
DISJOINT STATIONARY SEQUENCES ON AN INTERVAL OF

CARDINALS

HANNES JAKOB

Abstract. We introduce strong distributivity, a strengthening of distributivity, which

implies preservation of ccness and stationarity, afterwards showing a stronger version
of the Easton Lemma. We also introduce a new framework for working with arbi-

trary orders on products of sets. Both concepts are applied together to answer two

questions of Krueger using a new version of Mitchell’s Forcing.

1. Introduction

Disjoint stationary sequences were first introduced by Krueger to answer a question

posed by Abraham and Shelah about forcing clubs through stationary sets. Later on,

this concept was connected to the seemingly unrelated area of internal unboundedness,

stationarity, clubness and approachability. Most of this was accomplished by Krueger

using the notion of a mixed support iteration, which is very similar to the approach

Mitchell first used to show the relative consistency of the tree property at ℵ2.
In his paper introducing disjoint stationary sequences, see [5], Krueger asked if it is

consistent that DSS holds simultaneously at two successive cardinals or even an interval

of cardinals. Levine partially answered this in [7] by using a modified version of Mitchell

forcing to construct a model where DSS(ℵ2) ∧ DSS(ℵ3) holds. Using another different

version of Mitchell forcing, we will answer the rest of the question by producing a model

where DSS(ℵn) holds for any n ∈ ω, n ≥ 2:

Theorem 1.1. Assume (κn)n∈ω is an increasing sequence of Mahlo cardinals. There

exists a forcing extension in which, for every n ∈ ω, κn = ℵn+2 and there exists a

disjoint stationary sequence on κn:

In the same paper, Levine noticed that in the model constructed to have disjoint

stationary sequences on both ℵ2 and ℵ3, the notions of internal stationarity and clubness

are distinct for [ℵ2]<ℵ2 and [ℵ3]<ℵ3 , partially answering another question of Krueger

from [5]. The same is true in our case, i.e. for any n ∈ ω, n ≥ 2, the notions of internal

stationarity and clubness are distinct for [ℵn]<ℵn . This answers the rest of the question

posed by Krueger.
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Theorem 1.2. Assume (κn)n∈ω is an increasing sequence of Mahlo cardinals. There

exists a forcing extension in which, for every n ∈ ω, κn = ℵn+2 and there are stationarily

many Z ∈ [κn]
<κn which are internally stationary but not internally club.

The paper is organised as follows: After reviewing a bit of background information, we

introduce a new kind of closure for forcing notions, called strong <κ-distributivity, which

lies in strength between <κ-strategic closure and <κ-distributivity (and has much better

preservation properties than <κ-distributivity) We will also prove a stronger version of

Easton’s Lemma. We then introduce a general way of working with arbitrary orders on

products of sets. In section 5, we apply the previous concepts to prove our main theorems.

2. Preliminaries

We assume the reader is familiar with the basics of forcing. Good introductory ma-

terial can be found in the books by Jech (cf. [4]) and Kunen (cf. [6]).

Our notation is fairly standard. To reduce confusion, we write < τ -closed (strate-

gically closed; (strongly) distributive). p ≤ q means p is stronger than q (forces more).

P ↾ p is defined as {q ∈ P | q ≤ p}. V [P] denotes an arbitrary extension by P, i.e. “V [P]

has property P“ means that for every P-generic G, V [G] has property P .

Definition 2.1. Let κ be a cardinal. A pair (V,W ) of models of set theory with the

same ordinals has the <κ-covering property if for any x ∈ W of size <κ there is y ∈ V

of size <κ such that x ⊆ y. A forcing order P has the κ-covering property if 1P forces

that (V, V [P]) has it.

If P is κ-cc. and ḟ any P-name for a function from an ordinal into V , then there are

<κ possibilities for any value ḟ(α̌), so we obtain:

Fact 2.2. If P is κ-cc., P has the κ-covering property.

When arguing the preservation of properties which are downwards absolute, we will

frequently make use of projections, which are a way of showing that an extension by

some order Q is contained in an extension by another order P.

Definition 2.3. Let P and Q be forcing orders. A function π : P −→ Q is a projection

if the following hold:

(1) π(1P) = 1Q.

(2) For all p ≤ q, π(p) ≤ π(q)

(3) For all p ∈ P, if q ≤ π(p), there is some p′ ≤ p such that π(p′) ≤ q.

A projection π is trivial if for all p, p′ ∈ P, if π(p) = π(p′), p and p′ are compatible.

If there exists a projection from P to Q, any extension by Q can be forcing extended

to an extension by P.



DISJOINT STATIONARY SEQUENCES ON AN INTERVAL OF CARDINALS 3

Definition 2.4. Let P and Q be forcing orders, π : P −→ Q a projection. Let H be

Q-generic. In V [H], the forcing order P/H consists of all p ∈ P such that π(p) ∈ H. We

let P/Q be a Q-name for P/Ḣ and call P/Q the quotient forcing of P and Q.

Fact 2.5. Let P and Q be forcing orders and π : P −→ Q a projection. If H is Q-generic

over V and G is P/H-generic over V [H], then G is P-generic over V and H ⊆ π[G]. In

particular, V [H][G] = V [G].

One checks that if π : P −→ Q is trivial, then P/Q is forced to be centered and thus:

Fact 2.6. If there exists a trivial projection π : P −→ Q, P and Q are forcing equivalent.

For completeness, we state the Product Lemma, which states that forcing with a

product of orders can be viewed as successive forcing.

Lemma 2.7 (Product Lemma). Let P and Q be notions of forcing. For G ⊆ P, H ⊆ Q,

the following are equivalent:

(1) G×H is P×Q-generic over V .

(2) G is P-generic over V and H is Q-generic over V [G].

(3) H is Q-generic over V and G is P-generic over V [H].

3. Strongly Distributive Forcings

<κ-closed forcings have some nice regularity properties which do not hold for forcings

which are merely <κ-distributive (e.g. preserving stationary subsets of κ). In this section,

we will introduce a strengthening of <κ-distributivity, which <κ-closure turns into after

forcing with κ-cc. forcing and show that it can replace <κ-closure in some important

applications.

Definition 3.1. A notion of forcing P is strongly <κ-distributive if for any sequence

(Dα)α<κ of open dense sets and any p ∈ P, there is a descending sequence (pα)α<κ such

that p0 ≤ p and ∀α < κ, pα ∈ Dα. Such a sequence will be called a thread through

(Dα)α<κ.

Strong <κ-distributivity can be thought of as having <κ-distributivity witnessed in a

uniform way: If (Dα)α<κ is a sequence of open dense subsets of some <κ-distributive forc-

ing notion, there is a sequence (pα)α<κ such that for all α < κ, pα ≤ p0 and pα ∈
⋂

β<α Dβ

(since the intersection of <κ open dense sets is open dense). However, we cannot in gen-

eral find such a sequence in a uniform way, i.e. such that it is descending.

Obviously strong <κ-distributivity implies <κ-distributivity. Note that strong <κ-

distributivity and <κ-distributivity are not equivalent: If (T,≤) is a Suslin tree, (T,≥)
is < ω1-distributive (cf. Lemma 15.28 in [4]) but not strongly < ω1-distributive (let Dα
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consists of all nodes of height α so that a thread through all Dα is a cofinal branch in

T ). There are also ZFC examples: If S ⊆ ω1 is stationary and costationary, the forcing

shooting a club through S by countable approximations is < ω1-distributive (cf. Lemma

23.9 in [4]). However, as we will later show, it cannot be strongly < ω1-distributive as it

destroys a stationary subset of ω1.

Keeping with the theme of strong <κ-distributivity being a uniform version of <κ-

distributivity, we have the following characterisations of strong <κ-distributivity: Recall

that for antichains A,B we say that A refines B if for every q ∈ A there is q′ ∈ B with

q ≤ q′.

Lemma 3.2. For a forcing order P, the following are equivalent:

(1) P is strongly <κ-distributive.

(2) P is <κ-distributive and for p ∈ P and any descending sequence (Aα)α<κ (with

regards to refinement) of maximal antichains below p, there is a descending se-

quence (pα)α<κ such that p0 ≤ p and for any α, pα ∈ Aα.

Proof. Assume P is strongly <κ-distributive. Of course, this implies that P is <κ-

distributive. Let (Aα)α<κ be a sequence of maximal antichains in P such that for β < α,

Aα refines Aβ . For α < κ, let Dα be the downward closure of Aα and consider a thread

(qα)α<κ through (Dα)α<κ. For any α < κ, let pα be the unique (by pairwise incompati-

bility) element of Aα that is above qα. We are done after showing

Claim. The sequence (pα)α<κ is descending.

Proof. Let β < α be arbitrary. Because Aα refines Aβ , there exists p
′
β such that pα ≤ p′β .

Thus, qα ≤ pα ≤ p′β and qα ≤ qβ ≤ pβ . In summary, p′β and pβ are compatible and

therefore equal. □

Now assume condition (2) holds. Let (Dα)α<κ be a sequence of open dense subsets

of P. Inductively, and using <κ-distributivity, construct a sequence (Aα)α<κ such that

Aα ⊆ Dα is a maximal antichain and for β < α, Aα refines Aβ . It follows that a thread

through (Aα)α<κ is also one through (Dα)α<κ. □

While <κ-distributivity means that every <κ-sequence of ground-model elements is

in the ground model, strong <κ-distributivity means that we can uniformly approximate

κ-sequences of ground-model elements.

Lemma 3.3. If P is strongly <κ-distributive, p ∈ P and ḟ is a P-name such that

p ⊩ ḟ : κ̌ −→ V , there is a descending sequence (pα)α<κ with p0 ≤ p such that for every

α < κ, pα decides ḟ(α̌).

Proof. Consider Dα := {q ∈ P | q decides ḟ(α̌)}. □
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As is the case for <κ-distributivity, the converse holds for separative forcing orders

(but we will never use this).

We even obtain new version of Foreman’s Theorem from [1], relating strong <κ-

distributivity to the non-existence of a winning strategy for INC in the completeness

game.

Definition 3.4. Let P be a forcing order, δ an ordinal. The completeness game G(P, δ)

on P with length δ has players COM (complete) and INC (incomplete) playing elements

of P with COM playing at even ordinals (and limits) and INC playing at odd ordinals.

COM starts by playing 1P, afterwards pα has to be a lower bound of (pβ)β<α. INC wins

if COM is unable to play at some point < δ. Otherwise, COM wins.

The following theorem was shown by Foreman in [1]. Note that this theorem can also

work for regular limit cardinals: It implies that, for κ a regular limit, P is <κ-distributive

if and only for all ordinals µ < κ, INC does not have a winning strategy in G(P, µ): If

P is not <κ-distributive, it is not <µ-distributive for some µ < κ and this implies that

INC has a winning strategy in G(P, µ). If INC has a winning strategy in some G(P, µ),

he has one in G(P, µ+ + 1), so P is not <µ++-distributive and not <κ-distributive.

Theorem 3.5 (Foreman). If κ = λ+ is a successor, P is <κ-distributive if and only if

INC does not have a winning strategy in G(P, λ+ 1).

if INC does not have a winning strategy in G(P, λ+ 1), he does not have one in any

G(P, µ) for µ < λ+. Having this witnessed uniformly suggests the following statement:

Theorem 3.6. P is strongly <κ-distributive if and only if INC does not have a winning

strategy in G(P, κ).

Proof. For one direction, if (Dα)α<κ is a sequence of open dense sets without a thread

below some p ∈ P, let INC first play p and then, at each stage α = γ+2n, an element of

Dγ+n.

For the other direction, let σ be a winning strategy for INC in G(P, κ). Let σ(1P) = p.

We will construct a sequence (Aα)α∈κ such that the following holds:

(1) For each α ∈ κ and pα ∈ Aα, there exists a unique sequence (pβ)β<α such that

for all β ≤ α, pβ ∈ Aβ and if β is odd, pβ = σ((pδ)δ<β).

(2) If α ∈ κ is odd, Aα is a maximal antichain below p (for even α, we carefully

choose Aα to obtain uniqueness in (1)).

To begin, let A0 := {1P} and A1 := {p}. Assume the sequence has been constructed until

some even successor ordinal γ. We will construct Aγ and Aγ+1 simultaneously. Let Dγ+1

consist of all p ∈ P such that there exists a sequence (pα)α<γ+1 such that for all α < γ,

pα ∈ Aα and if α is odd, pα = σ((pβ)β<α).
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Claim. Dγ+1 is dense below p.

Proof. Let p′ ≤ p be arbitrary. By maximality of Aγ−1, there exists aγ−1 ∈ Aγ−1 com-

patible with p′, witnessed by some p′′. By the inductive hypothesis, there is a sequence

p = (pβ)β<γ−1 with pβ ∈ Aβ for β < γ − 1 and pβ = σ((pδ)δ<β) for all odd β ≤ γ − 1.

Hence, letting s := p⌢aγ−1
⌢p′′, σ(s) witnesses density. □

Let Aγ+1 ⊆ Dγ+1 be a maximal antichain. For each aγ+1 ∈ Aγ+1, by the definition

of Dγ+1, there exists a sequence (pα)α<γ+1 such that for all α < γ, pα ∈ Aα and if α is

odd, pα = σ((pβ)β<α). Choose such a sequence for each aγ+1 ∈ Aγ+1 and let Aγ consist

of the γth entries of these sequences.

Claim. For each pγ+1 ∈ Aγ+1, there exists a unique sequence (pβ)β<γ+1 such that for

all β < α, pβ ∈ Aβ and if β ≤ γ + 1 is odd, pβ = σ((pδ)δ<β)

Proof. Let aγ+1 ∈ Aγ+1. The existence of such a sequence s follows from the definition

of Dγ+1. Let s
′ = (p′β)β<γ+1 be another sequence such that for all β < γ, pβ ∈ Aβ and

for odd β ≤ γ + 1, pβ = σ((pδ)δ<β). By construction, this sequence is descending, so pβ

and p′β are compatible (witnessed by aγ+1), which implies for odd β that they are equal.

However, this also means that for each odd β < γ, s′ ↾ β and s ↾ β are equal by the

inductive hypothesis.

So if s′ ̸= s, then p′β = pβ for all β < γ and p′γ ̸= pγ . Since p′γ ∈ Aγ , there exists

aγ+1 ̸= a′γ+1 ∈ Aγ+1 and a sequence s′′ such that s′′⌢p′γ witnesses a′γ+1 ∈ Aγ+1. Because

σ is a function, s′′ ̸= s′ ↾ γ and by the inductive hypothesis, s′′(γ−1) ̸= s′(γ−1). However,

p′γ witnesses their compatibility, which is a contradiction. □

Assume γ is a limit. Let A′
γ be a common refinement of Aα for odd α < γ. Given

p ∈ A′
γ , let pα ∈ Aα witness refinement for odd α and let pα ∈ Aα witness pα+1 ∈ Aα+1

for even α. Then (pα)α<γ is a play according to σ by uniqueness (which implies that the

sequences witnessing pα ∈ Aα are coherent). Let Dγ be the downward closure of A′
γ and

let Dγ+1 consist of σ(s) for sequences s = (pα)α<γ+1 with pγ ∈ Dγ and s ↾ γ witnessing

this. Thus, Dγ is dense and we can proceed as in the previous step.

Lastly, there exists a thread through (Aα)α∈κ∩Odd, i.e. a sequence (pα)α∈κ∩Odd such

that for odd α, pα ∈ Aα. For even α, let pα ∈ Aα witness pα+1 ∈ Aα+1. By uniqueness,

(pα)α<κ is a play in G(P, κ) according to σ. But this contradicts our assumption that σ

was a winning strategy. □

If COM even has a winning strategy inG(P, δ), we say that P is weakly <δ-strategically

closed.

The main point for introducing strong <κ-distributivity is the following strength-

ening of the Easton Lemma, showing that in many cases where we previously only had

<κ-distributivity, we actually have strong <κ-distributivity. The second statement in
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the Lemma was also noticed (in a different form) by Andreas Lietz on Mathoverflow after

a question by the author (see [8]).

Lemma 3.7. Let κ be a regular cardinal. Assume P is κ-cc. and Q is strongly <κ-

distributive.

(1) 1Q ⊩ P̌ is κ̌-cc.

(2) 1P ⊩ Q̌ is strongly < κ̌-distributive.

Proof. (1) Assume ḟ is forced by some q to be an enumeration of an antichain in

P of size κ. Thus, q ⊩ ḟ : κ̌ −→ V . Hence, there exists a descending sequence

(qα)α<κ with q0 ≤ q such that qα ⊩ ḟ(α̌) = p̌α for some pα.

Claim. {pα | α < κ} is an antichain in P.

Proof. Let β < α be arbitrary. Thus qα ⊩ ḟ(α̌) = p̌α ∧ ḟ(β̌) = p̌β because

qα ≤ q0, qα ⊩ p̌α ⊥ p̌β and thus pα ⊥ pβ . □

This claim directly contradicts our assumption.

(2) We first show a helpful claim

Claim. If D ⊆ P×Q is open dense and p ∈ P, the set Dp consisting of all q ∈ Q

such that for some A ⊆ P that is a maximal antichain below p, A× {q} ⊆ D, is

open dense in Q.

Proof. Openness is clear: If A witnesses q ∈ Dp and q′ ≤ q, A also witnesses

q′ ∈ Dp.

Thus, assume the set is not dense and there is q ∈ Q such that for every

q′ ≤ q, q′ /∈ Dp. We will give a winning strategy for INC in G(P, κ). In every run

of the game, we construct an antichain {pα | α ∈ γ ∩ Odd} below p such that

(pα, qα) ∈ D. To begin, let INC find a pair (p1, q1) ≤ (p, q) with (p1, q1) ∈ D and

play q1.

Assume the game has lasted until γ, γ+1 is Odd and COM has just played qγ .

If {pα | α ∈ γ∩Odd} is maximal, it witnesses qγ ∈ D by openness: For every α ∈
γ ∩ Odd, (pα, qα) ∈ D and thus (pα, qγ) ∈ D. This contradicts our assumption,

since qγ ≤ q. It follows that there exists some p′γ+1 which is incompatible with

every pα. By open density, there exists (pγ+1, qγ+1) ≤ (p′γ+1, qγ), (pγ+1, qγ+1) ∈
D. Let INC play qγ+1.

This strategy is a winning strategy, because a play of length κ would give us

a κ-sized antichain in P. This contradicts our assumptions. □

Now assume ḟ and τ are P-names such that ḟ is forced by some p to map

κ̌ to open dense subsets of Q and τ to be an elemnent of Q. Strengthening p if

necessary, we can assume p ⊩ τ = q̌ for some q ∈ Q.
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Claim. The set Dα := {(p′, q′) ∈ P ↾ p×Q | p′ ⊩ q̌′ ∈ ḟ(α̌)} is open dense.

Proof. Openness in both coordinates follows either from the properties of the

forcing relation or from ḟ(α̌) being forced by p to be open.

For density, let (p′, q′) ∈ P ↾ p×Q be arbitrary. Thus p′ ⊩ ∃τ(τ ∈ ḟ(α̌) ∧ τ ≤
q̌′). Because τ is in particular forced to be in V , there exists p′′ ≤ p′ and q′′ such

that

p′′ ⊩ (q̌′′ ∈ ḟ(α̌) ∧ q̌′′ ≤ q̌′)

Thus, (p′′, q′′) ≤ (p′, q′) and (p′′, q′′) ∈ Dα □

Combining the two claims, for each α, the set D′
α, consisting of all q′ ∈ Q

such that for some A ⊆ P such that A is a maximal antichain below p and

A×{q′} ⊆ Dα, is open dense in Q. If q′ ∈ D′
α, there exists a maximal antichain A

below p such that for every p′ ∈ A, p′ ⊩ q̌′ ∈ ḟ(α̌). By maximality, p ⊩ q̌′ ∈ ḟ(α̌).

Let (qα)α<κ be a thread through (D′
α)α<κ below q. Then p forces (q̌α)α<κ to

be a thread through ḟ below q̌.

□

In particular, if Q is <κ-closed and P is κ-cc., Q is strongly <κ-distributive after

forcing with P.

As stated before, strong <κ-distributivity has much better preservation properties

than <κ-distributivity: As shown in the previous Lemma, strongly <κ-distributive forc-

ings preserve the κ-cc., in contrast with the fact that it is consistent that T 2 collapses ω1,

where T is a suslin tree (thus, in V [T ], T is neither ω1-cc. not < ω1-distributive). Fur-

thermore, strongly <κ-distributive forcing notions preserve stationary subsets of κ (in

contrast with the fact that we can destroy stationary subsets of ω1 with < ω1-distributive

forcing notions).

Lemma 3.8. If P is strongly <κ-distributive and S ⊆ κ is stationary, 1P ⊩ Š is stationary.

Proof. Assume that some p ∈ P forces Ċ ⊆ κ̌ to be a club and ḟ to be its strictly

increasing enumeration. Thus, p ⊩ ḟ : κ̌ −→ V . Hence, there exists a descending sequence

(pα)α<κ such that pα ⊩ ḟ(α̌) = γ̌α for some γα ∈ κ. Let

C ′ := {γα | α < κ}

Claim. C ′ ⊆ κ is club.

Proof. If β < α, pα ⊩ γ̌β = ḟ(β̌)∧γ̌α = ḟ(α̌). Because ḟ is forced to be strictly increasing,

pα ⊩ γ̌β < γ̌α. Thus (γα)α<κ is a strictly increasing sequence in κ of length κ and thus

unbounded.

Let γ ∈ κ be a limit and assume C ′∩γ = {γα | α < δ} is unbounded in γ. This implies

that δ is a limit ordinal (because the sequence is strictly increasing). Thus, pδ forces that
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(ḟ(α̌))α<δ is unbounded in γ. Because pδ forces ḟ(δ̌) = γδ and ḟ to be continuous,

γδ = γ ∈ C ′. □

Since C ′ ⊆ κ is club and in V , there exists α < κ such that γα ∈ C ′ ∩ S. Then

pα ⊩ γ̌α ∈ Š ∩ Ċ. □

Since clubs in κ are basically the same as clubs in [κ]<κ, we have the following

corollary:

Corollary 3.9. If P is strongly <κ-distributive, P preserves stationary subsets of [X]<κ

whenever |X|= κ.

Proof. We will show that for every set S ⊆ [X]<κ, there exists a set S′ ⊆ κ such that S

is stationary if and only if S′ is.

Let F : X −→ κ be a bijection. Then a 7→ F [a] is a continuous and order-preserving

bijection from [X]<κ into [κ]<κ. Hence, S is stationary if and only if F [S] is. Let S′ :=

F [S] ∩ κ.

Claim. S′ ⊆ κ is stationary if and only if F [S] ⊆ [κ]<κ is.

Proof. Assume S′ is nonstationary and let C ⊆ κ be a club with empty intersection

with S′. By standard arguments, C ⊆ [κ]<κ is also club. Since C ∩ F [S] = ∅, F [S] is

nonstationary.

Assume F [S] is nonstationary and let C ⊆ [κ]<κ be club with empty intersection

with F [S]. It follows that C ∩κ ⊆ κ is also club. Since (C ∩κ)∩S′ = ∅, we are done. □

□

4. Orders on products

Some of the difficulty in working with Mitchell Forcing stems from the fact that

it is neither an iteration (as we are not using full names) nor a product (as the first

component is relevant for the ordering on the second component). Therefore, to help in

the later sections, this section will introduce a general way of working with arbitrary

orders on products of sets.

Definition 4.1. Let P and Q be sets and R a partial order on P×Q (not necessarily a

product ordering). We will only consider orderings where for all p, p′

∃q((p, q)R(p′, q))←→ ∀q((p, q)R(p′, q))

If we want to reference this property, we will say that P × Q is basic. We define the

following partial orders:

(1) The base ordering b(R) is an ordering on P given by p(b(R))p′ if for one (equiv-

alently, all) q ∈ Q, (p, q)R(p′, q).
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(2) The term ordering t(R) is an ordering on P × Q given by (p, q)t(R)(p′, q′) if

(p, q)R(p′, q′) and p = p′.

(3) For p ∈ P, the section ordering s(R, p) is an ordering on Q given by q(s(R, p))q′

if (p, q)R(p, q′).

We also fix the following properties:

(1) (P × Q, R) has property (A) if whenever (p′, q′)R(p, q), there is q′′ such that

(p, q′′)R(p, q) and (p′, q′′)R(p′, q′)R(p′, q′′).

(2) (P×Q, R) has property (B) if p′(b(R))p implies that s(R, p′) refines s(R, p), i.e.

whenever (p, q′)R(p, q) and p′(b(R))p, also (p′, q′)R(p′, q).

Properties (A) and (B) hold in almost all cases, and always for iterations and prod-

ucts. They are necessary for most of the relevant techniques.

Lemma 4.2. If (P × Q, R) has properties (A) and (B), there is a projection from

(P, b(R))× (Q, s(R, 1P)) onto (P×Q, R).

Proof. Let i : (P, b(R)) × (Q, s(R, 1P)) −→ (P × Q, R) simply be the identity. It is clear

that i(1P, 1Q) = 1P×Q. To simplify notation, let R′ denote the ordering on (P, b(R)) ×
(Q, s(R, 1P)).

If (p′, q′)R′(p, q), p′(b(R))p and (1, q′)R(1, q). It follows that (p′, q′)R(p, q′)R(p, q)

by property (B). Assume (p′, q′)R(p, q). Because (p, q)R(1P, q), there is q′′ such that

(1P, q
′′)R(1P, q) and (p′, q′′)R(p′, q′). It follows that (p′, q′′)R′(p′, q)R′(p, q). □

Cones in orders on products can be regarded again as orders on products if property

(A) holds.

Lemma 4.3. If (P×Q, R) has property (A) and (p, q) ∈ P×Q, {p′ ∈ P | p′(b(R))p}×{q′ ∈
Q | (p, q′)R(p, q)} is dense in {(p′, q′) ∈ P×Q | (p′, q′)R(p, q)}.

We will now generalise both the Product and the Factor Lemma, showing how we

can view forcing with P×Q as successive forcing.

Lemma 4.4. There exists a projection from P×Q onto (P, b(R)).

Proof. The projection is simply given by π(p, q) = p. Basicness and property (A) imply

that π is actually a projection. □

For the rest of the section, P refers to (P, b(R)). By the definitions, whenever G ⊆ P

is generic, (P×Q)/G = {(p, q) ∈ P×Q | p ∈ G} = G×Q. We will now show that G×Q

is forcing equivalent to a particular ordering on Q.

Definition 4.5. Let (P×Q, R) be a partial order with properties (A) and (B). Let G be

P-generic. In V [G], define the generic ordering g(R,G) on Q by q(g(R,G))q′ if for some

p ∈ G, (p, q)R(p, q′)
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Remark 4.6. g(R,G) actually is a partial order: Reflexivity is clear. For transitivity, as-

sume that q0(g(R,G))q1(g(R,G))q2, i.e. for p, p
′ ∈ G, (p, q0)R(p, q1) and (p′, q1)R(p′, q2).

Assume p′′(b(R))p, p′ is in G. Then by property (B),

(p′′, q0)R(p′′, q1)R(p′′, q2)

i.e. q0(g(R,G))q2.

Lemma 4.7. Let P×Q be a partial order with properties (A) and (B). Let G be P-generic.

In V [G], the posets G×Q and (Q, g(R,G)) are forcing equivalent.

Proof. Let π : (G × Q, R ↾ (G × Q)) −→ (Q, g(R,G)) be given by π(p, q) = q. We will

verify that π is a trivial projection.

π((1G, 1Q)) = 1Q. Let (p
′, q′)R(p, q). By property (A), there is q′′ with (p, q′′)R(p, q)

and (p′, q′′)R(p′, q′)R(p′, q′′). Thus p witnesses q′′(g(R,G))q and p′ witnesses q′(g(R,G))q′′.

By transitivity, q′(g(R,G))q.

Assume (p, q) ∈ G×Q and q′(g(R,G))q. Let p′ ∈ G witness this, i.e. (p′, q′)R(p′, q).

Let p′′(b(R))p′, p. Thus, by property (B), (p′′, q′)R(p′′, q)R(p, q) and (p′′, q′) is as required.

Lastly, if π(p, q) = q = π(p′, q), then let G ∋ p′′(b(R))p, p′. Thus, (p′′, q)R(p′, q), (p, q).

□

Thus, by Fact 2.6, forcing with (P × Q, R) can be regarded as first forcing with

(P, b(R)) and then with (Q, g(R,G)), where G is P-generic. In the case of a product,

g(R,G) is simply equal to the original ordering on Q. In the case of an iteration P ∗
Q̇, (Q, b(R,G)) is forcing equivalent to Q̇G (the only difference being that we are not

identifying equivalent names).

The following results are especially important for Mitchell forcing: In most cases, the

term ordering on P×Q is <κ-closed because P forces Q to be <κ-closed. In these cases,

one obtains that (Q, g(R,G)) is forcing equivalent to a <κ-closed forcing and thus has

nice regularity properties. However, as we will later see, there are cases where the term

ordering on P × Q is <κ-closed but (Q, g(R,G)) fails to be. We will now see that, if P

has a good enough chain condition, (Q, g(R,G)) is at least strongly <κ-distributive.

Lemma 4.8. Assume (P×Q, R) has properties (A) and (B), the base ordering is κ-cc.

and the term ordering is strongly <κ-distributive. If G ⊆ P is generic, in V [G], the

ordering (Q, g(R,G)) is strongly <κ-distributive.

The proof consists of two simple Lemmas.

Lemma 4.9. If π : P −→ Q is a projection and P is strongly <κ-distributive, so is Q.

Proof. If D ⊆ Q is open dense, so is π−1[D]. Given a sequence (Dα)α<κ of open dense

sets, find a thread through (π−1[Dα])α<κ and apply π to it. □
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Lemma 4.10. Assume (P × Q, R) has properties (A) and (B) and let G be P-generic.

In V [G], there exists a projection from (Q, s(R, 1P)) onto (Q, g(R,G)).

Proof. The projection once again is just the identity. g(R,G) is of course finer than

s(R, 1P), since 1P ∈ G. If q′(g(R,G))q, then (p, q′)R(p, q)R(1, q) for some p ∈ G, so

there exists q′′ such that (1, q′′)R(1, q) and (p, q′′)R(p, q′)R(p, q′′). Hence q′′(s(R, 1P))q

and q′′(g(R,G))q′, witnessed by p. □

Examples of strongly distributive forcings.

We will give examples to show some limitations of strong distributivity. Namely, we

will show the following:

(1) There is no provable relationship between weak (λ + 1)-strategic closure and

strong < λ+-distributivity. There can consistently be a forcing which is weakly

(λ + 1)-strategically closed but not strongly < λ+-distributive and there can

consistently be a forcing which is strongly < λ+-distributive but not weakly

(λ+ 1)-strategically closed.

(2) Strong < λ+-distributivity need not be downwards absolute.

(3) Strongly <κ-distributive forcings can destroy the stationarity of subsets of [λ]<κ.

In particular, strongly < ω1-distributive forcings need not be proper.

(4) There can be forcings P and Q such that P×Q is strongly <κ-distributive but Q

is no longer strongly <κ-distributive after forcing with P. Furthermore, there can

be forcings P and Q such that P is <κ-closed and Q is strongly <κ-distributive

but Q is no longer strongly <κ-distributive after forcing with P.

Example 4.11. Let P be the forcing to add a □λ-sequence. Conditions are functions p

such that

(1) dom(p) = {β ≤ α | lim(β)} for some limit ordinal α ∈ λ+.

(2) For all α ∈ dom(p), p(α) is club in α of ordertype ≤ λ.

(3) Whenever β is a limit point of p(α), p(β) = p(α) ∩ β.

ordered by extension.

This forcing is weakly (λ + 1)-strategically closed. However, if □λ fails, the forcing

is not strongly < λ+-distributive: Let Dα := {p ∈ P | α ∈ dom(p)} for limit α and

P otherwise. If (pα)α<λ+ is a thread through (Dα)α<λ+ ,
⋃

α<λ+ pα is a □λ-sequence, a

contradiction.

The above example also shows (2): After forcing with P, □λ holds, so by [3], Theorem

3.3, every weakly (λ + 1)-strategically closed poset (and in particular, P) is weakly λ+-

strategically closed and thus strongly < λ+-distributive.
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Example 4.12. Let P be Add(ω1). Again, let G be Add(ω)-generic. In V [G], P is still

strongly < ω1-distributive. Assume P is weakly (ω + 1)-strategically closed. Thus P̌ is

an Add(ω)-name for an (ω + 1)-strategically closed forcing, so by Lemma 1.3 in [9],

Add(ω) ∗ P̌ has the < ω1-approximation property. This is obviously not the case, as the

forcing is equivalent to Add(ω)×Add(ω1).

Example 4.13. Assume 2ω = ω1 and 2ω1 = ω2. Let P be the forcing to collapse ω2 by

adding a cofinal, continuous sequence of length ω1 to [ω2]
<ω1 . Conditions are functions

p such that

(1) dom(p) is a successor ordinal.

(2) for every α ∈ dom(p), p(α) ∈ [ω2]
<ω1 . For every limit δ ∈ dom(p), p(δ) =⋃

α<δ p(α)

ordered by end-extension. This forcing is < ω1-closed.

Now let G be Add(ω)∗ ˙Coll(ω̌1, ω̌2)-generic and let H be the induced Add(ω)-generic

filter. In V [G], ωV
2 has size ω1. Furthermore, in this extension, P still adds a cofinal

and continuous sequence through ([ω2]
<ω1)V , which is forced to be a club by the < ω1-

covering property. By the later discussion, [ωV
2 ]<ω1 ∖ V is still stationary inside [ωV

2 ]<ω1

in V [G] (using the internal approachability), so P (in V [G]) destroys a stationary subset

of [ωV
2 ]<ω1 . Since ωV

2 is of size ω1 in V [G], P cannot be strongly < ω1-distributive in this

model. However, P is strongly < ω1-distributive in V [H], so its strong distributivity is

destroyed by the < ω1-closed forcing Coll(ω1, ω2). Furthermore, in V [H], Coll(ω1, ω2)×P

is (forcing equivalent to) a strongly < ω1-distributive forcing, because the term ordering

on Add(ω)× ( ˙Coll(ω̌1, ω̌2)× P) is < ω1-closed.

5. Proving the main theorems

In this section, we will first introduce the forcing we intend to use and then state as

well as prove our main theorems. For this section, fix an increasing sequence (κn)n∈ω of

Mahlo cardinals and their supremum κ. For simplicity, denote κ−1 := ω1.

Definition 5.1. We will define M((κn)n∈ω, δ) by induction on δ ≤ κ.

M((κn)n∈ω, 0) := {∅}. IfM((κn)n∈ω, β) has been defined for all β < δ, letM((κn)n∈ω, δ)

consist of all (p, q) such that

(1) p ∈ Add(ω, δ)

(2) q is a partial function on the successor ordinals in δ ∖ ω1 with the following

properties:

(a) for all n ∈ ω, |dom(q) ∩ κn|< κn−1

(b) for all n ≥ −1 and β ∈ δ∩ [κn, κn+1), q(β) is an M((κn)n∈ω, β)-name forced

by 1M((κn)n∈ω,β) to be in ˙Coll(κ̌n, β̌)

We let (p′, q′)Rδ(p, q) if



14 HANNES JAKOB

(1) p′ ≤ p

(2) dom(q′) ⊇ dom(q) and for all β ∈ dom(q), (p′ ↾ β, q′ ↾ β) ⊩ q′(β) ≤ q(β).

For simplicity, if δ is an ordinal, we will write M(δ) := M((κn)n∈ω, δ) and M := M(κ).

Let R := Rκ.

This version of Mitchell forcing can be viewed as a kind of mixed support iteration,

where instead of two kinds of supports, we are using infinitely many. The reason for that

is that we need increasing closure in the collapses to preserve the κn’s and the stationary

sets we are adding, but we also need our Cohen reals to stay ω1-Knaster.

As we will later see, we need our forcing to be decomposable as P∗Add(ω)∗Q, where

Q preserves certain stationary sets. Levine obtained this decomposition in [7] by making

q(δ) depend on the first δ + 1 Cohen Reals (thus ensuring that the collapse will still be

closed after adding δ + 1 Cohen Reals). We obtain the decomposition by making q only

defined on successor ordinals.

As with most versions of Mitchell forcing, we get nice decompositions, either vertically

or horizontally:

Definition 5.2. Let δ ≤ κ be an ordinal.

(1) T(δ) consists of all q such that (∅, q) ∈M(δ).

(2) M(κ∖δ) consists of all (p, q) ∈M such that p ∈ Add(ω, κ∖δ) and dom(q) ⊆ κ∖δ.

(3) T(κ∖ δ) consists of all q such that (∅, q) ∈M(κ∖ δ).

We have bijections from M(δ) to Add(ω, δ) × T(δ), from M(κ) to M(δ) ×M(κ ∖ δ)

and from M(κ) to (M(δ) × Add(ω, κ ∖ δ)) × T(κ ∖ δ). These isomorphisms of course

induce orderings on the given products, all of which are basic. We will refer to all of

these orderings as follows: R(δ) is the ordering on M(δ) ×M(κ ∖ δ) and Rs(δ) (read“R

split“) is the ordering on (M(δ)×Add(ω, κ∖ δ))× T(κ∖ δ).

Note the following: Unlike the more sophisticated way of splitting the Mitchell forcing

(which we will define later) at some point δ, the second component does still use M(α)-

names (and not M(α∖δ)-names). So we are not obtaining an ordering on M(κ∖δ) (apart

from the section oderings), only one on M(δ)×M(κ∖ δ).

For illustration purposes, we will explicitely write down what R(δ) looks like. Let

ι : M −→M(δ)×M(κ∖δ) be the isomorphism (whose inverse is given by ((p, q), (p′, q′)) 7→
(p ∪ p′, q ∪ q′)). Given ((p0, q0), (p

′
0, q

′
0)), ((p1, q1), (p

′
1, q

′
1)) ∈M(δ)×M(κ∖ δ),

((p0, q0), (p
′
0, q

′
0))(R(δ))((p1, q1), (p

′
1, q

′
1))

holds if and only if

(p0 ∪ p1, q0 ∪ q′0)R(p1 ∪ p′1, q1 ∪ q′1)

which holds if and only if
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(1) p0 ∪ p′0 ⊇ p1 ∪ p′1, i.e. p0 ⊇ p1 and p′0 ⊇ p′1

(2) dom(q0 ∪ q′0) ⊇ dom(q1 ∪ q′1), i.e. dom(q0) ⊇ dom(q1) and dom(q′0) ⊇ dom(q′1)

and for all α ∈ dom(q1 ∪ q′1):

(a) If α ∈ dom(q1),

(p0 ↾ α, q0 ↾ α) ⊩M q0(α) ≤ q1(α)

(since α ≤ δ, so (p0 ∪ p1) ↾ α = p0 ↾ α and (q0 ∪ q1) ↾ α = q0 ↾ α)

(b) If α ∈ dom(q′1),

((p0 ∪ p′0) ↾ α, (q0 ∪ q′0) ↾ α) ⊩M q′0(α) ≤ q′1(α)

We immediately obtain the following Lemma:

Lemma 5.3. The inductively defined order Rδ and the order b(R(δ)) induced by Rδ (both

of which are orders on M(δ)) coincide. Moreover, the order b(Rs(δ)) on M(δ)×Add(κ∖δ)

is equal to the product ordering of Rδ (= R(δ)) and the standard ordering on Add(κ∖δ).

For the section orderings, we also obtain a nice description: Given either (p, q) ∈M(δ)

(or ((p, q), p′) ∈M(δ)×Add(κ∖δ)), the section ordering s(R, (p, q)) (or s(R, ((p, q), p′)))

is isomorphic (via the same isomorphism) to the ordering on {(p0, q0) ∈ M(κ) | p0 ↾ δ =

p, q0 ↾ δ = q} (or {(p0, q0) ∈ M(κ) | p0 = p, q0 ↾ δ = q}) induced by R. For the following

Lemma, remember that for any (P×Q, R′), the term ordering t(R′) is < ν-closed if and

only if for all p ∈ P, the section ordering s(R′, p) is < ν-closed (since the term ordering

is isomorphic to the disjoint union of all the section orderings).

Lemma 5.4. Let δ ≤ κ be an ordinal.

(1) The term ordering t(R(δ)) on Add(ω, δ)× T(δ) is < ω1-closed.

(2) If δ is inaccessible, the base ordering b(Rs(δ)) on M(δ) × Add(ω, κ ∖ δ) is δ-

Knaster.

(3) If n ≥ −1 and δ ∈ [κn, κn+1), the term ordering t(Rs(δ)) on (M(δ)×Add(ω, κ∖

δ))× T(κ∖ δ) is <κn-closed.

Proof. We prove the statements one by one.

(1) Let (p, qα)α<ω be a descending sequence in Add(ω, δ)× T(δ).

Let x :=
⋃

α<ω dom(qα). By regularity of every κn (recall κ−1 = ω1), |x ∩ κn|<
κn−1 for all n. We will define, by induction on β < δ, a function q on x such that

(p ↾ β + 1, q ↾ β + 1) is a lower bound of (p ↾ β + 1, qα ↾ β + 1)α<ω in M(β + 1).

Assume q ↾ β has been defined.

Case 1: Assume β /∈ x. Leave q(β) undefined. We will verify that (p ↾ β+1, q ↾ β+1)

is a lower bound of (p ↾ β + 1, qα ↾ β + 1)α<ω. To this end, let α < ω be

arbitrary. p ↾ β + 1 ≤ p ↾ β + 1 as well as dom(q ↾ β + 1) ⊇ dom(qα ↾ β + 1)

is clear, so let γ ∈ dom(qα ↾ β + 1). Because β /∈ x, γ ∈ dom(qα ↾ β) and by

the inductive hypothesis, (p ↾ γ, q ↾ γ) ⊩ q(γ) ≤ qα(γ).
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Case 2: Assume β ∈ x. Then there exists α0 ∈ ω such that for all α ≥ α0,

β ∈ dom(qα). By the inductive hypothesis, (p ↾ β, q ↾ β) forces that

(qα(β))α0≤α<ω is a descending sequence in some < ω1-closed forcing, so

by the maximum principle we can find a M(β)-name q(β) that is forced

to be a lower bound. Now let α ∈ ω. Again, p ↾ β + 1 ≤ p ↾ β + 1 and

dom(q ↾ β + 1) ⊇ dom(qα ↾ β + 1) is clear, so let γ ∈ dom(qα ↾ β + 1). If

γ < β, we argue as in Case 1. If γ = β, (p ↾ β, q ↾ β) ⊩ q(β) ≤ qα(β) by

assumption.

(2) By Lemma 5.3, it suffices to show that M(δ) is δ-Knaster. This follows from a

standard application of the ∆-System Lemma.

(3) Let λ < κn and assume (((p, q), r), sα)α<λ is a descending sequence in (M(δ) ×
Add(ω, κ ∖ δ)) × T(κ ∖ δ). Let x :=

⋃
α<λ dom(sα). Given k ∈ ω, if k ≤ n,

then x ∩ κk = ∅ and if k > n, then |x ∩ κk|< κk−1, since κk−1 ≥ κn > λ is

regular. By induction on β ∈ [δ, κ) we will define a function s on x such that

(((p, q), r ↾ β+1), s ↾ β+1) is a lower bound of (((p, q), r ↾ β+1), sα ↾ β+1)α<λ.

Assume s ↾ β has been defined.

Case 1: Assume β /∈ x. Leave r(β) undefined. We will verify that (((p, q), r ↾ β +

1), s ↾ β+1) is a lower bound of (((p, q), r ↾ β+1), sα ↾ β+1)α<λ Using the

isomorphism, this amounts to showing that, for any arbitrary α, (p ∪ (r ↾

β + 1), q ∪ (s ↾ β + 1)) ≤ ((p ∪ (r ↾ β + 1)), q ∪ (sα ↾ β + 1)). This however

follows very similarly to (1).

Case 2: Assume β ∈ x. Then there exists α0 ∈ λ such that β ∈ dom(sα) for any

α ∈ [α0, λ). By the inductive hypothesis and again using the isomorphism,

((p ∪ (q ↾ β)), (r ∪ (s ↾ β))) forces that (sα(β))α<λ is a descending sequence

in some < κn-closed forcing (since after δ, we are collapsing to some κk with

k ≥ n), so by the maximum principle, we can fix a lower bound s(β). Now

proceed as in (1).

□

We obtain the fact that M preserves κn for every n ≥ −1:

Lemma 5.5. For n ≥ −1, M has the <κn-covering property.

Proof. There is an isomorphism

M ∼= ((M(δ)×Add(ω, κ∖ δ))× T(κ∖ δ), Rs(δ))

Now let δ = κn. b(Rs(κn)) is κn-Knaster by Lemma 5.4. Additionally, by the same

lemma, the term ordering t(Rs(δ)) is <κn-closed.

Lastly, the product has properties (A) and (B): (B) is easy to verify.
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Let (((p0, q0), p
′
0), q

′
0)R(((p1, q1), p

′
1), q

′
1)). By induction on α ≥ δ, we will define q′′(α)

such that

(p1 ∪ p′1, q1 ∪ q′′ ↾ α+ 1)R(p1 ∪ p′1, q1 ∪ q′1 ↾ α+ 1)

and

(p0 ∪ p′0, q0 ∪ q′′ ↾ α+ 1)R(p0 ∪ p′0, q0 ∪ q′0 ↾ α+ 1)R(p0 ∪ p′0, q0 ∪ q′′ ↾ α+ 1)

which immediately implies the required statements given how the ordering on M(δ) ×
M(κ∖ δ) is defined.

Assume q′′ ↾ (α∖δ) has been defined. By the inductive hypothesis (since the ordering

is “continuous“),

(p0 ∪ p′0, q0 ∪ q′′ ↾ α)R(p0 ∪ p′0, q0 ∪ q′0 ↾ α)R(p0 ∪ p′0, q0 ∪ q′′ ↾ α)

and

(p1 ∪ p′1, q1 ∪ q′′ ↾ α)R(p1 ∪ p′1, q1 ∪ q′1 ↾ α)

In particular, (p0 ∪ p′0, q0 ∪ q′′ ↾ α) and (p0 ∪ p′0, q0 ∪ q′0 ↾ α) force the same statements

and thus

(p0 ∪ p′0 ↾ α, q0 ∪ q′′ ↾ α) ⊩ q′0(α) ≤ q′1(α)

by assumption. Using standard name arguments, there exists a name q′′(α) such that

conditions below (p0∪p′0 ↾ α, q0∪q′′ ↾ α) force q′′(α) = q′0(α) and conditions incompatible

with (p0 ∪ p′0 ↾ α, q0 ∪ q′′ ↾ α) force q′′(α) = q′1(α). In particular, using the inductive

hypothesis,

(p0 ∪ p′0, q0 ∪ q′′ ↾ α+ 1)R(p0 ∪ p′0, q0 ∪ q′0 ↾ α+ 1)R(p0 ∪ p′0, q0 ∪ q′′ ↾ α+ 1)

and since in any case q′′(α) is forced to be below q′1(α),

(p1 ∪ p′1, q1 ∪ q′′ ↾ α+ 1)R(p1 ∪ p′1, q1 ∪ q′1 ↾ α+ 1)

Let G be M-generic. Forcing with M can be regarded as forcing first with (M(δ) ×
Add(ω, κ∖δ)) and then with (T(κ∖δ), g(Rs(δ), Gδ)), where Gδ is (M(δ)×Add(ω, κ∖δ))-

generic. By Lemma 4.8 (with P = (M(δ) × Add(ω, κ ∖ δ)), Q = T(κ ∖ δ) and R =

Rs(δ)), g(Rs(δ), Gδ) is strongly <κn-distributive in V [Gδ]. Hence every set of size <κn

in V [G] is also in V [Gδ] and can thus be covered by a set of size <κn by the κn-cc. of

(M(δ)×Add(ω, κ∖ δ)). □

Note that M does not have the κ-Knaster property: Since κ is singular, this would

imply that M is δ-cc. for some δ < κ, which is impossible since cofinally many δ < κ are

collapsed. However,M does preserve κ, since also cofinally many κn < κ are not collapsed.

We will also make use of the following, more sophisticated way, of splitting the

Mitchell Forcing: This is done to obtain a forcing which has a closed term ordering

in an intermediate model (as opposed to the ground model) and works similarly to the

proof of Lemma 22 in [7].
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Definition 5.6. Let δ ∈ [κn−1, κn) and let G be M(δ)-generic. In V [G], define the poset

M(κn∖δ,G, β) by induction on β ≥ δ. M(κn∖δ,G, δ) = {∅}. If M(κn∖δ,G, γ) has been

defined for all γ < β, M(κn ∖ δ,G, β) consists of pairs (p, q) such that

(1) p ∈ Add(ω, β ∖ δ)

(2) q is a partial function on the successor ordinals in β∖ δ of size <κn−1 such that

for all γ ∈ dom(q), q(γ) is an M(κn∖ δ,G, γ)-name for an element of ˙Coll(κ̌n, γ̌).

We order M(κn ∖ δ,G, β) similarly to M. Lastly, set M(κn ∖ δ,G) := M(κn ∖ δ,G, κn).

We obtain that forcing with M(κn) is equivalent to forcing with M(δ) and then with

M(κn ∖ δ,G, κn):

Lemma 5.7. Let δ ∈ [κn−1, κn). The forcings M(κn) and M(δ) ∗M(κn ∖ δ, Ġ, κn) are

equivalent.

Proof. We will show by induction on β ≥ δ that the forcings M(β) and M(δ) ∗M(κn ∖

δ, Ġ, β) are equivalent, namely, we will define a dense embedding from M(β) into M(δ) ∗
M(κn ∖ δ, Ġ, β).

Beginning: β = δ. Then obviously (p, q) 7→ ((p, q), (∅̌, ∅̌)) is a dense embedding.

Assume the embedding has been defined for γ < β. Let (p, q) ∈M(γ). We define the

M(δ)-name ι(q) as follows: ι(q) is forced to be a function with domain ˇdom(q)∖ δ and

for each γ ∈ dom(q)∖ δ, ι(q)(γ̌) is forced to be equal to the M(δ) ∗M(κn ∖ δ, Ġ, γ)-name

corresponding to q(γ) (using the inductive hypothesis). Now we let π : (p, q) 7→ ((p ↾

δ, q ↾ δ), (p ↾ (β∖δ), ι(q))) and verify that π is a dense embedding. The only difficult part

is to show that the image of π is dense. Let ((p0, q0), (ṗ, q̇)) ∈M(δ) ∗M(κn∖ δ, Ġ, γ). ṗ is

forced to be an element of V (by finiteness), so we can find (p1, q1) and p ∈ Add(ω, β∖δ)

such that (p1, q1) ⊩ ṗ = p̌. Since dom(q̇) is forced to have size <κn−1 and M(δ) has the

<κn−1-covering property, there is x ∈ V (assume that x ⊆ β ∖ δ) of size <κn−1 and

(p2, q2) ≤ (p1, q1) such that (p2, q2) ⊩ dom(q̇) ⊆ x̌. Now let q be a function such that for

any γ ∈ x, q(γ) is equal to the M(γ)-name corresponding to the M(δ) ∗M(κn ∖ δ, Ġ, γ)-

name

q′(γ) := {(τ, r) | r ∈M(δ) ∗M(κn ∖ δ, Ġ, γ) ∧ r ⊩ τ ∈ q̇(γ̌)}

Lastly, let (p′, q′) := (p2 ∪ p, q2 ∪ q). We will show π(p′, q′) ≤ ((p0, q0), (ṗ, q̇)). π(p
′, q′) =

((p2, q2), (p, ι(q))). By assumption (p2, q2) ≤ (p0, q0) and (p2, q2) ⊩ p̌ = ṗ. Further-

more, ⊩ x̌ = dom(ι(q)) and thus (p2, q2) ⊩ dom(ι(q)) ⊇ dom(q̇). So the only way

((p2, q2), (p, ι(q))) ≤ ((p0, q0), (ṗ, q̇)) can fail is if (p′, q′) does not force that for every

γ ∈ dom(q̇), (p ↾ γ, ι(q) ↾ γ) ⊩ ι(q)(γ) ≤ q̇(γ), Thus let (p3, q3) ≤ (p2, q2) and γ be such

that (p3, q3) ⊩ γ̌ ∈ dom(q̇). Assume (p3, q3) ⊩ (p ↾ γ, ι(q ↾ γ) ̸ ⊩ ι(q)(γ) ≤ q̇(γ), i.e.

((p3, q3), (p ↾ γ, ι(q ↾ γ))) ̸ ⊩ ι(q)(γ) ≤ q̇(γ)

We aim to show that this is not the case by proving ((p3, q3), p ↾ γ, ι(q) ↾ γ)) ⊩ ι(q)(γ̌) =

q̇(γ̌):
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ι(q)(γ̌) is forced to be equal to the M(δ) ∗M(κn ∖ δ, Ġ, γ)-name corresponding to

q(γ) which itself is forced to be equal to the M(γ)-name corresponding to q′(γ) which by

definition is equivalent to q̇(γ̌). □

The main part is that we can factor M(κn ∖ δ, Ġ, κn) similarly to M(κn).

Lemma 5.8. M(κn ∖ δ, Ġ, κn) is forced to be the projection of the product of a κn−1-cc.

and a <κn−1-closed poset.

Proof. Let G be M(δ)-generic and work in V [G]. As in the case of M(κn), write M(κn ∖

δ,G, κn) = Add(ω, κn ∖ δ) × T(κn ∖ δ). It follows as before that the base ordering is

even ω1-cc., the term ordering is < κn−1-closed and the ordering has properties (A) and

(B). □

The following supplemental Lemmas will help later:

Lemma 5.9. (1) For any limit ordinal δ, M(δ + 1) ∼= M(δ) ∗Add(ω)

(2) For any successor ordinal δ ∈ [κn, κn+1). M(δ+1) ∼= M(δ)∗(Add(ω)× ˙Coll(κn, δ))

Proof. It is easy to verify that, for the relevant δ, the functions (p, q) 7→ ((p ↾ δ, q ↾

δ), p(δ)) and (p, q) 7→ ((p ↾ δ, q ↾ δ), (p(δ), q(δ))) are dense embeddings. □

Lemma 5.10. For n ∈ {−1} ∪ ω and δ ∈ (κn, κn+1], M(δ) forces δ = κ+
n .

Proof. This follows easily, as M(δ) is δ-Knaster and for any µ ∈ [κn, δ), M(µ+2) collapses

µ+ 1 (and thus µ) to κn. □

Thus, M turns the sequence (κn)n∈ω into (ℵn+2)n∈ω:

Corollary 5.11. For any n ∈ ω, M forces κn = ℵn+2.

Proof. This follows easily by induction on n, using the previous Lemma and the fact that

M preserves ℵ1 as well as every κn. □

We will now apply all of our results to prove the main theorems one by one.

5.1. Disjoint stationary sequences.

Definition 5.12. If κ is a regular cardinal, a disjoint stationary sequence on κ+ is a

sequence (Sα)α∈S such that the following holds:

(1) S ⊆ κ+ ∩ cof(κ) is stationary,

(2) Sα ⊆ [α]<κ is stationary for α ∈ S,

(3) Sα ∩ Sβ = ∅ for α ̸= β.

We say that DSS(κ+) holds if there is a disjoint stationary sequence on κ+.
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Krueger asked in [5] if it is consistent that DSS holds for successive cardinals or even

an infinite interval of cardinals. Levine in [7] partially answered this question by showing

that a two-step iteration of a certain variant of Mitchell forcing forces DSS(ℵ2)∧DSS(ℵ3).
We will use our tall version of Mitchell forcing to produce a model in which DSS(ℵn)
holds for any n ∈ ω, n ≥ 2. Sadly, the naive approach of simply taking an iteration of ω

many Mitchell orders cannot work: For the preservation of the κn’s, we need our parts to

be either closed or cc enough. While full support would preserve closure of the collapses,

it would not preserve ccc-ness of the Cohen Forcings. On the other hand, finite support

would preserve ccc-ness of the Cohen Forcings, but not closure of the collapses. That is

why we are using a version of Mitchell’s forcing which takes increasingly large support

on the collapses and finite support for the Cohen Reals.

We will use the following facts for the addition and preservation of a particular

stationary set.

Definition 5.13. A stationary set S ⊆ [H(Θ)]<κ is internally approachable of length

τ if for all N ∈ S with N ≺ H(Θ) there is a continuous chain of elementary submodels

(Mi)i<τ such that N =
⋃

i<τ Mi and for all j < τ , (Mi)i<j ∈ Mj+1. If S is internally

approachable of length τ , we write S ⊆ IA(τ).

If S is internally approachable by small sequences, S is still preserved by sufficiently

closed forcing, even if S is large.

Fact 5.14. If S ⊆ [H(Θ)]<κ ∩ IA(τ), τ < κ and P is <κ-closed, P forces that S is

stationary in [H(Θ)V ]<κ.

Gitik showed in [2] that under some circumstances, adding a real also adds a new

stationary set. Krueger refined this to the following:

Fact 5.15 ([5]). Suppose V ⊆ W are models of ZFC with the same ordinals, W ∖ V

contains a real, κ is a regular cardinal in W , X ∈ V is such that (κ+)W ⊆ X and Θ is

regular in W with X ⊆ H(Θ). Then in W the set {N ∈ [H(Θ)]<κ ∩ IA(ω) | N ∩X /∈ V }
is stationary.

Now we can show that consistency of DSS(ℵn) for every n ∈ ω, n ≥ 2.

Theorem 5.16. After forcing with M, there is a disjoint stationary sequence on every

κn.

Proof. First of all, the proof of Lemma 5.5 actually shows that M preserves all stationary

subsets of κn for each n, since neither κn-cc. nor <κn-strongly distributive forcings can

destroy stationary subsets of κn.

Let G be M-generic over V and let n ≥ −1 be arbitrary. Let S denote the set of all

cardinals in the interval [κn, κn+1) that are inaccessible in V . Take δ ∈ S and fix the

following generics:
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(1) M(δ), M(δ + 1) and M(κn+1)-generic filters G(δ), G(δ + 1) and G(κn+1).

(2) An (M(κn+1)×Add(ω, κ∖ κn+1))-generic filter GA(κn+1).

Work in the extension by G(δ + 1). Define

Nδ := {N ∈ [H(δ)]<κn ∩ IA(ω) | N ∩ δ /∈ V [G(δ)]}

We want to apply fact 5.15 to show that Nδ ⊆ [H(δ)]<κn is stationary in V [G(δ + 1)].

We can write M(δ + 1) ∼= M(δ) ∗Add(ω). Hence, V [G(δ + 1)]∖ V [G(δ)] contains a real.

Furthermore, M(δ) forces κ+
n = δ. The same holds for M(δ + 1) (as we are only adding

a Cohen real). Therefore, (κ+
n )

V [G(δ+1)] = δ. Lastly, of course δ ⊆ H(δ).

Since for any club C ⊆ [δ]<κ, the set {x ∈ [H(δ)]<κ | x ∩ δ ∈ C} is club, we obtain

that Sδ := {N ∩ δ | N ∈ Nδ} is stationary in [δ]<κn . Now we show that this stationarity

still holds in the final extension.

Claim. Sδ ⊆ [δ]<κn is stationary in V [G].

Proof. By Lemma 5.7, the extension V [G(κn+1)] can be viewed as an extension of

V [G(δ+1)] byM(κn+1∖(δ+1), G(δ+1)).M(κn+1∖(δ+1), G(δ+1)) can be projected onto

by the product of a κn-cc. and a κn-closed poset, neither of which can destroy stationary

subsets of [δ]<κn . Therefore, in V [G(κn+1)], Sδ ⊆ [δ]<κn is still stationary. Moreover, in

this extension, |δ|= κn. The extension V [G] can be viewed as an extension of V [G(κn+1)]

by first forcing with Add(ω, κ∖κn+1) and then (T(κ∖κn+1), g(R,GA(κn+1))). Add(ω, κ∖

κn+1) is ω1-Knaster and does not destroy stationary subsets of [δ]<κn . The base order-

ing b(R) on M(κn+1) × Add(ω, κ ∖ κn+1) is κn+1-cc. and the term ordering t(R) on

(M(κn+1) × Add(ω, κ ∖ κn+1)) × T(κ ∖ κn+1) is <κn+1-closed. Hence, by Lemma 4.8,

(T(κ ∖ κn+1), g(R,GA(κn+1))) is strongly <κn+1-distributive in V [GA(κn+1)]. In sum-

mary, Sδ is still stationary in V [G]. □

Now we are done since (Sδ)δ∈S is as desired: S is still stationary in κn+1 and for

δ ∈ S, M(δ+2) forces |δ|= cof(δ) = κn, which still holds in V [G] using the same analysis

as above. By construction, Sδ ⊆ V [G(δ + 1)]∖ V [G(δ)], so the Sδ are disjoint. □

5.2. Distinguishing internal clubness and stationarity. Similarly to Levine’s pa-

per, the model we used for DSS at every ℵn+2 also has the property that internal clubness

and stationarity are distinct at every ℵn+2. This answers another question of Krueger.

Definition 5.17. Let λ ≥ κ be cardinals and N ∈ [λ]κ.

(1) N is internally unbounded if for all x ∈ [N ]<κ, there exists M ∈ N with x ⊆ N .

(2) N is internally stationary if [N ]<κ ∩N is stationary in [N ]<κ

(3) N is internally club if [N ]<κ ∩N contains a club subset of [N ]<κ
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Because M(κn) preserves many stationary sets but also adds many new stationary

sets, we have that it forces a distinction of internal stationarity and clubness: We fol-

low the proof of Lemma 29 from [7]. Just like in that paper, we need a concept from

Harrington and Shelah:

Definition 5.18. Let N be a model of a fragment of ZFC. We say that M ≺ N is rich

if the following hold:

(1) λ ∈M

(2) λ = M ∩ λ ∈ λ

(3) λ is an inaccessible cardinal in N

(4) |M|= λ

(5) M<λ ⊆M

Lemma 5.19. M(κn) forces that there are stationarily many Z ∈ [H(κn)]
κn−1 which are

internally stationary but not internally club.

Proof. Denote M′ := M(κn). Let Ċ be an M′-name for a club in [H(κn)]
κn−1 and Ḟ

an M′-name for a function (κn)
<ω −→ H(κn) such that all of its closure points are in

Ċ. Denote N := (H(Θ),∈, <,M, Ḟ , κn, κn−1) (where Θ is large enough) and find a rich

submodel M ≺ N with κn−1 ⊆ M. Denote κn := κn ∩M. Let G ⊆ M be generic. Let

πM : M −→ X be the transitive collapse and h := πM(M ∩H(κn)). h is transitive and

πM(M′) = {πM(p) | p ∈ M ∩H(κn)} ⊆ h, so πM[G] is πM(M′)-generic over h. We can

extend π−1
M : h −→ M ∩H(κn) to π−1

M : h[G] −→ {τG | τ ∈ M ∩H(κn)} =: Z. We shall

show that Z is as required.

Claim. Z is a closure point of ḞG, so Z ∈ ĊG.

Proof. Let τ0, ..., τn−1 ∈ M ∩H(κn). By elementarity, the <-least antichain A deciding

Ḟ (τ0, ..., τn−1) is in M. By the κn-cc. and M′ ⊆ H(κn), it is also in H(κn). Thus πM(A) ∈
h and by transitivity, πM(A) ⊆ h. So the value of πM(ḞG(πM(τ0)

G, ..., πM(τn−1)
G),

which is decided by πM(A), is in h and thus ḞG(τG0 , ..., τGn−1) is in Z. □

The rest of the proof is devoted to showing that Z is internally stationary but not

internally club.

Claim. If x ∈ h[G]<κn is in V [G], x ∈ h[G].

Proof. Since κn ⊆ h, it suffices to show that every subset of h of size < κn that is in

V [G], is in h. Let x be such a set. Since M(κn) has the κn-cc., there exists y ∈ V , y ⊆ h

of size < κn with x ⊆ y. Hence we can find a nice name ẋ for a subset of y with ẋG = x.

Thus ẋ is a subset of h of size < κn in V and ẋ ∈ h. It follows that ẋG = x ∈ h[G]. □

Claim. Z is internally stationary.
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Proof. In N[G], [h[G]]<κn−1 ∩ IA(ω) is of course stationary in [h[G]]<κn−1 . By Lemma

5.7, N[G] is an extension of N[G] by a forcing which can be projected onto from the

product of a <κn−1-closed and a κn−1-cc. forcing, both of which cannot destroy the

stationarity of [h[G]]<κn−1 ∩ IA(ω). Thus, ([h[G]]<κn−1)N[G] ∩ IA(ω) (and in particular,

([h[G]]<κn−1)N[G]) is stationary in [h[G]]<κn−1 in N[G].

In N[G], |h[G]|= |κn|= κn−1. Thus, we can write h[G] =
⋃

i<κn−1
xi, where the

sequence (xi)i<κn−1
is increasing and continuous. In particular, {xi | i < κn−1} is club

in [h[G]]<κn−1 so {xi | i < κn−1} ∩ ([h[G]]<κn−1)N[G] := {xi | i ∈ X} is stationary. Since
πM is a bijection, {π−1

M [xi] | i ∈ X} is stationary in [Z]<κn−1 , but if i ∈ X, then by the

previous claim xi ∈ h[G], so π−1
M [xi] = π−1

M (xi) ∈ Z. □

Claim. Z is not internally club.

Proof. Assume toward a contradiction that Z is internally club. Because |Z|= κn−1,

This means that we can write Z =
⋃

i<κn−1
zi, where (zi)i<κn−1

is an increasing and

continuous chain and zi ∈ Z for any i < κn−1. Letting wi := πM[zi], we see that since

|wi|< κn−1, wi = πM(zi), so (wi)i<κn−1
is an increasing and continuous chain of sets in

[h[G]]<κn−1 with union h[G]. Work in the extension by G(κn +1). Similarly to the proof

of Theorem 5.16, for some large enough χ, the set

U := {A ∈ [H(χ)]<κn−1 ∩ IA(ω) | A ∩ h /∈ N[G]}

is stationary in [H(χ)]<κn−1 in N[G(κn + 1)] (as (κ+
n−1)

N[G(κn+1)] = κn ⊆ h). This is

furthermore preserved into the extension N[G]. Thus, the set

{A ∩ h[G] | A ∈ U}

is stationary in [h[G]]<κn−1 and there exists i < κn−1 with wi = A∩h[G] for some A ∈ U .

However, this implies wi /∈ N[G] by the definition, contradicting the fact that of course,

h[G] ⊆ N[G]. □

□

Now we will show that this distinction is preserved when going from V [M(κn)] to

V [M].

The following Lemmas are basically Propositions 26 and 27 from [7], only modified

to use strong distributivity.

Lemma 5.20. Suppose P is strongly < ν-distributive and S ⊆ [X]<δ is stationary, where

|X|<δ≤ ν and δ ≤ ν. Then P preserves the stationarity of S.

Proof. Let Ċ be a P-name for a club in [X]<δ. Fix (in V ) an enumeration [X]<δ =

(xα)α<ν and assume without loss of generality that ν = ν. P adds a function ḟ such

that for every α < ν, ⊩ xα ⊆ ḟ(α̌). By strong < ν-distributivity, there exists descending

sequence (pα)α<ν such that, for every α < ν, pα decides ḟ(α̌) to be some zα. Let D
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consist of all unions of increasing chains of elements of {zα | α < ν} of length < δ ≤ ν.

D ∈ V and is a club in [X]<δ, so there exists w ∈ D ∩ S. Write w =
⋃

i<δ zξi and let

ξ := supi ξi. It follows that pξ ⊩ w ∈ Ċ ∩ Š. □

Lemma 5.21. Assume P1 has the δ-cc., P2 is strongly < ν-distributive and X is such

that |X|δ≤ ν with δ+ ≤ ν. If S ⊆ [X]δ is stationary such that every N ∈ S is internally

stationary but not internally club, the same holds in any extension by P1 × P2.

Proof. S remains stationary in the extension by P1 × P2 by taking it to be an extension

first by P2 and then by P1 and using Lemma 5.20. If N ∈ S, then the stationarity of

[N ]<δ∩N in [N ]<δ is preserved by the same reason. Lastly, [N ]<δ∩N not being internally

club is preserved by P1×P2 using the same arguments since any set A is stationary if and

only if its complement does not contain a club (and thus preservation of not containing

a club is equivalent to preservation of stationarity). □

Now we can prove our second theorem:

Theorem 5.22. In the extension by M, there exists, for any n ∈ ω, a stationary set

S ⊆ [κn]
κn−1 such that any N ∈ S is internally stationary but not internally club.

Proof. We have already established that, for a given n, the statement holds in the

extension by M(κn). Let S witness this. Let G ⊆ M be generic and let G(κn) be

the induced filter on M(κn). Thus V [G] is an extension of V [G(κn)] by (Add(κ ∖

κn) × T(κ ∖ κn), g(R,G)). By Lemma 4.2, this forcing can be projected onto by the

product of Add(κ ∖ κn) and (T(κ ∖ κn), s(g(R,G(κn)), 1Add(κ∖κn))), i.e. we are first

taking the generic ordering on Add(κ ∖ κn) × T(κ ∖ κn) with respect to G(κn) and

then the section ordering on T(κ ∖ κn) with respect to 1Add(κ∖κn). This however is,

by a small computation, the same as the generic ordering induced by the product

(M(κn)× {1})× T(κ∖ κn) (ordered as a suborder) using the M(κn)× {1}-generic filter

G(κn)×{1}. M(κn)×{1} is κn-cc. and the term ordering on (M(κn)×{1})×T(κ∖κn)

is <κn-closed, so (T(κ ∖ κn), s(g(R,G(κn)), 1Add(κ∖κn))) is strongly <κn-distributive.

Because |κn|κn−1= κn in V [G(κn)] (by a nice name argument), Add(κ ∖ κn) × (T(κ ∖

κn), s(g(R,G(κn)), 1Add(κ∖κn))) preserves that S is stationary and any N ∈ S is inter-

nally stationary but not internally club. This is of course also true in the intermediate

extension V [G]. □

6. Open Questions

Our open questions concern the topic of strong < κ-distributivity. The most im-

portant is probably the existence of more ”natural” examples of strongly distributive

forcings. Right now all of our examples come from viewing sufficiently closed forcings in

sufficiently cc. extensions. It is therefore natural to ask if there are such forcings in a

model which is not a forcing extension, e.g. the model L:
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Question 6.1. Do there exist in L forcing notions P such that P is strongly <κ-

distributive but not weakly < κ-strategically closed? In other words, is the completeness

game G(P, κ) determined in L?

The previous question is connected to the next one: Since all of our examples were

formerly closed forcings, it is difficult to obtain examples where productivity of strong

distributivity fails (even though it should, similarly to “regular“ distributivity).

Question 6.2. If P and Q are strongly <κ-distributive, is P×Q as well?
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