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1 Introduction

The goal of these notes is to compute the Fourier coefficients of the following Eisenstein
series and to present their relation with the Weil representation.
Let ¢ = 3 modulo 4 a prime and k£ = Q(y/—¢q). Let

x: QAT — {1}
a (aa _Q)A = H(CL, _q)V

v



be the associated quadratic character where (z,q), is the local Hilbert symbol.
Write 7 = p + vi € H. There are 2 Eisenstein series of weight 1 associated with k:

Ei(ris)=v2 > (cm+d) er +d| P (o)

7€l o0\ SL2(Z)
a b
where for o = < ), we have
c d
@;t(a) _ Xq‘(a) %f ¢ = 0 modulo ¢,
+iqg~/?x,(c) if ¢ #Z 0 modulo q.
Here I'y, = {+ <1 :f | x € Z}. The Eisenstein series is a modular form of weight 1 w.r.t.

the group I'g(¢) and character yx,(a) lifted to I'o(q).
The series converge for (s) > 1 and have an analytic continuation to the whole complex
plane. The normalized series

Ei(r;s) =7 A(s+1,x)Ex(r; 5)

where +1
A(s,x) = nglf‘(s 5

)L(s,x)

satisfy the functional equation
EL(1;—s) = £EL(7;5)

From the functional equation follows that E_ vanishes identically for s = 0. We will explain
this in more detain the sequel of these notes.
Actually E% (7;0) is holomorphic and we have

Et(1;0) =2k, + 4 p(n)e(n7) (1)

n=1

where p(n) is the number of integral ideals of norm n. This is a special case of the Siegel-Weil
formula that we will explain in section [6.1]

We are interested in the derivative iEﬁ (T, 5)|s=0- One purpose of these notes is to compute
its Fourier expansion. The result is:

Theorem 1.1. q
(7 8)lam0 = > a(v)e(tr)
5 tez
where
—eplog(p)(ord,(t) + p(tp™2)) if t > 0,Diff(t) = {p},
) 0 if t > 0,|Diff(¢)| > 1,
ai\V) = ’
! —hy (log(q) + log(v) + 2%8}’3) ift =0,
—2Ei(4ntv)p(—t) ift <O0.



with -
pi(t) = / u e du
1

and
Diff(t) = {p | xp(—t) = -1}

Here e, is the ramification index of p in k, i.e. 2 if p = ¢ and 1 otherwise.
Note that the positive Fourier coefficients are holomorphic (i.e. do not depend on v).

2 Adelic versus classical modular forms

To understand the Eisenstein series, it will be convenient to work adelically. Let us briefly
recall the translation of classical modular forms to adelic automorphic forms.

Write K, = S for the subgroup of SLy(R) of elements k, 5 = _ab

Let I' C SLy(Z) be a congruence subgroup. Recall that a modular form of weight k& € Z
w.r.t. [ is a function f : H — C transforming as

flgr) =jlg,7)" f(7)

with a? + b* = 1.

a

for all g = b) € I'and j(g,7) = e + d. Usually it has to satisfy a growth condition at

d
infinity, which we will not state here.

Now let A =[], Q, be the ring of adeles for Q and SLy(A) the group of adelic 2x2-matrices
of determinant 1. We sometimes write Ay for the finite adeles (in which the factor R is
omitted). First, since I' is a congruence subgroup, we find a compact open subgroup Ky
of SLy(Ay) such that Ky N SLy(Q) = I'. Then observe that by strong approximation (i.e.
SL>(Q) lies dense in SLy(Af)), we have:

SLy(A) = SLy(Q) SLy(R) K

Recall that there is a bijection between smooth (non-holomorphic) modular forms f : H — C
for T’ of weight k& and smooth functions (see [1] for the definition of smooth in this context)

o5 : SLo(Q)\ SLy(A) — C

with the property
o1(gkrka) = *9y(g)
for ko € Koo, ky € Ky, given as follows:

¢f(gngok3f) = f(goo : i)j<g<>07 i)_k

1Sketch of proof. Reduce to show that SLy(Z) lies dense in SLg(z). This follows, if we can show that
SLo(Z) — SL2(Z/N7Z) is surjective because SLQ(Z) = limSLy(Z/NZ). Then observe that SLy(Z/NZ)
is generated by elementary matrices. Using the Chinese remainder theorem it suffices to show this for
SLo(Z/p"Z), where Gaussian elimination works. Elementary matrices clearly lift to SLo(Z).
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f can be reconstructed as
f(7) = ¢(gools) i (goo; Z)k

where 7 = 1+ vi and g € SL2(R) is any element with g.i = 7, for example

—-1/2

1/2
f(r) = 925((1/ ﬂyy—lm ) 1f)’/_k/2-

One can match the growth conditions at cusps in both languages, which we will not do here.
If y : I — S!is a character that is trivial on another congruence subgroup satisfying
I = K; NSLy(Q), we may regard x as a character of x : Ky — S1 via the isomorphism
Ky/K}; = T'/T". Then modular forms f which transform via y under I' correspond precisely
to functions ¢ : SLy(Q)\ SLy(A) — C which satisfy:

Os(gkrka) = a"x(ks)gy(g)
for ky € Ky.

Example 2.1. Let

Ky(q) = {(c d) € SLy(Z) | ¢ =0 modulo q}

with
Fola) = Kao(0) n5L2(Q) = {7 1) €51a(@) | €= 0 molo ).

We have the following character

x: Kolg) — S
(i Z) = Xqla)

Note that a cannot be divisible by q. Here x,(a) was defined in section 1.

3 Parabolic induction for SL, and Eisenstein series.

We will now explain the general theory of Eisenstein series for SLo in the adelic language.
Let x =[], x» : A*/Q* — S* be a continuous character and assume that y., has values in
+1.
Consider the group M C SLs consisting of diagonal matrices and the group /N of unipotent
upper triangular matrices. We denote B = M - N the group of upper triangular matrices
which is a Borel subgroup.
We consider the character

x| ]a s AY/QF — C*.
It may be extended to B(A) using the decomposition B(A) = M(A)N(A).
Let I(x|-|3) be the normalized induced representation from B(A) to SLy(A), i.e.
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f : SLa(A) — C smooth, K,-finite, satisfying
I(x]-]°) =
bd -1 (" 59 =l @it

(07

(the +1 comes from the normalization). Likewise, we define Ir(Xoo| - |°) and Ig, (x| - [5)-
For almost all p, the character ¥, is trivial on Z; and hence the function

(L) 0= lalxe

Q{fl

for k € SLy(Z,), defined using the Iwasawa decomposition, is well-defined. It follows that
/
I(X’ ) |18-\) = ® ]V(XV| ’ |V)

where the restricted tensor product is formed w.r.t. the vectors 52.
We have the following vectors in I (Xoo| - |*)

a
(M L) k) = Hal )
Here either k is even and x trivial, or £ is odd and x is the sign character. These vectors
form a basis of I (Xoo| - |¥). We will see in section [5| how it decomposes into irreducibles.
The theory of Eisenstein series realizes the SLy(A)-principal series representations (‘repre-
sentation’ to be understood in the appropriate sense) I (x|-|3) in the space of automorphic
forms.

3.1. Let

D(s) € Ia(x| - 1)
be such that its restriction to K = K;K is independent of s. It follows from the above
that such a section is uniquely determined by its value ¢(0) and is given by

(67

<I><s><(a ) K) = laf**" x() B(0) (k).

~

where k € K, SLs(Z). Given such a section, we define the Eisenstein series by
Eo(gis):= > O(s)(v9).
v€B(Q)\ SL2(Q)

One can show that it converges to a smooth K -finite function in g, if R(s) > 1, which
depends holomorphically on s. It is then obviously left invariant under SLy(Q).
Therefore it defines a morphism of SLs(A)-representations:

E:Ia(xl-12) — A(SL2(Q)\SLy(A))
O(s) — E(P(s),—)

The spaces Ig(x) can be understood in terms of Weil representations. We will introduce
them in the next section.



4 The Weil representation

4.1. Let R be a locally compact topological ring in which 2 is invertible. In the following R
will be one of Q,, R, A, A ).
Choose a continous additive character ¥ : R — S' such that R becomes self-dual w.r.t. the
bicharacter

z,y — V(xy).

Choose a self-dual measure dx on R w.r.t. this character. On L?*(R) we have the structure
of a Hilbert space with Hermitian product given by:

_ / [(@)g(@)da

The Fourier transform of a function f € L?(R)

/ f(y)¥(—zy)d

defines a unitary operator in Aut(L?(R)) and we have

k)

() = f(=).

Let V now a free rank m module over R with a bilinear form inducing an isomorphism
V — VV. We choose a measure dz on V, too, which is self-dual w.r.t. the bilinear form on
V. The Fourier transform of a function f € L*(V)

/f (—z-y)dy

where x - y is the bilinear form on V therefore also satisfies

(x) = f(~2)

Vo, be a Zy-lattice. Denote oy its characteristic

N =y

Lemma 4.2. If R = Q, and let M
function. We have

951\\4 = |M’90MV-

Here |M]| is the volume of M w.r.t. the self-dual measure. If the bilinear form on V w.r.t.
a basis of M has matriz S, we have

[M] = (| det()],)?.

4.3. Define the Heissenberg group H(V) :=S; x V x V, where S' = {2 € C | |z| = 1} with
multiplication

(t1,v1, wq)(t2, va, we) = (t1t2 W (v1 - we), vy + Vo, wy + Wa).



We let SLy act on V2 from the right as follows:

(v, w) (CCL Z) = (av + cw, bv + dw).

SO(V) also acts and the two operations commute.

a b

To each o = (c d> € SLy(R) we associate the following quadratic form on V' x V' given by

Qo (v, W) = %(((w +ew) - (bo + dw) — v - w)

Let Aut’(H(V)) be the subgroup of automorphisms of H (V) that fix S* and commute with
the action of SO(V'). We have the exact sequence

0—=V xV—=Aut’(H(V)) —=SLy(R) —=0

which is the decomposition into outer and inner automorphisms of Aut’(H(V')) (everything
acts on the right).
The association:
(t,v,w) -0 (tV(Qs(v,w)),av + cw, bv + dw)
defines a splitting SLy(R) — Aut’(H(V)) of that sequence.
We define a representation of H (V) on L?*(V) by the formula

((t,v,w))(x) = th(w - z)p(z + v)
It is clear that this is a unitary representation.

4.4. The Stone-von Neumann theorem says that H(V') is (up to topological issues) the
only irreducible unitary representation of H (V') such that S’ acts naturally. Therefore the
map

NAut(Lg(V))(H(V)) — Aut(H(V))
o — o 'he
has to be surjective. Actually we have an exact sequence

0 81— Naus(zzy (H(V)) —= Aut(H(V)) —=0 2)

because the representation of H (V') is irreducible.
An element o is a lift of o if
hop=0a(h-0)¢p (3)

for any ¢ € L*(V).
Consider the following elements

~J



The group of all matrices of the form m(a) (the diagonal torus) will be denoted by M, the
group of matrices of the form n(b) by N. Their product will be denoted by B.
We guess lifts of these elements to Aut(Ly(V)):

(m@)e)(r) = laf3p(az)
(b)) = W(a)pla)
wol(r) = B(-)

where n is the dimension of V. The factor |a|2 has been introduced to make the operator
m(a) unitary. To justify these formulas, one only has to check that equation holds true
for these choices. This is an easy exercise.

These elements fulfill the obvious relations:

n(b) m(a) = m(a) n(ba"?)
wm(a) =m(a ') w
4.5. Assume now that R is a field. Then we have the Bruhat decomposition
SLy(R) = BuBUB

d )

o € BwB has a unique representation in the product NwB, namely:

(& 5) = wm-an(,

. . . b :
and the set BwB is precisely the set of matrices (CCL ) where ¢ is not zero. Each element

C

Hence we may define a lift on BwB by setting:

Cc

(L )= wman). ()

A simple calculation shows

(& )0 =kl [ pla-+en)i@u o a )

1%
Now, if we have a relation o109 = 03 between these elements, we get from sequence that
r(o1)r(o2) = v(01,02)r(03)
for an element (o1, 09) € S'.

Proposition 4.6. v(o1,02) depends only on c;'csc;’ € R which we denote y(cy'cscyt).
v(p) is determined by the equation:

Fu= () |ul " o (6)

where the Fourier transform has to be interpreted in the sense of distributions. Here f,(x) :=



Proof. Inserting the definition and multiplying from the left by elements of the form
m(a) and n(b), we are left to determine the y-factor:

dy ag

)n(—=)w = 7(01,02) ()

w n(
1 Co

in other words 7(oy, 09) depends only on
accordingly.
We therefore have to investigate the relation

Ay a2 — el whi di 4 a2
L+ 2 = cc, ' which we denote by (£ + €)

wn(p) w = (1) T((Ll _1>)

We apply both sides to a function ¢ and evaluate at 0. The left hand side gives

fu-3(0) = (£, 7)

for the function f,(z) = U(42*) (note that this is an even function). The right hand side
given, using formula :

NPE /V o (12) Q. (0,2)) d

-1

=l # [ pla) o H—at)da = el (L)

Hence R .
<fu7@> = ’}/l:u’ii <f*#_17¢>

4.7. We fix with the following natural (up to a choice of i € C) character on R:
R: U (x) 1= e*™®

Qp: Uy(z) := e 2l where [z] = Y, , x;p~* is the principal part,
(it has level /conductor 1),

Ar UV =1[,7,.

Theorem 4.8. If dim(V) is even, there is a function p : BwB — S such that setting for
o € BwB:

we have:
1. For an equation o109 = o3 in BwB, the equation
w(oy)w(og) = w(os)

holds true



2. w extends uniquely to a unitary representation SLo(R) — Aut(L*(Vg)). It fizes the
Schwartz-space S(Vg) (i.e. smooth functions of rapid decay, if R = oo, and locally
constant with compact support, if R = Q,).

3. We have the following explicit formulas:

(wm(@)e)(x) = xv(a)laldp(az) M

@) = U(or)e) 0

ww)e)a) = Q@) )

where Q(z) = La? is the quadratic form on V, and xv(a) = (a, D)r, where D is the

discriminant.

The representation w is called the Weil representation associated with V' and W.

Proof. 2. follows from 1. because Weil [4, Lemme 6] shows by elementary group theoretic
arguments that SLy(R) is generated abstractly by BwB and the obvious relations o109 = 03
for o0; € BwB. The main reason is that BwB forms an open algebraic subvariety of SLs.
To prove 1. we will define p(o) = p(c) in such a way that the equation

p(er) plea) = y(ertesey ') ples) (10)

holds true. 1. then follows from the definition of ~.

The defining equation for v(u) shows that it depends only on ¥ and the quadratic form
Q:x— %xQ that is involved in the definition of f, Hence we consider now an arbitrary
finite free module V over R and consider the usual Fourier transform L?(V) — L*(VV).
Then for any non-degenerate quadratic form @ we may define ¥(Q) as the elememt in S*
such that

W(Q) ~ (y > HQ)U(-Q(B'y)))

holds, where ~ means equality up to a positive real scalar and B : V — V'V is the symmetric
morphism associated with ). In other words, we have y(u) = 7(uQ) in the case considered
in this section.

Consider a relation 0 = ¢’0” in BwB. Then by definition, denoting @) the quadratic form

T %xQ, we have:
c

1 ()r(e") = A Qr(a).
Defining w(o) := (¢, D)5(Q) "' r(o) we get using Lemma 4.9, 6.:

w(o)w(o") = (¢, D)F(Q)~" (¢, D)F(Q) Al

C

= (¢, D)A@) (", D)HQ)™ (55 D)A(Q) (o) = (¢, D)(Q) " r(0) = w(o).
To get the formulas stated in the Theorem note that (—1, D)¥(Q)™! = 3(Q). O
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Choose a basis and write this quadratic form as Q(z) = >, a;z7. Then we write also
Y, ..., ap) for 3(Q). Wewrite D (discriminant) for (—1)"' [; aui. Let £(Q) = [[,;(ai, aj)r
be the Hasse invariant of Q).

Lemma 4.9. For arbitrary R (in our list):
1 Y(oq,...,00) =], 7(cw).
~(a) depends only on o modulo squares.
¥(1,-1) =1 or, if R=Q, and V contains a unimodular lattice for Q, then ¥(Q) = 1.
(1) A(=a)7(=b)7(ab) = (a,b)r.
W(@) = %) ((=1)""'D)e(Q).

If n is even, we have

939”‘.“9@9\3

Y(uQ) = (1, D)rY(Q).

Proof. 1. and 2. follow directly from the definiton.
3. and 4. are proven in Weil’s article [4].
5. and 6. follow by induction from 3. and 4. O

We state here even more explicit calculations:

Lemma 4.10. Let p = exp(3£).

1. For p odd:
5 (a) 1 if o is a unit,
) = , ,
T pz D ven exp(—27rz'o‘7f2) if @ = pd is a unit.
Therefore, according to the theory of Gauss sums:

1 if ais a unit |
Tpla) = <€ (!, p)y if o =pa’ is a unit and p =1 (4),
—i(o,p), if a=pais a unit and p =3 (4).
2. For oo:

Yool(1) = p Yoo —1) = :0_1

3. Forp=2:

= 273 erz/zz eXP(—27Ti—aff2) if a 1s a unit,
’72(04) = _1 o 2 . , )
472 ) er/az, ©XP(— L) if o= pd is a unit.

al 1 3 5 7 2 6 10 14

Yol p ot opt p P




We note also the product formula for a quadratic form ) defined over Q which can be proven
using Poisson summation:
H;VJV(Q> =1

From this product formula follows, for example, the law of quadratic reciprocity as well as
the statement that a definite unimodular lattice over Z can only exist if 8| dim(V'). Also the
sign in the Gauss sum can be obtained by knowing v, only.

For more explicit formulas for Weil representations see also [3].

5 Relation of parabolic induction with the Weil repre-
sentation

Let R be one of Q,, R, A.
Let V' be a Q-vectorspace with binary quadratic form and discriminant D, and let yy : x —
(x, D)g the character given by the Hilbert symbol.

Lemma 5.1. For any (K -finite if R=R,A) vector ¢ € S(Vg) (the Schwartz space), the
function

Ap) 1 g (w(g)p)(0)
is in Ir(xv)-

Proof. Follows from the explicit formulae of the Weil representation: We have by :
O, (m(a) g) = xv(a) |al (w(g)©)(0) = xv(a) la| D4(g)

and by :

In other words we get a morphism of SLy(R)-representations
A S(VR) — [R(XV)

Denote the image by I(Vg).
Fix now x any continuous quadratic character A*/Q* — {£1}.
Theorem 5.2 (Kudla).

[Ql/ (XV) - @ [QD<VV)

\

where [V, runs over the isomorphism classes of binary quadratic spaces over Q, such that
Xv, = Xv (if p is odd, there are two of them, if x, is non-trivial, and one otherwise, see

Appendiz [B).
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Consider the following conditions on a collection of {V,},, where all V, have the same
dimension. Assume that the character of V, is given by ..

(Coh) There is a global quadratic space V' such that V ®q Q, = V,,.

(Coh’) There is a global quadratic space V' such that V ®g @), =V, for almost all v.
(B) Almost all Hasse invariants €,(V,) are 1 and [[e,(V,) =1
(B’) Almost all Hasse invariants €,(V,,) are 1.

Theorem 5.3. We have
B < Coh B’ < Col’

We call {V,}, a coherent collection if B (or equivalently Coh) holds and an incoherent
collection if B’ holds, but [[¢,(V,) = —1.

Corollary 5.4. We have
IA(X) = @IA(V) D @ IA({VV}V)
(V] Vit

where [V] runs over the isomorphism classes of binary quadratic spaces over Q such that
xv = x and {V,}, runs over incoherent collections of binary quadratic spaces with xv, = X, -

Proof. This follows because the tensor product is the restricted one w.r.t. the functions 52 .
Those lie in the subspace coming from the representation with Hasse invariant 1. O

We will now explicitly determine the image in Ig, (xy) of some special functions ¢ € S(Vy, ).

Proposition 5.5. Let Vg, be a quadratic vector space and M C Vg, a unimodular Z,-lattice
and let @y be the characteristic function of M. Note that the existence of M implies that
the character xv, is unramified, i.e. xv,(Zy) = 1 and that the Hasse invariant is 1. Then
we have

Meon) =&,

Proof. Unraveling the definition, we have to show that

@ ,5) Do) = xta)

ol
for k € SLy(Z,). By formulas (7H8) this boils down to
(W(k)par)(0) =1

but actually we even have
w(k)om = ou

for SLy(Z,) is generated by B(Z,), under which ¢, is clearly invariant because M is uni-
modular, and w. The Fourier transform leaves ), invariant because of Lemma [£.2] O

13



5.6. Let Ky(p) be the group introduced in . x defines a character Ky(p) — S*. Consider
the subspace of I(x|-|*) of those functions, which are right equivariant w.r.t this character.
This space is 2 dimensional, generated by 2 functions which are determined by

S =1 &w)=0 &1)=0 &(w)=1

Proof. By the Iwasawa decomposition any function in I(x|- |*) is determined by their values
on Koy(p)\ SLa(Z,). Being right equivariant means that even the values on the following
double cosets are determined by one of them:

Ko(p)\ SLa(Zy)/ Ko(p) = B(IFp)\ SLa(IFy,)/ B(Fy)
There are just 2 such cosets, represented by 1 and w. O

Proposition 5.7. Let p = 3 (4) be a prime and Vg, = Qf, with quadratic form of the form
Q : e1x® + eapy?®. (This implies that the lattice M := Z% is maximal integral.) We have
MY =Z,® %Zp. In this case N(pyr) lies in the subspace of I(x|-|*®) of functions which right
equivariant w.r.t this character and is equal to

Mpar) = €L +7(Q)p 22,

We denote these functions by @;,t according to whether 7(Q)) = £i. These are precisely the
ones described in the introduction (cf. also section [7).

Proof. We have the decomposition Ko(p) = N~ (pZ,)M(Z,)N(Z,), where N~ is the opposite
unipotent. Using the formulas of the Weil representation (7H9) and Lemma we get:

(w(m(a))
(w(n(b))
(w(n™(pc))

AS)

g

e
|

x(a) for a € Z,,"

) = 1

) = (wwn(pe)w)ear)(0) = (wwn(pe) | MF(Q) ™ parv)(0)
(IAL7] [M ] ) (0) = 1

€ 6
SIS
S S

It follows that A(¢as) is right equivariant w.r.t. this character. It remains to determine

AMpn)(1) =1

and by equation (9) and Lemma [£.2] we have w(w)py = (Q)|M|parv, hence

N

AMen)(w) =5(Q)p 2.
O

Proposition 5.8. Let Vi be a positive definite real vector space of dimension 2. Then there
is a unique function ¢’ such that

14



Proof. &L is the unique vector (up to scalar) in I (X ), on which K, acts by k,-&L = z-£L.
Hence we have to look for vectors in S(Vg) which transform the same way. Let

H = (Z _i) € sly(C).

Since Koo = {ke(r) = e(AH) | A € R} it is the same to ask for an element ¢, with
Hpoo = kpso.

Now we have:
T

@l () o))0)e) = 2rideto

as is easily obtained by deriving equation . Using the equation <_01 8) =w™! (8 (1)) w,

we get that dw( (_01 8)) is the Fourier transform of the operator d w( (0 ), therefore

1
0 0
0 O 1
dw<(_1 0>)_RA

where A is the Laplace operator w.r.t. the quadratic form on V. Hence

A
H=ra?— =
T Ar

For a positive definite space the differential equation

n

np(r) — 1= Depla) = ()

has a unique solution (up to scalar) namely the Gaussian

71'12

Pro(x) =€

Since ! (0) = 1, we must have indeed ®(pl ) = L.
Functions of higher weights 3,5,7, ... one obtains for example by applying the weight raising

and lowering operators:
1 1 i 1 1 —
§d°"(<z’ —1)> Ed“’(<—z’ —1)>

The eigenspaces are, however, not one-dimensional anymore. O

Remark 5.9. Similarly, we get that the functions ®F_ for k = —1,-3,—=5,... arise from the
negative definite space, whereas all even functions ®% fork =...,—2,0,2,... arise from the
indefinite space. Hence we reobtain the well-known statement that for x.. = sign, the princi-
pal series representation I (Xoo) decomposes into 2 “limit of discrete series representations”,
whereas for Xoo = 1 it is wrreducible.
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6 Fourier expansion of the Eisenstein series

Let a factorizable section of & = [[ @, of Ix(x|-|3) as in[3.1|be given, such that its restriction
to K, SL2(Z) is independent of s. We assume that the standard additive character ¥ : A —
S1 has been chosen ([4.7)).

The function
r — Eg(n(z) g)

is continuous on the compact group A/Q and hence has a Fourier expansion. Defining

ci(g;s) == /A/Q E(n(z)g)¥(—tz)dx

for t € Q, we get

Eo(g) = cilg: )

teQ

These Fourier “coefficients” satisfy

1 =
Ct(( 1) g:5) = W(t) ci(g; s)-
Lemma 6.1. If f is a modular form of weight k with Fourier expansion
f(r) =Y av)e(tr)
teQ
then the Fourier “coefficients” associated with ¢y are determined by:

S22
Ct(( MV—1/2 ) ly;s) = Vk/Q@t(”)d”)

where T = p+ 1.

We now proceed to calculate the Fourier expansion of E:
We write

B(Q)\SLz(Q) = {e} U{wn(d) | b € Q}
We have hence

Ea(g;s) = ®(s)(g) + ) (s)(wn(b) g)

beQ
and hence
g 5) = / () W)+ % / (bt a) ) ¥(~te)da

~ [ s@)@e-t)da+ [ a(s)wnle) 9¥(~ta)da
A/Q

A

16



Note that the first coefficient is non-zero only if ¢ = 0. L.e.

ca(g;s) = 0o0®(s)(g) + Wi(®(s), 9)

where
WH(®(s). g) = / B(s)(wn(x) g)¥(—tz) de

If ®(s) is factorizable, as above, we have:
Wy(@(s), 9) = [ [ Woa(®u(s), 9)

where

Wea®().9) = [ ul)(wnla) 9),(~tz) d
is called the Whittaker integral.
The functions W;(®(s),g) and hence the whole Eisenstein series can always be meromor-
phically continued to all s € C. We will not discuss this here, although it will follow for
the specific Eisenstein series from the explicit calculations. For the local factors, analytic
continuation is easier to see, and we will write W, ;(®, g;s) for the analytically continued
function.

6.2. Let £ = Q(y/—q) with ¢ = 3 (4) prime be the imaginary quadratic field of the
introduction. We consider the quadratic space V := k with quadratic form given by the
norm N. The associated character is yy(a) = (a, —q).

There is one and only one way to turn {V,}, into an incoherent collection with the same
character such that

e There remains a vector ® € I({V,},) which is x-equivariant under K;(q).

Namely we have to change V, which has Hasse invariant € = 1 (because N represents 1) into
the space V,~ with the same discriminant and Hasse invariant ¢ = —1. From the explicit
formula [£10) follows that

Y(Q) = —(Q) i
where () is the corresponding quadratic form. Therefore by Propositions [5.5H5.8| in both
cases there is a function
[ #vee
p

such that applying ®, we get the section
+._ ot 1
ot = o [[ 2,0l
P#4q

according to the case. We will now compute the Fourier coefficients explicitly for the Eisen-
stein series associated with these two sections.

17



6.3. For t € Z write
p(t) ={a C O | N(a) =t}.

This is a multiplicative function and indeed we have
p(t) = H pu(t)

where
() = ord,(t)+1 v=p#q xp(p) =1 (i.e. for p split in k)
plt) = $(1+x,(t)) otherwise

Proof. We have p,(t) = p(p°¥®) except for

p=q. Butif p,(t) =0, i.e. if x,(t) = —1 then
also p(t) = 0 by the product formula [], x, (%)

1. [l

6.1 The Siegel-Weil formula

This section is not important for the computation that follows and is included to illustrate
Weil’s original purpose of introducing the Weil representation. Let V' be a positive definite
quadratic space over Q, My a lattice in it, ¢ be the Gaussian, and ¢; = ¢y be the

characteristic function of M = My ® Z. We can form the theta function associated with
P = PooPf

0(p.9) =Y _(w(9)p)(v) (11)

veV
A simple calculation shows that it corresponds via the correspondence between adelic and
classical modular forms to the series

O(r) = Y e(v’r)

The fact that it is a modular form follows from Poisson summation. We have the Siegel-Weil
formula which holds unconditionally if dim(V') > 4:

1 /
T(SO(V)) SO(Va)/ SO(Vp)

where d h is the Tamagawa measure.
We want to illustrate the equality further, by computing the Fourier expansion of the right

hand side. We have
teQ

E(®(p),9;5 — 1) 0(he,g)dh

setting

Oi(p.9) == D (w(@)p)(v)

veEVv2=t

This is the Fourier expansion of #. Hence the Fourier coefficient of the RHS equals

(w(g)e)(h~'v)dh

veVw2=t

/SO(VA)/ SO(Vg)

18



This is equal to

~(S0(u) / (w(g)e)(v) dv

veEV),v2=t

Where 7 is the volume of SO(v;)/SO(vg) and dv is a suitable measure on the sphere. The
integral also decomposes as the product over all v of

| e@awa

Now we have

Lemma 6.4. Fort # 0 and if dim(V') > 4:

W) 60 =@ [ (wlohe)(v)dv
veVy, w2=t
This already proves the equality of the non-zero Fourier coefficients.
The Siegel-Weil formula continues to hold beyond the range dim(V') > 4 if the Eisenstein
series is analytically continued. If dim(V') = 1,2 an additional factor 2 is occurring. We will
see this in a special case for dim(V') = 2.

6.2 Local computation
The following general Lemma will be used in the unramified and ramified cases alike.

Lemma 6.5. Let p be any prime. Let x be a quadratic character of Q) such that x(1+Z,) = 1
(this is only a restriction for p =2) and let ®, € Ig, (x| - |°) be Ko(p)-equivariant character
w.r.t x. Then we have

Woi(®yp, s s) = Xz, (1) ©p(w) + (Z(X(p)ps)i /Z* X(0) W, (btp™) db) o(1)

Proof. Let us abbreviate W; for the Whittaker integral and ®, for ®,(s), s being fixed. We
decompose Q, = Z, + ;- p*iZ;, hence

o0

Wt:/ <I>p(wn(b))\11p(—bt)db+2/__ @0 n(D) W, (b db

P 1=

The first integral is just equal to ®(w), if ¢t € Z, and 0 otherwise. On the second, we may
use the Iwasawa decomposition

m(—b~1) n(—b) (bfl 1) — wn(b).

Note that the matrix (bll 1) is in Ko(p) and y is 1 on it. Therefore:

B (wn®) = @m0 n(-) ()= x0T a0
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Hence we get:

W, = X, (1 +Zx p [ @

O

Proposition 6.6. If ®, and x are unramified, i.e. constant (and equal to 1) on SLy(Z,),

resp. L, we have
ord(t)

Woa(®y, 158) = Ly(x, s + 1) ) (x(p)p ™)’

i=0
and 0 if t ¢ Z,. In particular

W,o0(®p, 1;8) = Ly(x, s + 1) Ly(x;, 5).
Proof. Let us abbreviate W, for the Whittaker integral. By Lemma [6.5] we have if ¢ € Z:

W= 1+ a0 [ w007 do

P

Using the Lemma [6.8] we get

ord(¢) ord(¢)+1 ord(¢)
We=> (x®p ) =p" Y (xp ) =L06s+1)7 D (x(p)p~)
i=0 i=1 i=0
and that W; = 0 if ¢t ¢ Z,. This holds also setting ord(t) = oo for ¢ = 0. O

Proposition 6.7. Now assume that ¢ = 3 (4) and x is the ramified quadratic character with
X(q) =1 and that ® is Ko(q)-equivariant w.r.t. x. We have then:

D, (w) — (q=*) 4O ig 3 x (1) @,(1) t € Z3,
W,oi(®4,1;8) = { B, (w) t=0,

0 otherwise.

Proof. Let us abbreviate W, for the Whittaker integral. By Lemma [6.5] we have if ¢ € Z,:

Wi = (Z Xq(q /* X(b)\lfq(btq_i) db) Py(1).

Using Lemma , we get (since x,(q) = 1) if t € Z;:

Wy = @(w) + (¢~*)" 0 ig =2 xy (—1)@y(1)

and W; = ®,(w) if t = 0 and W; = 0 otherwise. O
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Define
Wy (@(s);9) = Au(x, s + 1) W, (®(s); 9)
where

1 _
I—xp(p)p—s—1! v=p#q

A, s+1)=<1 v=gq

is the normalized L-series associated with y.
Some “easy” Fourier transforms used above:

Lemma 6.8.
0 0> ord(t) +1
/ U(—zt)de = ¢ —p! 0=ord(t) +1
“ 1—p~ ' 0<ord(t)+1

Lemma 6.9. If ¢ =3 (4) is a prime and x(a) = (a,q) the ramified quadratic character at q
with x,(q) = 1.
0 0 d(t) +1
| x@uatae =40 # ord(t)
Z ig 2x(t) 0=ord(t)+1
Proposition 6.10. Fort # 0, we have for p # q:

*
q

W;,t(q)pa 1;0) = py(t) W:t(q)pa L0)=0 & xp(t) = -1,

and for v =gq

W;,t@);t, 1;,0) = F2iq 2 py (&) W;t(q)i 1:0) =0 & x4(t) = F1,

g
and for v = oo

WE (o, 95 0) = 2ipac(D)v2e(tt)  WE($0,1;0) =0 & xoolt) = —1.
If W (®5,1;0) = 0 then

v )

d (e log (p) v=p#q
&W:t(q);a 9r;0)]s=0 = iq_%(ordq(t) +1)log(q) v=gq
iv2Ei(4mtv)e(tr) V=00

Proof. For t # 0, p # ¢, using Proposition [6.6}

ordy(t) . Ordp(t) +1 Xp(p) =1
W@, 1,00 = > x(p) =<1 Xp(p) = —1 ord,(t) =0 (2)
= 0 Xp(p) = —1 ordy(t) =1 (2)
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Therefore W ,(®,,1;0) = p,(t) = pp(—t). Note that x,(p) = —1 and ord,(t) = 1 (2) if and
only if x,(t) = —1. If it is O then

d . (ord,(t) + 1)
L (@, 150 = DD

For t # 0, p = q, using Proposition [6.7}

log(p)

qr

Wi (@7, 150) = ig 3 (1 - x(6) = i} {2 Xalt) =1,

I
S

Wy (@F,1;,0) = —ig™ (1 +x(t) =1 iq 2 {

This says that Wy, (®,1;0) = :FQiq*%pq(j:t).

qr

If Wr,(®,(0);1) = 0 then

d

T Wau(®,1,0) = =2 (ord,(t) + 1) log(q)

q

Fort#0, v =0
Wi t(Poo, 1;0) =0

if and only if ¢ < 0.
The case v = 0o will be proven in appendix [A] O]

6.3 Global computation

We retain the explicit situation of paragraph [6.2] and will prove Theorem [I.1] and formula [T}
The task of this section is to compute the product

W (D%, g, 15;8) == A(x, s + D)Wy(D, g, 155 8) = Do, Gr3 5 HW* (D, 1;5)

and investigate its properties at s = 0.

From the equation
wn(b)m(a) = m(a) wn(a™2b)

follows that the Whittaker integrals satisfy the property
W,+(®(s), n(b)m(a)g) = x(a) |a*™" V(th) W,,142(P(s), 9)

Hence, in particular:

Woot(®(5), g7) = v 5 W(tp) W (0(s), 1)
For ®*, Proposition yields for ¢t # 0
Wi (DT, 1;0) = 7' p(t)dmq 2e 2.
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and hence o
Wi(®F, g, 15;0)* = 4p(t)q 2v2e(tT).

Denote by Diff(¢) the set of v such that W, (®,, g-;0) = 0. Because of the product formula
L= xe() [ [ 2(®)
p

and Proposition for ® = &~ an odd number of factors has to vanish at s = 0. Hence
Wi (@7 ;g- 1£;0) vanishes identically.
If |Diff(¢)| > 1, then also the derivative vanishes.

e Case t = 0: We have then for p # ¢:

) = Lp(x;s)
Wro(@*, 1;s) = :Fiq*%Lq(X,s)

)

)

) see [2] for this calculation

I
H_
X
QI
|
=
a
2z

At s = 0, we have:
¢y (s) = A(x, 5 + 1)@(0) (g, 15) + W5 (@(0); g 17)

q 2A(x;s)
= A(x,s+ 1)V% 4 V%q_SA(X, 1—ys)

=A(x, s+ 1)VS%1 tyz

At 0 we get

(this proves formula (1])) and

d

155 9o = e Jote) +1ost) + 230 )

e Case t < 0: Then the derivative is equal to

d ., . d ., _
&Wt (CI) 7ngf;S>|5:0:EWoo ( 00y g3 S s 0 H p7170

=22 p(—t) % Ei(4ntv)e(tr)
Note that p,(—t) = p,(t) for all p # q.
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e Case t > 0, Diff(¢t) = {p}, p # ¢ We have:

d * — * * — * —
— W (@, gr 153 8)|sm0 = W, (Pocs gr5 ) |amo Wi, (@, 1;:0) [ [ W7 (@, 1;0)

ds I#p
= —q2 (ord,(t) 4 1) log(p) p(tp~") % e(tr)

Note that Diff(¢) = {p} implies ord;(p) = 1 (2) and x,(p) = —1 and hence x,(p) =
(p,—q)p, = —1 implies x,(p) = (p, —q)y = —1 by quadratic reciprocity. Furthermore
Xq(—1) = —1since ¢ = 3 (4). Therefore Wy, (94(0);1) = 2iq_%pq(—t) = 2iq_%pq(tp*1).

e Case t > 0, Diff(t) = {¢}: We have:

d * — * * — *
&Wt (CD » 9r 1f; S)'s:D = WOOVt((I)ooa gr; S)'s:D I/th((bl ) 1; 5) H VVLt((I)lv 1; S)
l#q
= —2q 2 (ordy(t) + 1) log(q) p(t) v? e(t7)
Note that p,(—t) = 0 implies p,(t) = 1.

The last two cases may be summarized by saying:

d . . 11 o
£Wt (®7,9,1£;0) = —¢q 2 2 e, (ord,(t) + 1) log(p) p(tp™~?) e(tT).

This finishes the proof of Theorem taking into account that for ¢ # 0:

d *
&Wt ((I)a gr 1f§ 5)‘3:0~

11
2q2

7 Comparison with the classical Eisenstein series

7.1. Will will show in this section that the classical analogue of the two Eisenstein series
defined adelically are indeed the Eisenstein series of the introduction. We compute:

Y2 12 - - P2 12
Eé(( 172 Ly;s)v Y=y Z P(s)(v 172 1y)
> v€B(Q)\ SL2(Q) o
w.l.o.g. we may assume that 7 is integral.
B VU2 12
= v Z D(s)(v < 172 1y)
YEB(Z)\ SL2(Z) o0
We need the Iwasawa decomposition at oo:

a b\ (V' pv1/? 1 _
(c d) ( 'LLV_l/Q) =m(viler +d ) n(- ) kerta

leT+d|
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which plugged into & yields:

L cT+d
leT + d|

oL )=

because the matrix is integral. For p = ¢, we distinguish whether ¢ = 0 (¢) or not. If
¢ =0 (q), then since @, is Ky(g)-equivariant, we get

IR

pa(t) |er 4 gt — v36 D |er + df*(er + d)

For each p # ¢, we have

¢ # 0 (q), we can write modulo ¢

(¢ 5) = wm-an()

C Cc

Hence

N [=

Cc

Together this gives the formula of section 1.

A Unconventional calculation of the Whittaker inte-
grals at oo

Proposition A.1. Fort # 0, for the function given by s € C with R(s) > 0 by

Weot(Poo, 15 5) = /00 O (wn(b))e(—tb)db

we have
2 - =27t t > 0
Woot(¢ooy]-70) = e Y
’ 0 t <0,
and fort <0
d
ds st (D(5), 15 8)|s—0 = mie *""Ei(4nt).
s

Proof. We have the Iwasawa decomposition:

wn(b) =m((0® + 1)) n(- ) ks

b2 41

and therefore
Doo(wn(b)) = —(b—a)|b* + 1|27
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and -
Weot(Poo, 15 5) = —/ (b—1i)(1+ b2)*%*1e(—tb) db.

—00

/_Oo L=ty db

bt

We compute the value at s =0

by the residue theorem and get 0 for ¢ < 0 and —27ie~>™ for ¢ > 0 (observe that the winding
number at —i is -1).
We will need also the Fourier transform

/_ T2 b

o 1+ b2

By the residue theorem we get 2mie?™ for t < 0 and —2mie > for ¢t > 0 (observe that the
winding number at —i is -1).
Now assume that ¢ < 0. The derivative at s = 0 is

1 />~ 1
= log(1 + b%)e(—
2/_Ooi+bog( +b%)e(—tb)db

We have seen above that the Fourier transform of Hib is —2miX+o(t)e™?™ which is a tempered
distribution.

Let D C S(R) be the subspace of the space of Schwartz functions such that the Fourier
transform has support in Reo. Then for ¢ € D, the function [ __ ¢ : [ ¢(t)dt is well-

defined and again in D and [ __ ¢ = 52—
Therefore for ¢ € D

627rt
<X<OT’ o)
= (2misign(t)e 2", %) because ¢ has support only in ¢ < 0.
i
o /@\>
1402 2mit

2b _
= <m7/w<ﬁ>

2b
= /0 T2 © ) By the exercise

= (log(1+b%),¢) the left hand side is an even function

Exercise A.2. For a Schwartzfunction ¢ with f_oooo @ = 0 and any locally integrable function
f which defines a distribution on the Schwartz space, we have:

(f,/_oow>=</of,so>-
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Now for ¢ € D also gpﬁ is in D, for the Fourier transform is — * 2miX_oe*™. This
convolution preserves support in R.y. Therefore we can compute the Fourier transform of
log(1 4 b%) 5 as distribution:

1
log(1 + b?)——
(log(1 + )Hb,@

= (log(1+b*
627rt
= 27m'<X<OT, P * Xpe®™) by the above calculation
27t

= 27Ti<X<oT * Xope 2™, o)

Furthermore

627rt t e47rx
Xog— * Xoge 2 = g2 dz = e ?™Ei(4rt).
<0 t >0 T

—00

B Appendix: Quadratic spaces of dimension 2.

Let p an odd prime. A quadratic space over QQ, of any dimension is determined by its Hasse
invariant and discriminant. In dimension 2, if the quadratic form on Qp2 is given by ax?+4by?,
then the class of —ab modulo squares is its discriminant and (a,b), (Hilbert symbol) is its
Hasse invariant. If the discriminant is trivial then there is no space with Hasse invariant -1.
Otherwise all possibilities occur and are given explicitly by the following quadratic forms
where ¢ represents a non-square in Qj

One the left hand side, we have p = 1 (4) (i.e —1 is a square) and on the right hand side

p=3(4).

disc Hasse a b| vy disc Hasse a b 7
1 1 1 1)1 1 1 1 e 1
€ 1 e 1] 1 € 1 1 1)1
€ -1 pe p|—1 € —1 p pl—1
P 1 p 1] 1 P 1 pe 1| 1
P -1 pe | -1 P —1 p €| —i
Ep 1 pe 1|—1 Ep 1 p 1] —1
Ep —1 p e 1 Ep -1 pe | 1

a and b are not unique (as classes modulo squares), above we gave examples. There are
usually 2 possibilities except for the discriminant one form, which has 4 possibilities. The
associated quadratic character is given by

Xp() = (z, —ab),
For discriminant 1 it is trivial. For discriminant ¢ it is trivial on Z; and has x,(p) = —1 For
discriminant p, it is given on Z; by the projection to F, and its unique non-trivial quadratic
character and by x,(p) = 1. For discriminant pe it is the product of these 2.
7 is computed w.r.t. the standard additive character ¥, : Q, — S*.
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