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Introduction

One of the major contemporary problems in stability theory is Cherlin’s conjecture, whether
a simple Ry-stable group (of finite rank) is an algebraic group. As long as the general Cherlin
conjecture is still unsolved, it is natural to consider weaker forms.

One possibility is motivated by Hrushovski’s and Zil’ber’s work on strongly minimal sets and
Zil’ber’s conjecture, which is a similar problem. The main part of Zil’ber’s conjecture asked
whether a non locally modular, strongly minimal set were an algebraic curve. Hrushovski
constructed counter-examples to this, but Hrushovski and Zil’ber succeeded in proving the
conjecture for special strongly minimal sets, so called Zariski geometries. These are struc-
tures equipped with Noetherian topologies as abstract Zariski topologies. More precisely,
their result characterizes abstractly the Zariski topology of smooth algebraic curves over
algebraically closed fields.

In the light of there work, it seems natural to consider “Zariski groups”: Ny-stable groups
with an axiomatically given abstract Zariski topology. In this paper, I introduce a higher-
dimensional generalization of Hrushovski—Zil’ber’s Zariski geometries, and I define Zariski
groups.

The main interest of Cherlin’s conjecture, at least from an algebraic point of view, is the
hope to get an abstract characterization of algebraic groups, not mentioning fields and vari-
eties. While a positive solution of the general conjecture would characterize the constructible
structure of algebraic groups, a solution for Zariski groups would provide a characterization
of the Zariski topology of algebraic groups

This article gives an approach to Cherlin’s conjecture for Zariski groups. In particular I show
that any non nilpotent smooth Zariski group interprets an algebraically closed field. Most
probably, this result follows also from Hrushovski’s and Zil’ber’s work [HZ2]. The problem is
to show that there is a strongly minimal subset of a smooth Zariski group that satisfies the
dimension formula. Anyhow, I hope my proof is of interest because my methods are more

elementary and might be more easily understood.



1 Zariski geometries

The following definition of a Zariski geometry is a generalization to arbitrary finite dimensions
of Hrushovski’s and Zil’ber’s one dimensional Zariski geometries (cf. [HZ2]). Zil’ber’s notion
of a Zariski-type structure (see [Z2]) is similar, but he introduces dimension axiomatically.
In fact, a smooth, simple, sufficiently saturated Zariski group will be a Zariski-type structure

in Zil’ber’s sense.

Some topological prerequisites:

Let T" be a Noetherian topological space, i.e. a space without infinite strictly descending
chains of closed sets. A subset X of T is irreducible if it is not empty and not the union
of two proper relatively closed subsets. An irreducible component of a set is a maximal
irreducible subset. Any subset of 1" is the union of its finitely many irreducible components.
The (topological) dimension of a set is the maximal length of a chain of relatively closed
irreducible subsets!, more precisely dim X := sup{n |3X; irreducible, X; = X;NX and X, C
X, C...C X,}. A hypersurface of X is a relatively closed irreducible subset of dimension

dim X — 1. A constructible set is a Boolean combination of closed sets.

Definition 1.1 A Zariski geometry is an infinite set Z and a finite dimensional Noethe-

rian topology T,[Z] on Z™ for each n such that:

irreducibility & separation: Z is irreducible and the diagonal A(Z) is closed;

quantifier elimination: for each n, every projection Z™t — Z™ maps constructible sets onto
constructible sets;

compatibility: for all n,k, every map f = (f1,..., fx) : Z% — Z* where f; is either a projec-

tion (z1,...,xy) — x; or a constant map (zy,...,x,) — a for some a € Z is continuous.

A first order language for a Zariski geometry is any relational language (with equality) such
that the interpretations of the quantifier-free positive formulae with parameters are exactly
the closed sets. One possibility it to take all closed sets as basic relations. But in some cases
it might be more natural to consider smaller languages. E.g. for algebraically closed fields
(with the Zariski topologies), it is sufficient to take the graphs of addition and multiplication
as basic closed sets.

Let Z be a Zariski geometry and fix any possible language £. Then Z eliminates quantifiers
by item 3 of the definition. In other words, any definable set is constructible.

Let Y be an elementary equivalent L-structure. There is a natural notion of closed subsets

of Y™ namely the sets defined by quantifier-free positive formulae with parameters in Y.

Fact 1.2 If for each n the closed sets on Y™ satisfy the descending chain condition, then

they endow Y with a structure of a Zariski geometry, called the natural Zariski geometry on
Y.

! This definition is not the general one, but it works well in the case of finite dimension.




Definition 1.3 A Zariski geometry Z in a fized language L is called an elementary Zariski

geometry iff every elementary equivalent L-structure is naturally o Zariski geometry.

The following characterization of elementary Zariski geometries is a direct application of the

compactness theorem:

Proposition 1.4 Let Z be a Zariski geometry with language L. The following are equivalent:

(a) Z is an elementary Zariski geometry in L.

(b) there are no closed sets F; and tuples of parameters a;; such that Z = Fy(agr) D
Fi(ay) D -+ D Fil(agk) for every k € w.

(c) there is an Wy-saturated elementary equivalent Zariski geometry.

Fact 1.5 (a) The property of being elementary is independent of the choice of the language.
(b) If Y < Z are models of an elementary Zariski geometry, then the inclusion maps Y™ —

Z™ are continuous.

By induction on Cantor rank RC for formulae, it is easy to prove that Cantor rank is bounded

by the dimension in a Zariski geometry, which yields immediately the following result:

Proposition 1.6 An elementary Zariski geometry with a countable language is an Ny-stable

structure of finite rank.

In general, neither Morley or Cantor rank need to equal the dimension, nor the dimensions
in two models have to coincide. This is the case in Nyp-saturated models, or more generally

if the dimension is definable in all models.

Lemma 1.7 Let Z be a Zariski geometry. The following are equivalent:

(a) RC(Q) = dim Q for all constructible sets ().

(b) dimQ = dim Q for all constructible set Q.

(c) The set H(F) :={G |G closed irreducible C F, dimG + oo = dim F} is infinite for each

closed irreducible infinite set F'.

Note that given an irreducible set, property (c) allows to choose subsets of smaller dimension

in sufficiently generic position.

2 Varieties and Morphisms

Fix any Zariski geometry Z and let V' be an imaginary set in Z, i.e. a definable subset W of
some Z" divided by an definable equivalence relation £. Then there is a natural family of
Noetherian topologies on the products V' x Z": first take the induced topology on W x Z"
and then its quotient topology under the natural surjection W x Z"™ — W/E x Z™.



Definition 2.1 An imaginary set V.= W/E equipped with these natural topologies on the
products V' x Z"™ is called a variety iff E is closed in W x W.

Note that Z is itself a variety, hence properties of varieties or definitions for varieties apply
to Z, too. If Vi = W /E; and Vo = Wy/E> are varieties, then the product Vi x Vo =
(W1 x Wy)/(E1 x E3) is a variety.

It is clear that a morphism should be a definable and continuous map, but in general this
is not sufficient to prove the fundamental properties of proposition 2.3 (b) below. A slightly

stronger property has to be required:

Definition 2.2 Let Vi, V, be two varieties. A morphism is a definable map f : Vi3 — Vo

such that for each n € w the map f X id zn : V1 X Z™ — Vo x Z" is continuous.

The identity map, constant maps, projections and diagonal maps 6 : V. — V¥, v = (v,...,v)
are obvious examples of morphisms. If E is a closed equivalence relation on V', then the

canonical surjection p : V' — V/E is a morphism.

Now it is straightforward to prove to the following proposition:

Proposition 2.3 (a) If f : V1 — V, is a morphism, then for every variety V, the map
fxidy : Vi xV = Vo XV is continuous.

(b) Products, pairs and compositions of morphisms are morphisms. If f : V1 x Vo =V is a
morphism, then for all ¢ € Vy, the map f.: Vo — V, v — f(c,v) is a morphism.

(¢) The graph of a morphism is closed.

A Noetherian space 1" satisfies the dimension formula if for all closed irreducible subsets

Fy, Fy and each irreducible component X of F; N F, the following holds:
dim X > dim £} + dim F, — dim T

Because irreducible components are non empty by definition, this inequality holds in partic-
ular, if £y N Fy = (.

Definition 2.4 A wvariety V is smooth iff the dimension formula holds in V x Z™ for each

necw.

If an Ng-saturated Zariski geometry is smooth, then any Ng-saturated elementary equivalent

Zariski geometry is smooth, too.

Let F' C Z™ be a closed subset and 7 : Z" — Z! a projection. Define 7[F, > k] to be the set
of all @ such that the m-fibre over a is of dimension at least k. The dimension is definable
iff the sets n[F,> k] are definable for all F, = and k, and semi-continuous iff these sets

are closed in 7[F].



If the dimension is definable and 7[F] is irreducible, then there is exactly one k& such that
7[F,> k] \ n[F,> k + 1] is dense in 7[F]. It is called the 7-generic fibre dimension of F,
denoted by w-gdim F'. Semi-continuity (for all F) is equivalent to the fact that w-gdim F' is
the minimal dimension of non void w-fibres of F'.

Finally, a Zariski geometry is called additive iff for all 7 and irreducible F', the equation
m-gdim F' = dim F' — dim 7[F'] holds.

Definition 2.5 A Zariski geometry Z is rich if for any n and any a € Z", the intersection

of all hypersurfaces of Z™ containing a is finite.

Proposition 2.6 Let Z be a rich, smooth and additive Zariski geometry. Let F C Z" be
closed irreducible, 7 : Z"™ — Z' a projection and a € w[F]. Then dimG > dim F — dim 7[F]

for each irreducible component G of 7= (a)NF. In particular, dimension is semi-continuous.

B Let F C Z" be closed irreducible and a € n[F]. Construct by induction on ¢ < dim #[F]
closed irreducible sets X; containing a such that dim X; = dim n[F]—i and dim G > dim F —i
for every irreducible component G of 7~![X;] N F:

Let Xy := n[F]. Suppose X; is constructed for i < dimn[F]. Choose a hypersurface H;
of Z! such that a € H; but X; ;(_ H,;. This is possible by richness and because X; is
infinite (dim X; > 0). Let X;;1 be an irreducible component of X; N H; containing a. Then

Xdimr[F] = {a}, which gives the result. [ |

Definition 2.7 Let Z be a Zariski geometry. A variety C is complete iff for every n > 1,

the projection C x Z™ — Z™ maps closed sets onto closed sets.
Many properties of complete algebraic varieties are satisfied in the general context, namely:

Proposition 2.8 Let C' be a complete variety.

(a) The projection m:C xV — V is a closed map for every variety V.
(b) If f : C — V is a morphism, then f[C] is complete and closed in V.
(c) Any closed subset of C is itself complete.

(d) A finite Cartesian product of complete varieties is complete.

In fact, if either V; x V5 is a smooth variety or V5 is complete, then a map g : Vi — Vs is a

morphism iff the graph of ¢ is closed in V; x V5.

3 Zariski groups

Definition 3.1 A Zariski group is an elementary Zariski geometry G in a countable lan-
guage together with to morphisms p: G* — G and v : G — G being the multiplication and
the inverse of a group law on G and such that dimension equals Morley rank in Ng-saturated

models.



Recall that Morley rank is definable and additive in Ny-stable groups of finite rank. So a
Zariski group is an additive Zariski geometry with definable dimension. It is not very difficult
to see that Morley rank equals dimension in any model. But to avoid any trouble, one may

assume that all Zariski groups counsidered are Ny-saturated.

Examples:

e Any algebraic group over an algebraically closed field is a Zariski group, the topology being
the Zariski topology.

e Any Ny-stable one-based group of finite rank is a Zariski group, closed sets being the cosets

of definable subgroups.

Many proofs for algebraic groups go through for Zariski groups, e.g. (cf. [Hu] 7.3 and 7.4):

Proposition 3.2 A definable subgroup H is closed. Its irreducible components are the cosets

of the connected component H°.

In particular, a Zariski group is a connected group by definition (because it is irreducible).

A definable subgroup H gives rise to two isomorphic varieties: left and right coset space.

These are well behaved varieties.

Theorem 3.3 (a) The natural surjection p : G"* — G/H x G™ maps constructible sets on
constructible sets.

(b) If Q C G/H x G™ is constructible, then dim @ = dimp~![Q] — dim H.
In particular, dimG = dim G/H + dim H.

(¢) Dimension in G/H x G™ equals Morley rank.

(d) Definability and additivity of dimension hold in G/H x G".

B First note that G/H is really a variety: the corresponding equivalence relation Ey is
the inverse image of H under the morphism (g, h) — g~ 'h, hence closed. It is sufficient to

consider the case n = 0.

(a) is as in algebraic geometry, where one shows that p is even an open map which is a
stronger property. (¢) and (d) follow easily from (b).

(b) Let @ C G/H be constructible and irreducible. A chain Fy C --- C Fj of relatively
closed irreducible subsets of @ lifts to a chain p~![Fy] C -+ C p~![Fk]. These sets are not

necessarily irreducible, but it is easily seen that dimension increases at each step, whence
dimp~![Q] > dim Q + dim p~![Fy] = dim Q + dim H.

If S is an irreducible subset of G, there is an open subset U in p[S] such that the dimension
of the fibres p~!(u) N S is constant. Call this dimension the H-gdim S. Then the following
equality holds: dim S + dim H = dim SH + H-gdim S. Choosing subsets generically, it is
possible to find a chain Sp C --- C Sgim g of relatively closed irreducible subsets of @) such



that H-gdim S; < H-gdim Sy, for all <. Then p[So] C --- C p[Sdim@] will be of length at
least dim Q) — dim H. |

Corollary 3.4 Let G be a smooth Zariski group. If H is a definable subgroup, then G/H is

a smooth variety.

Proposition 3.5 If G is a Zariski group and N a definable normal subgroup, then G/N is
a Zariski group. If G is smooth, then G/N also.

B G/N is a variety, hence there is a family of finite dimensional Noetherian topologies on
the powers of G/N and the diagonal is closed. G/N is irreducible as continuous image of G.
Quantifier elimination is immediate from theorem 3.3 (a).

The compatibility maps, multiplication and inverse are morphisms: straightforward. Morley
rank equals dimension by theorem 3.3 (c).

If G is smooth, G™ is smooth by definition and (G/N)" = G™/N" is a smooth variety by

corollary 3.4, in particular the dimension formula holds in (G/N)". [ |

Complete and parabolic subgroups

Proposition 3.6 (a) Let C be an irreducible complete subset in a Zariski group G such that
e € C. Then the normal subgroup generated by C is definable and complete.
(b) G contains a mazimal complete connected subgroup G¢. This subgroup is unique and

normal in G.

B Use Zil’ber’s indecomposability theorem and proposition 2.8. |
The following theorem generalizes the corollary of theorem 14 of [R]. In fact, it is possible
to prove it without the semi-continuity property (i.e. in a not necessarily smooth Zariski

group).
Theorem 3.7 Assume dimension is semi-continuous. Then G is central in G.

B The proof is essentially the same as of the rigidity lemma in algebraic geometry. The set
T = {(g,h)|3c € G°,h = [c,g]} C G x G is irreducible and closed by completeness of G°.
The projection m onto G gives rise to a finite fibre over e, hence the w-fibres are generically
finite, i.e. the centralizer of generic elements are finite. Then it is not difficult to conclude

that all centralizers are trivial. [ |

Corollary 3.8 A simple smooth Zariski group does not contain any infinite complete subset.



B If C is infinite complete and ¢ € C, then ¢~'C in still complete and contains e. By
simplicity, G equals the normal subgroup generated by ¢~'C, which is complete by propo-
sition 3.6. It suffices to show that a simple smooth Zariski group is rich which will be
proved in the following lemma. Then dimension is semi-continuous by proposition 2.6 and

the preceding theorem applies, G is Abelian: contradiction. |

Lemma 3.9 A simple smooth Zariski group is rich.

W It suffices to verify richness for (e,...,e), because any point in G¥ can be translated on
(e,...,e) by an isomorphism.

Define G" := N{H | H a hypersurface of G and e € H}. By Noetherianity, G is a definable
normal proper subgroup of G, thus G" = {e}. If H is a hypersurface in G, a set G™ x H x
G*=m=1 is a hypersurface in G¥ by additivity. Hence the intersection of all hypersurfaces in

G* containing (e, ..., e) equals G" x --- x G" = {(e,...,€)}. [ |

Definition 3.10 A definable subgroup H of a Zariski group G is parabolic, if G/H is a

complete variety.

Because left and right coset space are isomorphic, this notion is unambiguous: H is left

parabolic iff it is right parabolic.

Theorem 3.11 Let G be a smooth Zariski group with semi-continuous dimension. Suppose
H is a connected definable subgroup such that H N H9 = {e} for any g € G/H. Then H is
a parabolic subgroup of G.

B The hypothesis implies that H = Ng(H) and that conjugacy defines an equivalence
relation on {J,c; H7\{e}. The quotient H can be identified with the set { H9|g € G/Ng (H)},
hence with G/Ng (H). In fact, this is an embedding of varieties, and H is easily shown to be

complete. But it is more direct to show the result without constructing H explicitly:

Let I' := e (Hg x HY) x A(G)". This is a closed irreducible subset of G* 2. Let m
(resp. my) :G?"F2 — G"T! be the projection on the coordinates with odd (even) index and
p: G""1 — G/H x G" the natural surjection. Consider G/H = {Hg|g € G} as a right
coset space. To every set X C G/H x G™ associate the set y(X) := m[['N (pom) X]] =
{(h9,9)|h € H,(Hg,g) € X} C G x G™. In some sense, 7 is a map whose graph is I'.

Suppose X is closed irreducible. Then it is possible to show that v(X) is still closed ir-
reducible. The proof works by calculating the dimensions of irreducible components of

Y(X) \ v(X). It makes essential use of the smoothness condition, additivity and semi-

continuity of dimension applied to I' N (p o 1) 1 [X].



Now it is easy to conclude: let 7 : G X G™ — G™ and ©' : G x G™ — G be the projections.
Obviously, (po m)[X] = n[y(X)] = 7' 1(e) Ny(X) which is a closed set. So H is a parabolic
subgroup. |

Recall that an Ng-stable group of finite rank is called bad if it is connected, non solvable, and
all connected solvable subgroups are nilpotent. A Borel subgroup is a maximal connected

solvable subgroup.

Proposition 3.12 If G is a simple bad smooth Zariski group, then its Borel subgroups are

parabolic.

B In a simple bad group, Borel subgroups are auto-normalizing and two distinct Borels
intersect in {e} — see [P] 3.31. A simple group is rich: see lemma 3.9. As dimension is

semi-continuous (proposition 2.6), theorem 3.11 applies. [ |

Proposition 3.13 There are no bad smooth Zariski groups. (confer [Hu] 21.4)

B If G is a such a group, it has a simple bad factor group ([P] 3.31), which is still a smooth
Zariski group (proposition 3.5). By corollary 3.8, G has no complete infinite subset.

Let B be a Borel, B is nilpotent, hence its center is non trivial. Take ¢ € Z(B) and let
¢ : G — G be the morphism g — g% .
@[B] = {e}. Thus ¢ factors through G /B providing a morphism ¢ : G/B — G. Now ¢[G/B]
is irreducible and complete, because G /B is complete, therefore ¢[G/B] = {e}. It follows
that ¢ = e and ¢ € Z(G), that is Z(B) C Z(G) contradicting the simplicity of G. [ |

Then ¢ is constant on B-cosets, in particular

By Zil'ber’s theorem ([Z1], see [P] 3.20), any connected Ry-stable group of finite rank that
is neither bad nor nilpotent interprets an algebraically closed field. Hence the preceding

proposition yields as an immediate corollary the main theorem:

Theorem 3.14 Any smooth non nilpotent Zariski group interprets an algebraically closed
field.

In fact, the proof of theorem 3.11 (and hence the main theorem 3.14) goes through for Zariski
groups interpretable in Zariski geometries that are additive and smooth with semi-continuous

dimension.

Open problems

(A) A non singular algebraic variety (over an algebraically closed field) satisfies the dimension
formula. Because algebraic groups can’t have singularities, they are smooth Zariski groups.
Question: Are all Zariski groups smooth?

The dimension formula holds at least for cosets of definable subgroups.



(B) As pointed out by Poizat ([P] p. 144), a group interpretable in an algebraically closed
field is a Zariski group in a canonical way. Is this true for any Ng-stable group of finite
rank?

(C) By results of Hrushovski, a simple group of finite Morley rank is interpretable in any
infinite field that is interpretable in the group, provided that the field is endowed with the
full structure coming from the group. To solve completely Cherlin’s conjecture for Zariski
groups, it remains to show that the group in interpretable in the pure field structure.
Hence the problems reduces to the following question: Is the field interpretable in a simple

smooth Zariski group a pure field?
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