tb) d b.

We compute the value at s = 0 ∫ ∞
−∞

1

b+ i
e(−tb) d b

by the residue theorem and get 0 for t < 0 and −2πie−2πt for t > 0 (observe that the winding
number at −i is -1).
We will need also the Fourier transform∫ ∞

−∞

2b

1 + b2
e(−tb) d b.

By the residue theorem we get 2πie2πt for t < 0 and −2πie−2πt for t > 0 (observe that the
winding number at −i is -1).
Now assume that t < 0. The derivative at s = 0 is

−1

2

∫ ∞
−∞

1

i+ b
log(1 + b2)e(−tb) d b

We have seen above that the Fourier transform of 1
i+b

is −2πiX>0(t)e−2πt which is a tempered
distribution.
Let D ⊂ S(R) be the subspace of the space of Schwartz functions such that the Fourier
transform has support in R<0. Then for ϕ ∈ D, the function

∫
−∞ ϕ :

∫ x
−∞ ϕ(t) d t is well-

defined and again in D and
∫̂
−∞ ϕ = ϕ̂

2πix
.

Therefore for ϕ ∈ D

〈X<0
e2πt

t
, ϕ̂〉

= 〈2πi sign(t)e−2π|t|,
ϕ̂

2πit
〉 because ϕ̂ has support only in t < 0.

= 〈 2b

1 + b2
,
̂̂ϕ
2πit
〉

= 〈 2b

1 + b2
,

∫
−∞

ϕ−〉

= 〈
∫

0

2b

1 + b2
, ϕ−〉 By the exercise

= 〈log(1 + b2), ϕ〉 the left hand side is an even function

Exercise A.2. For a Schwartzfunction ϕ with
∫∞
−∞ ϕ = 0 and any locally integrable function

f which defines a distribution on the Schwartz space, we have:

〈f,
∫
−∞

ϕ〉 = 〈
∫

0

f, ϕ〉.
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Now for ϕ ∈ D also ϕ 1
b−i is in D, for the Fourier transform is −ϕ̂ ∗ 2πiX<0e

2πt. This
convolution preserves support in R<0. Therefore we can compute the Fourier transform of
log(1 + b2) 1

i+b
as distribution:

〈log(1 + b2)
1

i+ b
, ϕ〉

= 〈log(1 + b2), ϕ
1

b− i
〉

= 2πi〈X<0
e2πt

t
, ϕ̂ ∗X<0e

2πt〉 by the above calculation

= 2πi〈X<0
e2πt

t
∗X>0e

−2πt, ϕ̂〉

Furthermore

X<0
e2πt

t
∗X>0e

−2πt = e−2πt

∫ t

−∞

e4πx

x
dx = e−2πtEi(4πt).

B Appendix: Quadratic spaces of dimension 2.

Let p an odd prime. A quadratic space over Qp of any dimension is determined by its Hasse
invariant and discriminant. In dimension 2, if the quadratic form on Qp

2 is given by ax2+by2,
then the class of −ab modulo squares is its discriminant and (a, b)p (Hilbert symbol) is its
Hasse invariant. If the discriminant is trivial then there is no space with Hasse invariant -1.
Otherwise all possibilities occur and are given explicitly by the following quadratic forms
where ε represents a non-square in Q∗p
One the left hand side, we have p ≡ 1 (4) (i.e −1 is a square) and on the right hand side
p ≡ 3 (4).

disc Hasse a b γ
1 1 1 1 1
ε 1 ε 1 1
ε −1 pε p −1
p 1 p 1 1
p −1 pε ε −1
εp 1 pε 1 −1
εp −1 p ε 1

disc Hasse a b γ
1 1 1 ε 1
ε 1 1 1 1
ε −1 p p −1
p 1 pε 1 i
p −1 p ε −i
εp 1 p 1 −i
εp −1 pε ε i

a and b are not unique (as classes modulo squares), above we gave examples. There are
usually 2 possibilities except for the discriminant one form, which has 4 possibilities. The
associated quadratic character is given by

χp(x) = (x,−ab)p
For discriminant 1 it is trivial. For discriminant ε it is trivial on Z∗p and has χp(p) = −1 For
discriminant p, it is given on Z∗p by the projection to F∗p and its unique non-trivial quadratic
character and by χp(p) = 1. For discriminant pε it is the product of these 2.
γ is computed w.r.t. the standard additive character Ψp : Qp → S1.
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