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Disjoint stationary sequences on an interval of cardinals

by

Hannes Jakob

Abstract. We answer a question of Krueger by obtaining – from countably many
Mahlo cardinals – a model where there is a disjoint stationary sequence on ℵn+2 for every
n ∈ ω. In that same model, the notions of being internally stationary and internally club
are distinct on a stationary subset of [H(Θ)]ℵn+1 for every n ∈ ω and Θ ≥ ℵn+2, answering
another of Krueger’s questions. This is obtained by employing a product of variants of
Mitchell forcing which uses finite support for the Cohen reals and full support for the
countably many collapses.

1. Introduction. The notion of a disjoint club sequence on µ+ – a se-
quence (Aα)α∈S where S ⊆ µ+ ∩ cof(µ) is stationary and each Aα is club
in [α]<µ – was isolated by Friedman and Krueger [8] in order to show that
there can consistently be a fat stationary subset of ω2 which cannot obtain
a club subset in any forcing extension preserving both ω1 and ω2. Later on,
Krueger [16] defined the related notion of a disjoint stationary sequence –
where instead of requiring each Aα to be club we merely require it to be sta-
tionary. The related principle DSS(µ+) (stating that there exists a disjoint
stationary sequence on µ+) serves as a strengthening of ¬APµ which has the
advantage of being more easily preserved and has applications regarding the
distinctions of variants of internal approachability, defined by Foreman and
Todorcevic [7].

In [16], Krueger shows using his method of mixed support iterations that
there can consistently be a disjoint stationary sequence on any successor of a
regular cardinal. In that same paper, he asks whether there can consistently
be disjoint stationary sequences on two (or even infinitely many) successive
cardinals. The background of this question is as follows: Krueger’s mixed
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support iterations are modeled after the poset Mitchell [21] employed to
construct a model where the tree property holds at the double successor
of any cardinal. Mitchell’s result was later extended first by Abraham [1]
and then by Cummings and Foreman [4], who showed that an iteration of
a guessing variant of Mitchell forcing can be used to obtain a model where
ℵn+2 has the tree property for every n ∈ ω.

In [18], Levine showed that a variant of Mitchell forcing also forces the
existence of a disjoint stationary sequence and employed an iteration of two
instances of his poset to construct a model where DSS(ℵ2) and DSS(ℵ3) hold
simultaneously. However, extending this to infinitely many successive cardi-
nals simultaneously has some technical problems (which we will elaborate on
in Section 5) due to the differences between his forcing and Mitchell’s origi-
nal poset. In this paper, we will show that a product of instances of Levine’s
forcing is also sufficient to obtain DSS(ℵ2) ∧ DSS(ℵ3). We will then take a
product of infinitely many instances of his poset with finite supports on the
Cohen reals and full support on the collapses in order to solve Krueger’s
question in full:

Theorem A. Assume (κn)n∈ω is an increasing sequence of Mahlo cardi-
nals. There is a forcing extension in which, for each n ∈ ω, ℵn+2 = κn and
there is a disjoint stationary sequence on κn.

Levine noted that in his model of DSS(ℵ2) ∧ DSS(ℵ3), the notions of
internal stationarity and clubness are distinct for stationarily many N ∈
[H(ℵ2)]

ℵ1 and N ∈ [H(ℵ3)]
ℵ2 . The same – and even more – is also true in

our case (answering an additional question from [16]):

Theorem B. Assume (κn)n∈ω is an increasing sequence of Mahlo car-
dinals. There is a forcing extension in which, for each n ∈ ω, ℵn+2 = κn
and whenever Θ ≥ κn, there are stationarily many N ∈ [H(Θ)]<κn which
are internally stationary but not internally club.

As part of the proof of the theorem above, we also show that merely a
Mahlo cardinal suffices for a distinction between internal stationarity and
clubness for stationarily many N ∈ [H(Θ)]µ, answering another question of
Krueger.

The paper is organized as follows: In Section 2, we review preliminary
definitions and results. In Section 3, we introduce the concept of strong
<κ-distributivity, a regularity property for forcings which lies between <κ-
distributivity and κ-strategic closure. In Section 4, we review Levine’s poset
from [18] and state its properties. In Section 5, we prove our main theorems.

2. Preliminaries. We assume the reader is familiar with the basics of
forcing and the usage of large cardinals. Good introductory material can be
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found in the textbooks by Jech [14] and Kunen [17]. We follow the convention
that filters are up-closed, so that if p ≤ q, p forces more than q.

The notion of a disjoint stationary sequence was defined by Krueger [16]:

Definition 2.1. Let µ be a regular cardinal. A disjoint stationary se-
quence on µ+ is a sequence (Sα)α∈S where

(1) S ⊆ µ+ ∩ cof(µ) is stationary,
(2) for any α ∈ S, Sα ⊆ [α]<µ is stationary.

We let DSS(µ+) state that there exists a disjoint stationary sequence on µ+.

The principle DSS(µ+) is related to the failure of the approachability
property at µ+:

Definition 2.2. Let µ be a cardinal. A set S ⊆ µ+ is in the approach-
ability ideal I[µ+] if there exists a sequence (aα)α∈µ+ of elements of [µ+]<µ

and a club C ⊆ µ+ such that whenever γ ∈ S∩C, there is A ⊆ γ unbounded
in γ such that A ∩ β ∈ {aα | α < γ} for any β < γ.

The approachability property APµ states that I[µ+] is improper, i.e. µ+ ∈
I[µ+].

Also related are the variants of internal approachability which were first
defined by Foreman and Todorcevic [7] in order to prove a strengthening of
the well-known model-theoretic Löwenheim–Skolem theorem.

Definition 2.3. Let X be a set, µ a regular cardinal and N ∈ [X]µ. We
say that

(1) N is internally unbounded if [N ]<µ ∩N is unbounded in [N ]<µ,
(2) N is internally stationary if [N ]<µ ∩N is stationary in [N ]<µ,
(3) N is internally club if [N ]<µ ∩N contains a club in [N ]<µ,
(4) N is internally approachable if there exists a sequence (xi)i∈µ of elements

of [N ]<µ such that
⋃

i∈µ xi = N and (xi)i<j ∈ N for every j < µ.

The previous concepts are related as follows: Krueger [16, Corollary 3.7]
showed that whenever (Sα)α∈S is a disjoint stationary sequence on µ+, no
stationary subset of S is in I[µ+]. In particular, DSS(µ+) implies ¬APµ (the
upshot of this is that DSS(µ+) is in general more easily preserved than ¬APµ;
this was e.g. exploited in [10, Theorem 5.1]). He also showed [16, Theo-
rem 6.5] that, assuming 2µ = µ+, DSS(µ+) is equivalent to the existence
of stationarily many N ∈ [H(µ+)]µ which are internally unbounded but
not internally club (it is shown in [12] that this equivalence relies on the
assumption that 2µ = µ+). Lastly, a folklore result (see e.g. [2, Lemma 1])
states that, again assuming 2µ = µ+, APµ fails if and only if there are
stationarily many N ∈ [H(µ+)]µ which are internally unbounded but not
internally approachable (this also relies on the assumption 2µ = µ+).
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We will obtain our consistency results using variants of Mitchell forcing.
A common technique when working with such posets is the use of a projection
analysis:

Definition 2.4. Let P and Q be forcing orders. A function π : P → Q is
a projection if the following hold:

(1) π(1P) = 1Q.
(2) For all p ≤ q, π(p) ≤ π(q)
(3) For all p ∈ P, if q ≤ π(p), there is some p′ ≤ p such that π(p′) ≤ q.

If there exists a projection from P to Q, any extension by Q can be forcing
extended to an extension by P:

Definition 2.5. Let P and Q be forcing orders, π : P → Q a projection.
Let H be Q-generic. In V [H], the forcing order P/H consists of all p ∈ P
such that π(p) ∈ H, ordered as a suborder of P. We let P/Q be a Q-name
for P/Ḣ and call P/Q the quotient forcing of P and Q.

Fact 2.6. Let P and Q be forcing orders and π : P → Q a projection. If
H is Q-generic over V and G is P/H-generic over V [H], then G is P-generic
over V and H ⊆ π[G]. In particular, V [H][G] = V [G].

The canonical projection for Mitchell forcing comes from the termspace
forcing, an idea due to Laver:

Definition 2.7. Let P be a poset and Q̇ a P-name for a poset. The
termspace order ≤∗ is an order on the set T (P, Q̇) of all P-names for elements
of Q given by q̇′ ≤∗ q̇ if and only if 1P ⊩ q̇′ ≤Q q̇.

Using standard arguments on names, one easily shows

Lemma 2.8. Let P be a poset and Q̇ a P-name for a poset. The identity
is a projection from P× T (P, Q̇) onto P ∗ Q̇.

We will be using Jech’s notion of generalized stationarity : For µ a regular
cardinal and X a set of size ≥ µ, C ⊆ [X]<µ is club if for any y ∈ [X]<µ

there is c ∈ C with y ⊆ c and C is closed under ascending unions of size <µ.
A set is stationary if it intersects every club. An important (but easy to
prove) result is the following:

Lemma 2.9 ([20, Theorem 1.5]). A set C ⊆ [X]<µ is club if and only if
there is a function f : [X]<ω → [X]<µ such that whenever x ∈ [X]<µ and⋃

y∈[x]<ω f(y) ⊆ x, x ∈ C.

This means that a set S ⊆ [X]<µ is stationary if and only if whenever
f : [X]<ω → [X]<µ, there is x ∈ S which is closed under f (i.e. f(y) ⊆ x for
any y ∈ [x]<ω). Moreover, Menas’ result implies that whenever C ⊆ [X]<µ

is club and Y ⊆ X has size ≥ µ, {c ∩ Y | c ∈ C} contains a club in [Y ]<µ.
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Another fact we will be using is the following (the proof is the same as the
usual proof for the corresponding fact for club subsets of µ):

Lemma 2.10. Let µ be a regular cardinal and X a set of size ≥ µ. Let
P be a µ-cc poset and G be P-generic. If C ⊆ [X]<µ is club in V [G], there
exists D ⊆ C with D ∈ V such that D is club in [X]<µ. In particular, any
stationary subset of [X]<µ is stationary in [X]<µ in V [G].

We will later “force over” set-sized elementary submodels of large sub-
structures of the universe. For this, we use the following notation: If M is
a set, P is a poset and G is a P-generic filter, M [G] is the set of τG for all
τ ∈ M which are P-names. We have the following statement which is proven
similarly to the result that any ccc poset is proper:

Lemma 2.11. Let Θ be a cardinal, M ≺ H(Θ) and P ∈ M a poset.
Assume that κ is a cardinal such that M ∩ κ ∈ κ and P is κ-cc. Let G be
P-generic. In V [G], M [G] ∩ V = M .

Proof. It is clear that M [G] ∩ V ⊇ M , since M contains x̌ whenever
x ∈ M .

Let τ ∈ M be a P-name such that τG ∈ V . By modifying τ if necessary
(without changing its evaluation according to G) we can assume that 1P ⊩
τ ∈ V̌ . So since τ ∈ M and M ≺ H(Θ), there is a maximal antichain A ∈ M
of conditions forcing τ = x̌ for x ∈ V . Since P is κ-cc, there is in M a cardinal
µ < κ and a surjection f : µ → A. However, as µ < κ and M ∩κ ∈ κ, µ ⊆ M
and so f [µ] = A ⊆ M . In particular, there is p ∈ G ∩ A ∩M forcing τ = x̌
for x ∈ V . By elementarity, x ∈ M and so τG = x ∈ M .

3. Strongly distributive forcings. In this section, we introduce a
strengthening of distributivity which axiomatizes a common technique when
working with <κ-closed partial orders (the construction of a “sufficiently
generic” sequence of length κ). By design, this property is able to replace
<κ-closure in many applications (such as the preservation of the station-
arity of subsets of κ or the κ-cc of forcing notions) but has one crucial
advantage: Unlike <κ-closure, strong <κ-distributivity is preserved by κ-cc
forcing extensions. This will later be applied in order to show that the tails
of the product we use to obtain our main theorem do not destroy the disjoint
stationary sequences which we already added.

Definition 3.1. Let P be a poset and κ a cardinal. P is strongly <κ-
distributive if for any sequence (Dα)α<κ of open dense subsets of P and any
p ∈ P, there is a descending sequence (pα)α<κ such that p0 ≤ p and ∀α < κ,
pα ∈ Dα. Such a sequence will be called a thread through (Dα)α<κ.

Strong <κ-distributivity can be thought of as having <κ-distributivity
witnessed in a uniform way: If (Dα)α<κ is a sequence of open dense subsets
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of some <κ-distributive forcing notion, there is a sequence (pα)α<κ such
that for all α < κ, pα ≤ p0 and pα ∈

⋂
β<αDβ (since the intersection of <κ

open dense sets is open dense). However, we cannot in general find such a
sequence in a uniform way, i.e. such that it is descending.

Obviously strong <κ-distributivity implies <κ-distributivity. Note that
strong <κ-distributivity and <κ-distributivity are not equivalent: If S ⊆ ω1

is stationary, the usual forcing shooting a club through S by initial segments
is <ω1-distributive. However, if ω1∖S is also stationary, the poset necessarily
destroys the stationarity of that set, so the forcing cannot be strongly <ω1-
distributive by Lemma 3.4 below.

Keeping with the theme of strong <κ-distributivity being a uniform ver-
sion of <κ-distributivity, we have the following characterisation: Recall that
for antichains A and B we say that A refines B if for every q ∈ A there is
q′ ∈ B with q ≤ q′.

Lemma 3.2. For a forcing order P and a cardinal κ, the following are
equivalent:

(1) P is strongly <κ-distributive.
(2) P is <κ-distributive and for p ∈ P and any descending sequence (Aα)α<κ

(with regard to refinement) of maximal antichains below p, there is a
descending sequence (pα)α<κ such that p0 ≤ p and for any α, pα ∈ Aα.

Proof. Assume P is strongly <κ-distributive. Of course, this implies that
P is <κ-distributive. Assume for notational simplicity that p = 1P. Let
(Aα)α<κ be a sequence of maximal antichains in P such that for β < α, Aα

refines Aβ . For α < κ, let Dα be the downward closure of Aα and consider
a thread (qα)α<κ through (Dα)α<κ. For any α < κ, let pα be the unique (by
pairwise incompatibility) element of Aα that is above qα. We are done after
showing

Claim 1. The sequence (pα)α<κ is descending.

Proof. Let β < α be arbitrary. Because Aα refines Aβ , there exists p′β ∈
Aβ such that pα ≤ p′β . Thus, qα ≤ pα ≤ p′β and qα ≤ qβ ≤ pβ . In summary,
p′β and pβ are compatible and therefore equal.

The other direction is easy. Given a sequence (Dα)α<κ of open dense
subsets of P we can use the assumed <κ-distributivity of P to build a se-
quence (Aα)α<κ such that for any α < κ, Aα refines Aβ for all β < α and is
contained in Dα.

While <κ-distributivity means that every <κ-sequence of ground-model
elements is in the ground model, strong <κ-distributivity means that we can
uniformly approximate κ-sequences of ground-model elements:
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Lemma 3.3. Let P be a poset and κ a cardinal. If P is strongly <κ-
distributive, p ∈ P and ḟ is a P-name such that p ⊩ ḟ : κ̌ −→ V , there is
a descending sequence (pα)α<κ with p0 ≤ p such that for every α < κ, pα
decides ḟ(α̌).

Proof. This is clear: Consider Dα := {q ∈ P | q decides ḟ(α̌)}.

As is the case for <κ-distributivity, the converse holds for separative
forcing orders (but we will never use this).

We can now prove the preservation results mentioned above:

Lemma 3.4. Let P be a poset and κ a regular cardinal. Assume that P is
strongly <κ-distributive. Then the following hold:

(1) If S ⊆ κ is stationary, it remains stationary after forcing with P.
(2) If Q is a κ-cc poset, it remains κ-cc after forcing with P.

Proof. The proofs of (1) and (2) are basically the same: Assume toward
a contradiction that ḟ is a P-name for an ascending enumeration of a club
in κ (resp. an enumeration of an antichain in Q), forced by some p ∈ P. By
Lemma 3.3, let g be a function on κ and (pα)α<κ a descending sequence in
P with p0 ≤ p such that pα ⊩ ḟ(α̌) = ǧ(α̌). It then follows that the image
of g is a club in κ (resp. an antichain in Q). In (1), we can find α such that
g(α) ∈ S, which implies pα ⊩ ḟ(α̌) ∈ Š, and in (2), we directly obtain a
contradiction.

Since clubs in [X]<µ are basically the same as clubs in µ whenever
|X| = µ, we obtain

Corollary 3.5. Let P be a poset, κ a regular cardinal and X a set
with size κ. If P is strongly <κ-distributive and S ⊆ [X]<κ is stationary,
S remains stationary after forcing with P.

We will later obtain a converse to Lemma 3.4(2) by showing that any
strongly <κ-distributive poset remains strongly <κ-distributive after forc-
ing with any κ-cc partial order. However, this proof requires us to build a
sequence (pα)α<κ of elements of P where pα is not just any element of a
pre-determined open subset of P that lies below (pβ)β<α but actually de-
pends on the previous choices. We will now show that this is indeed possible
by relating strong distributivity to the completeness game played on a par-
tial order. An equivalent characterization for distributivity was found by
Foreman [6] with almost the same proof.

Definition 3.6. Let P be a forcing order, δ an ordinal. The complete-
ness game G(P, δ) on P with length δ has players COM (complete) and INC
(incomplete) playing elements of P with COM playing at even ordinals (and
limits) and INC playing at odd ordinals. COM starts by playing 1P, after-
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wards pα has to be a lower bound of (pβ)β<α. INC wins if COM is unable
to play at some point < δ. Otherwise, COM wins.

We say that P is <δ-strategically closed if COM has a winning strategy
in G(P, α) for any α < δ. We say that P is δ-strategically closed if COM has
a winning strategy in G(P, δ).

Foreman showed the following connection between distributivity and the
completeness game [6, p. 718]:

Theorem 3.7. If κ = λ+ is a successor, P is <κ-distributive if and only
if INC does not have a winning strategy in G(P, λ+ 1).

If INC does not have a winning strategy in G(P, λ + 1), then INC does
not have a winning strategy in G(P, δ) for any δ < λ+. Having this witnessed
uniformly suggests the following statement:

Theorem 3.8. Let P be a poset and κ a cardinal. P is strongly <κ-
distributive if and only if INC does not have a winning strategy in G(P, κ).

This characterization is very powerful because it allows us to construct
sequences (pα)α<κ where pα actually depends on (pβ)β<α and is not just
any lower bound of (pβ)β<α in some open dense set. This idea is e.g. used
below in the proof of the strong Easton lemma. Another use is in [13], where
the assumption of strong <κ-distributivity replaces that of <κ-closure in a
theorem regarding the approximation property for certain iterations.

For the proof, we follow Foreman’s argument in [6] while providing more
details and avoiding the use of the boolean completion of P.

Proof of Theorem 3.8. Assume that P is not strongly <κ-distributive
and (Dα)α<κ is a sequence of open dense sets without a thread below some
p ∈ P. Let INC first play p and then, after (pδ)δ<γ+2n+1 has been played,
a condition pγ+2n+1 ∈ Dγ+n with pγ+2n+1 ≤ pγ+2n. It is clear that this
strategy wins for INC (otherwise, a losing game for INC would give rise to
a thread through (Dα)α<κ by picking out the odd conditions).

Now assume that σ is a winning strategy for INC inG(P, κ). Let σ(1P) = p.
We will construct a sequence (Aα)α∈κ by induction such that the following
holds:

(1) For each α ∈ κ and pα ∈ Aα, there exists a unique descending sequence
(pβ)β<α such that for all β ≤ α, pβ ∈ Aβ and if β ≤ α is odd, pβ =
σ((pδ)δ<β).

(2) If α ∈ κ is odd, Aα is a maximal antichain below p (for even α, we
carefully choose Aα to obtain uniqueness in (1)).

It follows from (1) and (2) that the sequence (Aα)α∈κ∩Odd is a sequence of
maximal antichains below p which is descending with regard to refinement.
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To begin, let A0 := {1P} and A1 := {p}. Assume that we have con-
structed (Aα)α<γ , where γ is an even successor ordinal. We will construct
Aγ and Aγ+1 simultaneously. Let Dγ+1 consist of all p′ ∈ P such that there
exists a sequence (pα)α<γ+2 with pγ+1 = p′ such that for all α < γ, pα ∈ Aα

and if α is odd, pα = σ((pβ)β<α).

Claim 1. Dγ+1 is dense below p.

Proof. Let p′′ ≤ p be arbitrary. By maximality of Aγ−1, there exists
pγ−1 ∈ Aγ−1 compatible with p′′, witnessed by some p∗. By the inductive
hypothesis, there exists a unique sequence p = (pβ)β<γ−1 with pβ ∈ Aβ

for β < γ − 1 and pβ = σ((pδ)δ<β) for all odd β ≤ γ − 1. Hence, letting
s := p⌢pγ−1

⌢p∗, s⌢σ(s) witnesses density, since σ(s) ≤ p∗ ≤ p′′.

Let Aγ+1 ⊆ Dγ+1 be a maximal antichain below p. For each pγ+1 ∈ Aγ+1,
by the definition of Dγ+1, there exists a descending sequence (pα)α<γ+1 such
that for all α ≤ γ + 1, pα ∈ Aα and if α ≤ γ + 1 is odd, pα = σ((pβ)β<α).
Choose such a sequence for each pγ+1 ∈ Aγ+1 and let Aγ consist of the γth
entries of these sequences.

Claim 2. For each pγ+1 ∈ Aγ+1, there exists a unique sequence (pβ)β<γ+1

such that for all β ≤ γ+1, pβ ∈ Aβ and if β ≤ γ+1 is odd, pβ = σ((pδ)δ<β)

Proof. Let pγ+1 ∈ Aγ+1 and let s be the chosen sequence witnessing
pγ+1 ∈ Dγ+1. We will verify that any sequence as above is equal to s. So let
s′ = (p′β)β≤γ+1 be a different descending sequence such that for all β ≤ γ+1,
p′β ∈ Aβ and if β ≤ γ + 1 is odd, p′β = σ((p′δ)δ<β) with pγ+1 = p′γ+1.

It follows that p′γ−1 and pγ−1 are compatible (witnessed by pγ+1 = p′γ+1)
and thus equal, as Aγ−1 is an antichain. By the inductive hypothesis s↾γ =
s′↾γ, so pγ ̸= p′γ . Since p′γ ∈ Aγ there is aγ+1 ∈ Aγ+1 (necessarily different
from pγ+1) and a sequence t witnessing aγ+1 ∈ Dγ+1 such that t(γ) = p′γ .
Then t(γ − 1) and p′γ−1 are compatible (witnessed by p′γ = t(γ)) and hence
equal. As before, this implies t↾γ = s′↾γ. However, this means that

σ((p′δ)δ<γ+1) = p′γ+1 = pγ+1 ̸= aγ+1 = σ(t↾(γ + 1))

contradicting the fact that σ is a function and (p′δ)δ<γ+1 = t↾(γ + 1).

Assume γ is a limit. Let A′
γ be a common refinement of Aα for odd

α < γ. Given p ∈ A′
γ , let pα ∈ Aα witness refinement for odd α and let

pα ∈ Aα witness pα+1 ∈ Aα+1 for even α. Then (pα)α<γ is a play according
to σ by uniqueness (which implies that the sequences witnessing pα ∈ Aα are
coherent). Let Dγ be the downward closure of A′

γ and let Dγ+1 consist of σ(s)
for sequences s = (pα)α<γ+1 with pγ ∈ Dγ and s↾γ witnessing this. Thus,
Dγ+1 is dense and we can proceed as in the previous step: Let Aγ+1 ⊆ Dγ+1

be a maximal antichain. Let Aγ ⊆ Dγ contain one witness to p ∈ Dγ+1 for
each p ∈ Aγ+1. Then clearly for any p ∈ Aγ+1 a sequence as claimed exists.
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As before, if there exist two sequences t, t′ for one p ∈ Aγ+1, t↾γ = t′↾γ,
since t(γ) ∈ Aγ ⊆ Aγ′ and thus lies below exactly one element of each Aα

for odd α.
Lastly, by Lemma 3.2, if P is strongly <κ-distributive, then there exists

a thread through (Aα)α∈κ∩Odd, i.e. a sequence (pα)α∈κ∩Odd such that for
odd α, pα ∈ Aα. For even α, let pα ∈ Aα witness pα+1 ∈ Aα+1. By unique-
ness, (pα)α<κ is a play in G(P, κ) according to σ. But this contradicts our
assumption that σ was a winning strategy.

Since clearly at most one player can have a winning strategy in any game,
we have the following:

Lemma 3.9. Let P be a poset and κ a cardinal. If P is κ-strategically
closed, then P is strongly <κ-distributive.

We will later give an example of a poset which is strongly <κ-distributive
but not κ-strategically closed.

The main point for introducing strong <κ-distributivity is the following
strengthening of the Easton lemma. The second statement in the lemma was
also noticed (in a different form) by Andreas Lietz [19] on Mathoverflow after
a question by the author.

Lemma 3.10. Let κ be a regular cardinal. Assume Q is κ-cc and P is
strongly <κ-distributive.

(1) 1P ⊩ Q̌ is κ̌-cc.
(2) 1Q ⊩ P̌ is strongly < κ̌-distributive.

Proof. Part (1) was shown in Lemma 3.4(2) so we show (2). We first
prove the following helpful claim:

Claim 1. If D ⊆ Q× P is open dense and q ∈ Q, the set Dq consisting
of all p ∈ P such that for some A ⊆ Q that is a maximal antichain below q,
A× {p} ⊆ D, is open dense in P.

Proof. Openness is clear: If A witnesses p ∈ Dq and p′ ≤ p, A also
witnesses p′ ∈ Dq.

Thus, assume the set is not dense and there is p ∈ P such that for every
p′ ≤ p, p′ /∈ Dq. We will give a winning strategy for INC in G(Q, κ). We will
assume that whenever (pα)α<γ has been played according to our strategy,
we have constructed an antichain {qα | α ∈ γ ∩Odd} below q such that for
any α < γ, (qα, pα) ∈ D. To begin, let INC find a pair (q1, p1) ≤ (q, p) with
(q1, p1) ∈ D and play p1.

Assume the game has lasted until γ, γ + 1 is odd and the position is
(pα)α<γ+1. If {qα | α ∈ γ ∩ Odd} is maximal, it witnesses pγ ∈ D by the
openness of D: For every α ∈ γ ∩Odd, (qα, pα) ∈ D and thus (qα, pγ) ∈ D.
This contradicts our assumption, since pγ ≤ p. It follows that there exists
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some q′γ+1 which is incompatible with every qα. By open density, there exists
(qγ+1, pγ+1) ≤ (q′γ+1, pγ), (qγ+1, pγ+1) ∈ D. Let INC play pγ+1.

This is a winning strategy, because a play of length κ would give us a
κ-sized antichain in Q, contradicting the κ-cc of Q. However, the existence
of this winning strategy contradicts Theorem 3.8. So the claim is true.

Now assume ḟ and τ are Q-names such that some q ∈ Q forces ḟ to map
κ̌ to open dense subsets of P and τ to be an element of P. Strengthening q
if necessary, we can assume q ⊩ τ = p̌ for some p ∈ P.

Claim 2. Each set Dα := {(q′, p′) ∈ Q↾(q × P) | q′ ⊩ p̌′ ∈ ḟ(α̌)} is open
dense.

Proof. Openness in both coordinates follows either from the properties
of the forcing relation or from ḟ(α̌) being forced by q to be open.

For density, let (q′, p′) ∈ Q↾(q × P) be arbitrary. Thus q′ ⊩ ∃τ (τ ∈
ḟ(α̌) ∧ τ ≤ p̌′). Because τ is in particular forced to be in V , there exists
q′′ ≤ q′ and p′′ such that

q′′ ⊩ (p̌′′ ∈ ḟ(α̌) ∧ p̌′′ ≤ p̌′)

Thus, (q′′, p′′) ≤ (q′, p′) and (q′′, p′′) ∈ Dα

Combining the two claims, for each α, the set D′
α of all p′ ∈ P such that

for some A ⊆ Q that is a maximal antichain below q we have A×{p′} ⊆ Dα

is open dense in P. If p′ ∈ D′
α, there exists a maximal antichain A below q

such that for every q′ ∈ A, q′ ⊩ p̌′ ∈ ḟ(α̌). By maximality, q ⊩ p̌′ ∈ ḟ(α̌).
Let (pα)α<κ be a thread through (D′

α)α<κ below p. Then q forces (p̌α)α<κ

to be a thread through ḟ below p̌.

In particular, if P is <κ-closed and Q is κ-cc, P is strongly <κ-distributive
after forcing with Q.

We close this section by providing two examples of strongly distributive
forcings.

Example 3.11. For S a stationary subset of [ω2]
<ω1 , let P(S) be the

forcing consisting of increasing and continuous functions p : α → S where
α < ω1 is a successor ordinal. P(S) collapses ω2 to ω1 by adding a cofinal
sequence (xα)α<ω1 of elements of S. Krueger showed [15, Proposition 2.2]
that the term ordering on Add(ω)∗P([ω2]

<ω1 ∩V ) is ω1-strategically closed.
This shows that P([ω2]

<ω1 ∩ V ) is strongly <ω1-distributive in V [G] where
G is Add(ω)-generic. However, if H is now Coll(ω1, ω2)-generic over V [G],
P([ω2]

<ω1 ∩ V ) is no longer strongly <ω1-distributive because it destroys
the stationarity of the stationary set [ωV

2 ]
<ω1 ∖ V even though |ωV

2 | = ω1 in
V [G][H] (see Fact 4.2).
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This example shows the following:

(1) A strongly <ω1-distributive forcing need not be proper: In V [G], the
forcing P([ω2]

<ω1 ∩ V ) destroys the stationarity of the stationary set
[ω2]

<ω1 ∖ V (again, see Fact 4.2).
(2) A strongly <ω1-distributive forcing need not remain strongly <ω1-

distributive in a countably closed forcing extension.
(3) A strongly <ω1-distributive forcing need not be <ω1-strategically closed.

Example 3.12. Let κ be a regular cardinal and S(κ) the poset adding a
□κ-sequence by initial segments (see e.g. [3, Example 6.6]): p ∈ S(κ) if and
only if

(1) dom(p) = β + 1 ∩ Lim for some limit ordinal β ∈ κ+,
(2) for α ∈ dom(p), p(α) is club in α and otp(p(α)) ≤ κ,
(3) if α ∈ dom(p) then for all β ∈ lim(p(α)), p(α) ∩ β = p(β).

We order S(κ) by end-extension.
S(κ) is <κ+-strategically closed. However, S(κ) is not strongly <κ+-

distributive if □κ fails: For α < κ+ a limit ordinal, let Dα consist of all
p ∈ S(κ) with α ∈ dom(p) (let Dα := S(κ) if α is not a limit). Each Dα is
open dense, but given any descending sequence (pα)α<κ+ of elements of S(κ)
with pα ∈ Dα for every α ∈ κ+,

⋃
α<κ+ pα is a □κ-sequence, a contradiction.

Combined, these two examples show that there is no provable relation-
ship between <κ+-strategic closure and strong <κ+-distributivity. How-
ever, assuming □κ holds, Ishiu and Yoshinobu [11, Theorem 3.3] showed
that any <κ+-strategically closed poset is also κ+-strategically closed and
thus strongly <κ+-distributive. So in some sense Example 3.12 is canonical.

4. The Mitchell forcing. In this section we will introduce the forcing
that was used by Levine to obtain disjoint stationary sequences on ℵ2 and
ℵ3 simultaneously.

To motivate his definition, we first state the following fact due to Krueger
which is crucial for our arguments:

Definition 4.1. Let τ ≤ µ ≤ Θ be cardinals and N ∈ [H(Θ)]<µ.
Then N is weakly internally approachable of length τ if N =

⋃
i<τ Ni, where

(Ni)i<j ∈ N for every j < τ . We let IA(τ) be the collection of all N (for any
Θ and µ) which are weakly internally approachable of length τ .

Fact 4.2 ([16, Theorem 7.1]). Suppose V ⊆ W are models of ZFC with
the same ordinals and there is a real in W∖V . Let µ be a regular uncountable
cardinal in W and let X be a set in V such that (µ+)W ⊆ X. In W let
Θ ≥ µ+ be a regular cardinal such that X ⊆ H(Θ). Then in W the collection
of all N ∈ [H(Θ)]<µ ∩ IA(ω) with N ∩X /∈ V is stationary.
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The upshot of Fact 4.2 is that stationary sets consisting of weakly inter-
nally approachable models are preserved by sufficiently closed forcings:

Fact 4.3 ([16, Lemmas 2.2, 2.4]). Let τ < µ be cardinals and Θ ≥ µ.
If S ⊆ [H(Θ)]<µ ∩ IA(τ) is stationary and P is a <µ-closed poset, P forces
that S remains stationary in [HV (Θ)]<µ.

Krueger’s idea to obtain a disjoint stationary sequence on some cardi-
nal µ+ can be summarized as follows: After forcing with Add(ω) – thanks
to Fact 4.2 – there are stationarily many N ∈ [H(Θ)]<µ ∩ IA(ω) with
N ∩ µ+ /∈ V . By the weak internal approachability this stationarity is pre-
served when forcing with the Levy collapse Coll(µ,Θ). And so by iterating
forcings of the form Add(ω) ∗ ˙Coll(µ̌, µ̌+) with Mahlo length one obtains a
disjoint stationary sequence on a stationary subset S ⊆ µ+ (consisting of
the previously inaccessible cardinals) by choosing Sα to consist of precisely
those elements of [α]<µ which were added at stage α+ 1.

Krueger [15] took care of such an iteration by using his method of mixed
support iterations. Levine noted that the projection analysis provided through
the use ofMitchell forcing leads to better preservation propertieswhich allowed
him to obtain disjoint stationary sequences on ℵ2 and ℵ3 simultaneously.

For a regular cardinal τ and a set Y we let Add∗(τ, Y ) consist of all
functions p : {δ ∈ Y | δ is inaccessible} × τ → {0, 1}, ordered by ⊇.

Definition 4.4. Let λ be inaccessible and let τ < µ < λ be regular
cardinals such that τ<τ = τ . We let M+(τ, µ, λ) consist of pairs (p, q) such
that

(1) p ∈ Add∗(τ, λ).
(2) q is a function such that

(a) dom(q) is a <µ-sized set such that for each δ ∈ dom(q) δ = ν + 1
for an inaccessible cardinal ν < λ,

(b) whenever δ ∈ dom(q), q(δ) is an Add∗(τ, δ+1)-name for a condition
in ˙Coll(µ̌, δ̌).

We let (p′, q′) ≤ (p, q) if and only if

(1) p′ ≤ p in Add∗(τ, λ),
(2) dom(q′) ⊇ dom(q) and whenever δ ∈ dom(q),

p′↾((δ + 1)× τ) ⊩ q′(δ̌) ≤ q(δ̌).

This forcing is quite similar to the original poset Mitchell [21] used to ob-
tain the tree property at an arbitrary double successor cardinal. One crucial
difference is the “de-coupling” of τ and µ (otherwise µ is often fixed as τ+).
This is necessary because there is no currently known analogue of Fact 4.2
which works for Add(τ) when τ > ω (see [16, Question 12.6]), so we have to
add reals if we want to obtain DSS.
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One important definition regarding variants of Mitchell forcing is the
term ordering from which many regularity properties are derived:

Definition 4.5. Let λ be inaccessible and let τ < µ < λ be regular car-
dinals such that τ<τ = τ . We let T(τ, µ, λ) consist of all (p, q) ∈ M+(τ, µ, λ)
such that p = ∅, ordered as a suborder of M+(τ, µ, λ).

We now collect some facts about M+ and T in the following “omnibus
lemma” (the proofs are found in [18, Section 1.3]):

Lemma 4.6. Let λ be inaccessible and let τ < µ < λ be regular cardinals
such that τ<τ = τ .

(1) T(τ, µ, λ) is <µ-closed.
(2) There is a projection from Add∗(τ, λ)× T(τ, µ, λ) onto M+(τ, µ, λ).
(3) M+(τ, µ, λ) is <τ -closed, λ-cc and preserves all cardinals up to and in-

cluding µ as well as above and including λ.
(4) M+(τ, µ, λ) forces 2τ = 2µ = µ+ = λ.

A concept we want to highlight specifically is the following: If ν < λ is
inaccessible and G is M+(τ, µ, ν)-generic, the quotient forcing M+(τ, µ, λ)/G
(using the obvious projection) once again resembles Mitchell forcing and is in
particular the projection of the product of a τ+-cc and a <µ-closed forcing.
Because of our specific order of Cohen reals and collapses (using Add(τ)
at inaccessibles and Coll(µ, δ) at successors of inaccessibles), we obtain the
following:

Lemma 4.7 ([18, Lemma 22]). Let λ be inaccessible and let τ < µ < λ
be regular cardinals such that τ<τ = τ . If ν < λ is inaccessible, there is a
forcing equivalence

M+(τ, µ, λ) ∼= M+(τ, µ, ν) ∗Add(τ) ∗Ω
where M+(τ, µ, ν) ∗ Add(τ) forces that Ω is the projection of the product of
a τ+-cc and a <µ-closed poset.

Building on arguments of Krueger, Levine was able to show that his
variant of Mitchell forcing also forces the existence of a disjoint stationary
sequence:

Lemma 4.8. Let λ be inaccessible and let µ < λ be a regular cardinal. If
λ is Mahlo then M+(ω, µ, λ) forces DSS(µ+).

5. Proving the main theorems. Now we will set up the forcing which
gives us our desired model. Fix an increasing sequence (κn)n∈ω of Mahlo
cardinals. For simplicity, let κ−1 := ℵ1.

Definition 5.1. Let P((κn)n∈ω) be the following poset: Conditions are
functions p on ω such that
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(1) for any n ∈ ω, p(n) = (p0(n), p1(n)) ∈ M+(ω, κn−1, κn),
(2) for all but finitely many n ∈ ω, p0(n) = ∅.

We let p′ ≤ p if and only if p′(n) ≤ p(n) for all n ∈ ω.
For k ∈ ω, we let Pk((κn)n∈ω) consist of those p ∈ P((κn)n∈ω) such that

p(n) is trivial for k ≥ n. Let Pk((κn)n∈ω) consist of those p ∈ P((κn)n∈ω)
such that p(n) is trivial for k < n. Both posets inherit their ordering from
P((κn)n∈ω).

Clearly, the poset P((κn)n∈ω) is isomorphic to the product of Pk((κn)n∈ω)
and Pk((κn)n∈ω) whenever k ∈ ω. Moreover, Pk((κn)n∈ω) is isomorphic to
the simple “normal product” of M+(ω, κn−1, κn) over n < k. So clearly
P((κn)n∈ω) is isomorphic to Pk((κn)n∈ω)×M+(ω, κn−1, κn)× Pk((κn)n∈ω).
To simplify notation later on, we let P((κn)n∈ω)(n) := M+(ω, κn−1, κn).

The reason for introducing this specific product is as follows: Because of
a lack of an analogue of Fact 4.2 we have to use M+(ω, κn−1, κn) to force
DSS(κ+n−1) and cannot (as in [4] for the tree property) useM+(κn−2, κn−1, κn).
So none of our forcings are even countably closed. Due to this, a full support
product cannot be expected to preserve cardinals. On the other hand, a finite
support product would lack a sufficiently closed term ordering in order to
guarantee the preservation of smaller cardinals.

This poset is quite similar to the forcing used by Unger [22, before Lem-
ma 3.1]. In that work, the poset is used to obtain a failure of approachability
at all successor cardinals in the interval [ℵ2,ℵω2+3]. In his case, the idea of
adding many Cohen subsets to a small cardinal is used in order to obtain
the failure of the approachability property at double successors of singular
cardinals: The failure of APµ implies 2<µ ≥ µ+ and so having ¬APℵω+1

implies 2ℵω ≥ ℵω+2. This means that either ℵω is not a strong limit (this is
true in Unger’s model and the reason why he adds many Cohen subsets to,
in his case, ℵ1) or the singular cardinal hypothesis has to fail at ℵω. However,
in Unger’s model APℵω fails as well and it is unknown to this day whether
both the approachability property and the singular cardinal hypothesis can
fail simultaneously at ℵω.

Let us also note that due to the easier preservation of DSS (or the dis-
tinction between internal stationarity and clubness) when compared to the
tree property, we are fortunate to be able to use a product instead of an
iteration which simplifies some arguments.

We will now obtain a similar projection analysis as in Lemma 4.6. As
for P before, we let Tk((κn)n∈ω) :=

∏
n<k T(ω, κn−1, κn), T((κn)n∈ω)(k) :=

T(ω, κk−1, κk) and Tk((κn)n∈ω) :=
∏

n≥k T(ω, κn−1, κn).

Lemma 5.2. Let k ∈ ω.

(1) Pk((κn)n∈ω) is κk−1-Knaster.
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(2) Pk((κn)n∈ω) is the projection of
∏

n≥k Add∗(ω, κn)×Tk((κn)n∈ω), where
the product is taken with finite support and Tk((κn)n∈ω) is <κk−1-closed.
Moreover, the quotient(∏

n≥k

Add∗(ω, κn)× Tk
)
/Pk((κn)n∈ω)

is forced to be <κk−1-distributive.

Proof. (1) is easy, since Pk((κn)n∈ω) is simply a finite product of κk−1-
Knaster forcings.

For (2), given n ≥ k, let

πn : Add∗(ω, κn)× T(ω, κn−1, κn) → M+(ω, κn−1, κn)

be the projection obtained through Lemma 4.6(2). Let Qk consist of all
(p, q) such that both p and q are functions on ω ∖ k, for each n ∈ ω ∖ k,
(p(n), q(n)) ∈ Add∗(ω, κn)× T(ω, κn−1, κn) and p(n) is trivial for cofinitely
many n, ordered pointwise. Then clearly π : Qk → Pk((κn)n∈ω), defined by
π((p, q))(n) = πn(p(n), q(n)), is a projection from Qk onto Pk((κn)n∈ω).
Moreover, Qk is easily seen to be isomorphic to∏

n≥k

Add∗(ω, κn)×
∏
n≥k

T(ω, κn−1, κn),

where the first product is taken with finite support and the second product is
taken with full support. Additionally,

∏
n≥k T(ω, κn−1, κn) = Tk((κn)n∈ω).

Since Tk is a full support product of <κk−1-closed forcing notions, it
is <κk−1-closed. The distributivity of the quotient follows easily from Eas-
ton’s lemma, which implies that any <κk−1-sequence of ordinals added by∏

n≥k Add
∗(ω, κn)×Tk has been added by

∏
n≥k Add

∗(ω, κn) which is con-
tained in Pk((κn)n∈ω).

5.1. Disjoint stationary sequences. We can now prove Theorem A
easily:

Theorem 5.3. After forcing with P((κn)n∈ω), for every n ∈ ω, κn =
ℵn+2 and DSS(ℵn+2) holds.

Proof. We first show that for any n ∈ ω, P := P((κn)n∈ω) forces κn =
κ+n−1. Let G be P-generic over V . For n ∈ ω, let G(n) be the M+(ω, κn−1, κn)-
generic filter induced by G and let Gn (resp. Gn) be the Pn- (resp. Pn-)
generic filter induced by G. By the product lemma,

V [G] = V [G(n)][Gn][G
n+1],

since P is isomorphic to Pn×M+(ω, κn−1, κn)×Pn+1. In V [G(n)], κn = κ+n−1

by Lemma 4.6(4). Furthermore, Pn is κn−1-Knaster in V [G(n)], since it is
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κn−1-Knaster in V (see Lemma 5.2(1)) and M+(ω, κn−1, κn) can be pro-
jected onto from the product of a ccc and a <κn−1-closed poset (see Lemma
4.6(1, 2)). Ergo κn is preserved when going to V [G(n)][Gn]. Lastly, in V ,
Pn+1 can be projected onto from

∏
k≥n+1Add

∗(ω, κk) × Tn+1, where Tn+1

is <κn-closed (see Lemma 5.2(2)). The same projection clearly works in
V [G(n)][Gn] as well. Moreover, in V [G(n)][Gn],

∏
k≥n+1Add

∗(ω, κk) is still
ccc and Tn+1 is strongly <κn-distributive by Lemma 3.10 (since Pn+1 is
κn-cc). Ergo κn is preserved when going to V [G(n)][Gn][G

n+1]. It follows
easily by induction that in V [G], κn = ℵn+2 for every n ∈ ω (recall that
κ−1 = ℵ1).

Now we turn to DSS which is proved almost exactly as above. For n ∈ ω,
we know by Lemma 4.8 that DSS(κ+n−1) holds in V [G(n)], witnessed by some
sequence (Sα)α∈S , where S ⊆ κ+n−1 ∩ cof(κn−1) is stationary and each Sα ⊆
[α]<κn−1 is stationary. In V [G(n)][Gn], S and each Sα remains stationary by
the κn−1-cc of Pn. Lastly, V [G(n)][Gn][G

n+1] is an extension of V [G(n)][Gn]
using a poset which can be projected onto from the product of a ccc and a
strongly <κn = κ+n−1-distributive poset. By Lemma 3.4 and Corollary 3.5,
this poset also cannot destroy the stationarity of S or any Sα. So (Sα)α∈S
remains a disjoint stationary sequence on κ+n−1 in V [G].

5.2. Distinction between internal stationarity and clubness. We
now turn to the proof of Theorem B. Note that even for a distinction between
internal stationarity and clubness in [H(ℵn)]

<ℵn , we have some work to do:
In our final model, 2ω ≥ ℵω+1 and under this cardinal arithmetic the result
by Krueger relating DSS(ℵn) and the distinction of internal stationarity and
clubness in [H(ℵn)]

<ℵn might fail (at least one direction can consistently
fail; see [12]).

We start by showing that M+(ω, µ, λ) forces the distinction between in-
ternal stationarity and clubness in a particularly strong way which is more
easily preserved. This refines [18, Lemma 29] but is proved with similar ar-
guments.

Theorem 5.4. Let ℵ0 < µ < λ be regular cardinals such that λ is Mahlo.
After forcing with M+(ω, µ, λ), for any Θ ≥ λ there are stationarily many
N ∈ [H(Θ)]µ such that N is internally stationary but N does not contain a
club in [N ∩ λ]<µ

Note that this directly implies that any such N is not internally club: If
{Ni | i ∈ µ} were club in [N ]<µ and contained in N , {Ni ∩ λ | i ∈ µ} would
contain a club in [N ∩ λ]<µ and be contained in N , since we can assume
without loss of generality that N is elementary in H(Θ) and λ ∈ N .

Proof of Theorem 5.4. Write M := M+(ω, µ, λ). Let G be M-generic. In
V [G], let F : [HV [G](Θ)]<ω → [HV [G](Θ)]µ. We aim to find N ∈ [HV [G](Θ)]µ
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which is closed under F and internally stationary but not internally club.
Let Ḟ be a name such that ḞG = F . In V , apply the Mahloness of λ (see
e.g. [9]) to find M ≺ HV (Θ′) (for Θ′ so large that Ḟ ∈ HV (Θ′)) such that

(1) M contains Ḟ ,M, µ, λ,Θ,
(2) ν := M ∩ λ = |M | is an inaccessible cardinal below λ,
(3) [M ]<ν ⊆ M .

It follows that N := M [G]∩HV [G](Θ) ∈ [HV [G](Θ)]µ is closed under ḞG.
So all that is left to show is that N is internally stationary but not internally
club. Let G′ be the M(ω, µ, ν)-generic filter induced by G. We note that
M [G] ∩ V = M by the λ-cc of M.

Claim 1. If x ∈ [M ]<ν ∩ V [G′], x ∈ M [G].

Proof. Let τ be an M+(ω, µ, ν)-name for a subset of M . By the ν-cc of
M+(ω, µ, ν) and since M+(ω, µ, ν) ⊆ M we can code τ as a <ν-sized subset
of M , which therefore is an element of M . Ergo τG ∈ M [G].

In particular, M [G] is closed under <ν-sequences of ordinals lying in
V [G′]. Furthermore, M [G] contains a bijection ι between some cardinal ∆
and HV [G](Θ). This bijection restricts to one between M [G] ∩∆ = M ∩∆
and M [G] ∩HV [G](Θ). We first show

Claim 2. [M ∩∆]<µ ∩M [G] is stationary in [M ∩∆]<µ in V [G].

Proof. By Claim 1, [M ∩∆]<µ∩M [G] ⊇ [M ∩∆]<µ∩V [G′], so it suffices
to show that the latter set is stationary in [M ∩ ∆]<µ. We first claim that
in V [G′′] (where G′′ is the M+(ω, µ, ν) ∗Add(ω)-generic filter induced by G)
the set

S := {X ∈ [HV [G′′](∆)]<µ | X ∈ IA(ω) ∧X ∩ (M ∩∆) ∈ V [G′]}
is stationary in [HV [G′′](∆)]<µ. Whenever

F : [HV [G′′](∆)]<ω → [HV [G′′](∆)]<µ

and Ḟ is an Add(ω)-name for F in V [G′], we can find X ≺ HV [G′](∆′)
(X ∈ V [G′]) for ∆′ large enough with Ḟ ∈ X such that X ∈ IA(ω). It
follows that X[H] ∩ HV [G′′](∆) (where H is Add(ω)-generic with G′′ =
G′ ∗ H) is closed under F , X[H] ∩ HV [G′′](∆) ∈ IA(ω) (as witnessed by
(Xi[H] ∩HV [G′′](∆))i∈ω, where (Xi)i∈ω witnesses X ∈ IA(ω)) and X[H] ∩
HV [G′′](∆) ∩ (M ∩∆) = X ∩ (M ∩∆) ∈ V [G′] by the ccc of Add(ω).

Since V [G] is an extension of V [G′′] using Ω, a poset which can be pro-
jected onto from the product of a ccc and a <µ-closed poset (see Lemma
4.7), S is still stationary in [HV [G′′](∆)]<µ in V [G] (by Fact 4.3) from which
it follows that {X ∩ (M ∩∆) | X ∈ S} is stationary in [M ∩∆]<µ in V [G].
Since that set is contained in V [G′], we are done.
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This readily implies

Claim 3. N is internally stationary.

Proof. Recall that ι↾(M ∩∆) is a bijection between M ∩∆ and M [G]∩
HV [G](Θ) (which equals N). Let c ⊆ [N ]<µ be club. Then {ι−1[x] | x ∈ c}
is club in [M ∩∆]<µ and so by Claim 2 there is x ∈ c with ι−1[x] ∈ M [G].
However, since ι ∈ M , x = ι[ι−1[x]] is in M [G] as well and is in HV [G](Θ)
by its size. So N ∩ c is nonempty.

Now we show that N is not “internally club in λ”, i.e. there is no club in
[N ∩ λ]<µ which is contained in N . We first show the following converse to
Claim 1:

Claim 4. If x ∈ [N ∩ λ]<µ ∩N , x ∈ V [G′].

Proof. Since |x| < µ, x has been added by Add∗(ω, λ) by Lemma 4.6(2).
Let τ be an Add∗(ω, λ)-name for x, τ ∈ M . We can assume by the ccc of
Add∗(ω, λ) that |τ | < µ. It follows that τ ⊆ M , so τ is an Add∗(ω,M ∩ λ)-
name. Ergo x ∈ V [G′].

So assume that c is club in [N ∩ λ]<µ = [ν]<µ. We will show that there
is x ∈ c with x /∈ V [G′] which directly implies that c is not contained in N .

By Fact 4.2 (with V [G′] in lieu of V , V [G′′] in lieu of W and ν in lieu of
X as well as Θ), in V [G′′] there are stationarily many X ∈ [HV [G′′](ν)]<µ ∩
IA(ω) with X ∩ ν /∈ V [G′]. It follows as before that the same set is still
stationary in [HV [G′′](ν)]<µ in V [G]. So clearly there is such an X with
X ∩ ν ∈ c. However, this directly implies X ∩ ν /∈ V [G′].

Remark 5.5. As we are only using a Mahlo cardinal to obtain a distinc-
tion between internal clubness and approachability for stationarily many
N ∈ [H(Θ)]µ for any Θ ≥ µ+, this theorem directly resolves a case of [16,
Question 12.7].

We now prove two preservation theorems which will finish the proof of
Theorem B. For simpler notation, we let ISNIC+(µ+) state that for every
Θ ≥ µ+ there are stationarily many N ∈ [H(Θ)]µ which are internally
stationary but do not contain a club in [N∩µ+]<µ. In this notation, Theorem
5.4 states that M+(ω, µ, λ) forces ISNIC+(µ+) whenever λ is Mahlo.

Lemma 5.6. Let µ > ℵ0 be a regular cardinal and Q a poset. Assume
that ISNIC+(µ+) holds and Q is µ-cc. Then Q forces ISNIC+(µ+).

Proof. Let G be Q-generic. In V [G], let F : [HV [G](Θ)]<ω → [HV [G](Θ)]µ

be any function and let Ḟ be a Q-name for F . In V , let Θ′ be so large that
Ḟ ,Q ∈ HV (Θ′) and find M ≺ HV (Θ′) of size µ with M ∩µ+ an ordinal such
that Ḟ ,Q, Θ ∈ M and M is internally stationary but does not contain a club
in [M ∩ µ+]<µ. By the µ-cc of Q, M [G]∩ V = M and M remains internally
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stationary in V [G] (by Lemma 2.10). Clearly N := M [G] ∩ HV [G](Θ) is
closed under F .

Claim 1. N is internally stationary.

Proof. Let c ⊆ [N ]<µ be club. Then the set of all m ∈ [M ]<µ with m ≺ M
such that m[G] ∩ HV [G](Θ) ∈ c is club in [M ]<µ by a simple interleaving
argument. Ergo there exists m ∈ M such that m ∈ [M ]<µ, m ≺ M and
m[G]∩HV [G](Θ) ∈ c. But m[G]∩HV [G](Θ) is in M [G] by elementarity and
in HV [G](Θ) by its size, so it is in N .

We are finished after showing

Claim 2. N does not contain a club in [N ∩ µ+]<µ.

Proof. Let c ⊆ [N∩µ+]<µ be club in [N∩µ+]<µ. Since N∩µ+ = M∩µ+

(which is a ground-model set) and Q has the µ-cc, we can assume that c ∈ V
(by Lemma 2.10). By assumption, there is n ∈ c which is not in M (but it is
in V since c ∈ V ). But then n is not in M [G] either, since M [G]∩V = M .

This finishes the proof of Lemma 5.6.

Lastly, we have to show a downward preservation theorem, showing that
sufficiently distributive forcings do not force ISNIC+(µ+) if it does not al-
ready hold in the ground model.

Lemma 5.7. Let µ > ℵ0 be a regular cardinal and Q a poset. Assume
that ISNIC+(µ+) holds in V [G], where G is Q-generic, and Q is <µ+-
distributive. Then ISNIC+(µ+) holds in V .

Proof. In V , let Θ be arbitrary and let F : [HV (Θ)]<ω → [HV (Θ)]µ be
any function. Let Θ′ be so large that F,Q ∈ H(Θ′). The following is clear:

Claim 1. In V [G], the set

D := {M ∈ [HV (Θ′)]µ | M [G] ∩ V = M}
is club in [HV (Θ′)]µ.

Since HV (Θ′)[G] = HV [G](Θ′) by the assumption Q ∈ H(Θ′), we know
that {M [G] | M ∈ D} is club in [HV [G](Θ′)]µ. So by ISNIC+(µ+) holding
in V [G], we can find M ∈ D such that F ∈ M , HV (Θ) ∈ M , M [G] ≺
(HV [G](Θ′),∈) and M [G] is internally stationary but does not contain a
club in [M [G]∩µ+]<µ. Clearly N := M [G]∩HV (Θ) = M ∩HV (Θ) is closed
under F , since F ∈ V . Also N ∈ V by the distributivity of Q.

Claim 2. N is internally stationary in V .

Proof. In V , let c ⊆ [N ]<µ be club. Then {m ∈ [M ]<µ | m∩HV (Θ) ∈ c}
is club in [M ]<µ and so {m[G] | m ∈ [M ]<µ ∧ m ∩ HV (Θ) ∈ c} is club
in [M [G]]<µ. Ergo there is m ∈ [M ]<µ with m ∩ HV (Θ) ∈ c such that
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m[G] ∈ M [G] since M [G] is internally stationary. As in the first claim, we
may assume m[G] ∩ V = m from which it follows that

m ∩HV (Θ) = m[G] ∩HV (Θ) ∈ c ∩M [G] ∩HV (Θ) = c ∩N

since m ∩HV (Θ) ∈ HV (Θ) by its size and the distributivity of Q.

We are finished after showing

Claim 3. N does not contain a club in [N ∩ µ+]<µ in V .

Proof. Let c ⊆ [N ∩ µ+]<µ be club. Since N ∩ µ+ = M [G] ∩ µ+, c ⊆ N
would imply that M [G] ⊇ N contains a club in [M [G] ∩ µ+]<µ, a clear
contradiction.

This finishes the proof of Lemma 5.7.

Finally, we can show Theorem B:

Theorem 5.8.After forcing with P((κn)n∈ω), for any n∈ω and Θ≥ℵn+2,
there are stationarily many N ∈ [H(Θ)]ℵn+1 which are internally stationary
but not internally club.

Proof. Write P := P((κn)n∈ω) and let n ∈ ω be arbitrary. We can regard
forcing with P as forcing first with Pn+1, followed by M+(ω, κn−1, κn) and
lastly with Pn. Moreover, any extension by Pn+1 can be extended to an
extension by

∏
k≥n+1Add

∗(ω, κk) × Tn+1 using a <κn-distributive forcing
(by Lemma 5.2). So in summary, any extension by P can be extended to an
extension by

Pproj := Tn+1 ×M+(ω, κn−1, κn)×
∏

k≥n+1

Add∗(ω, κk)× Pn

using a <κn = κ+n−1-distributive forcing. In light of Lemma 5.7 it suffices to
show that Pproj forces ISNIC+(κ+n−1) (since κn−1 becomes ℵn+1).

Since Tn+1 is <κn-closed, it preserves the Mahloness of κn and does
not change the definition of M+(ω, κn−1, κn). By Lemma 5.4, the poset
Tn+1 ×M+(ω, κn−1, κn) forces ISNIC+(κ+n−1). In any extension by Tn+1 ×
M+(ω, κn−1, κn), the tail of the product Pproj remains κn−1-cc and thus pre-
serves ISNIC+(κ+n−1) by Lemma 5.6. Ergo Pproj forces ISNIC+(κ+n−1), so P
forces ISNIC+(κ+n−1).

6. Open questions. We close with a few open questions. As for DSS,
one technical aspect of this paper is that, in order to obtain DSS, we had to
add many Cohen reals. This is problematic because it means that there is
no hope of obtaining a model where DSS holds at all successors of regular
cardinals. Thus we ask (see also [16, Question 12.3]):

Question 6.1. Is it consistent that there is a disjoint stationary sequence
on ℵ3 and 2ℵ0 = ℵ1?
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This is related to obtaining a higher analogue of Fact 4.2 which works
without adding reals. There is a motivating result by Dobrinen and Fried-
man [5] who showed that it is consistent that the ground model is costation-
ary after forcing with Add(µ) for any regular µ. However, they do not obtain
stationarily many new structures which are weakly internally approachable of
length µ, so it is unclear if their methods can be adapted to obtain a disjoint
stationary sequence without adding reals.

We are also interested in technical questions regarding strong distribu-
tivity. For one, we do not even know if there must always be a poset which
is strongly distributive but does not have any kind of closure (all of our
examples come from viewing old posets in generic extensions). Thus we ask:

Question 6.2. Let κ be a cardinal. Is it provable in ZFC that there is a
poset P which is strongly <κ-distributive but not κ-strategically closed?

In other words, we are asking if it is consistent that the completeness
game G(P, κ) is determined for any partial order P.
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