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Exercise 1.1 (1.8 of [1]). Let k be a field. Show that the algebraic subsets of A1(k) are just the
finite subsets, together with A1(k) itself.

Exercise 1.2 (1.9 of [1]). If k is a finite field, show that every subset of A1(k) is algebraic.

Exercise 1.3 (1.14 of [1]). Let F be a nonconstant polynomial in k[X1, . . . , Xn], k algebraically
closed. Show that An(k) \ V (F ) is infinite if n ≥ 1, and V (F ) is infinite if n ≥ 2. Conclude that the
complement of any proper algebraic set is infinite. (Hint : see problem 1.4 of [1].)

Exercise 1.4 (1.15 of [1]). Let V ⊂ An(k), W ⊂ Am(k) be algebraic sets. Show that

V ×W = {(a1, . . . , an, b1, . . . , bm) | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈W}

is an algebraic set in An+m(k). It is called the product of V and W .

Exercise 1.5 (1.16 of [1]). Let V,W be algebraic sets in An(k). Show that V = W if and only if
I(V ) = I(W ).

Exercise 1.6 (1.17 of [1]). 1. Let V be an algebraic set in An(k), P ∈ An(k) a point not in V .
Show that there is a polynomial F ∈ k[X1, . . . , Xn] such that F (Q) = 0 for all Q ∈ V , but
F (P ) = 1. (Hint : I(V ) 6= I(V ∪ {P}).)

2. Let P1, . . . , Pr be distinct points in An(k), not in an algebraic set V . Show that there are
polynomials F1, . . . , Fr ∈ I(V ) such that Fi(Pj) = 0 if i 6= j, and Fi(Pi) = 1. (Hint : Apply
the preceding part to the union of V and all but one point.)

3. With P1, . . . , Pr and V as in the preceding point, and aij ∈ k for 1 ≤ i, j ≤ r, show that there
are Gi ∈ I(V ) with Gi(Pj) = aij for all i and j. (Hint : Consider

∑
j aijFj .)

Exercise 1.7 (1.22 of [1]). Let I be an ideal in a ring R, π : R→ R/I the natural homomorphism.

1. Show that for every ideal J ′ of R/I, π−1(J ′) = J is an ideal of R containing I, and for every
ideal J of R containing I, π(J) = J ′ is an ideal of R/I. This sets up a natural one-to-one
correspondence between {ideals of R/I} and {ideals of R that contain I}.

2. Show that J ′ is a radical ideal if and only if J is radical. Similarly for prime and maximal
ideals.

3. Show that J ′ is a finitely generated if J is. Conclude that R/I is Noetherian if R is Noetherian.
Any ring of the form k[X1, . . . , Xn]/I is Noetherian.
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Let k be an algebraically closed field.

Exercise 2.1 (2.4 of [1]). Let V ⊂ An be a nonempty variety. Show that the following are equivalent:
(i) V is a point; (ii) Γ(V ) = k; (iii) dimk Γ(V ) <∞.

Exercise 2.2 (2.14 of [1], important). A set V ⊂ An(k) is called a linear subvariety of An(k) if
V = V (F1, . . . , Fr) for some polynomials Fi of degree 1. (a) Show that if T is an affine change of
coordinates on An, then V T is also a linear subvariety of An(k). (b) If V 6= ∅, show that there is an
affine change of coordinates T of An such that V T = V (Xm+1, . . . , Xn). (Hint : use induction on r.)
So V is a variety. (c) Show that the m that appears in part (b) is independent of the choice of T . It
is called the dimension of V . Then V is isomorphic (as a variety) to Am(k). (Hint : Suppose there
were an affine change of coordinates T such that V (Xm+1, . . . , Xn)T = V (Xs+1, . . . , Xn), m < s;
show that Tm+1, . . . , Tn would be dependent.)

Exercise 2.3 (2.15 of [1], important). Let P = (a1, . . . , an), Q = (b1, . . . , bn) be distinct points
of An. The line through P and Q is defined to be {a1 + t(b1 − a1), . . . an + t(bn − an) | t ∈ k}.
(a) Show that if L is the line through P and Q, and T is an affine change of coordinates, then T (L)
is the line through T (P ) and T (Q). (b) Show that a line is a linear subvariety of dimension 1, and
that a linear subvariety of dimension 1 is the line through any two of its points. (c) Show that, in
A2, a line is the same thing as a hyperplane. (d) Let P, P ′ ∈ A2, L1, L2 two distinct lines through P ,
L′1, L

′
2 distinct lines through P ′. Show that there is an affine change of coordinates T of A2 such

that T (P ) = P ′ and T (Li) = L′i, i = 1, 2.

Exercise 2.4 (2.44 of [1], important). Let V be a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn]. P ∈ V ,
and let J be an ideal of k[X1, . . . , Xn] that contains I. Let J ′ be the image of J in Γ(V ). Show
that there is a natural homomorphism φ from OP (An)/JOP (An) to OP (V )/J ′OP (V ), and that φ
is an isomorphism. In particular, OP (An)/IOP (An) is isomorphic to OP (V ).

3 Sheet 3 — 26 May 2020
Exercise 3.1 (2.29 of [1]). Let R be a DVR with quotient field K, ord the order function on K.
(a) If ord(a) < ord(b), show that ord(a + b) = ord(a). (b) If a1, . . . , an ∈ K, and for some i,
ord(ai) < ord(aj) (all j 6= i), then a1 + · · ·+ an 6= 0.

Exercise 3.2 (3.6 of [1]). Irreducible curves with given tangent lines Li of multiplicity ri may
be constructed as follows: if

∑
ri = m, let F =

∏
Lrii + Fm+1, where Fm+1 is chosen to make F

irreducible (see Problem 2.34 of [1]).

Exercise 3.3 (3.11 of [1]). Let V ⊂ An be an affine variety, P ∈ V . The tangent space TP (V ) is
defined to be {(v1, . . . , vn) ∈ An | for all G ∈ I(V ),

∑
GXi(P )vi = 0}. If V = V (F ) is a hypersur-

face, F irreducible, show that TP (V ) = {(v1, . . . , vn) |
∑
FXi

(P )vi = 0}. How does the dimension
of TP (V ) relate to the multiplicity of F at P?

Exercise 3.4 (3.12 of [1]). A simple point P on a curve F is called a flex if ordFP (L) ≥ 3, where L
is the tangent to F at P . The flex is called ordinary if ordFP (L) = 3, a higher flex otherwise. (a) Let
F = Y −Xn. For which n does F have a flex at P = (0, 0), and what kind of flex? (b) Suppose
P = (0, 0), L = Y is the tangent line, F = Y + aX2 + . . . . Show that P is a flex on F if and only if
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a = 0. Give a simple criterion for calculating ordFP (Y ), and therefore determining if P is a higher
flex.

Exercise 3.5 (3.16 of [1]). Let F ∈ k[X1, . . . , Xr] define a hypersurface in Ar. Write F =
Fm + Fm−1 + . . . , and let m = νP (F ) where P = (0, 0). Suppose that F is irreducible, and let
O = OP (V (F )), m its maximal ideal. Show that χ(n) = dimk(O/mn) is a polynomial of degree
r − 1 for sufficiently large n, and that the leading coefficient of χ is νP (F )/(r − 1)!.

Can you find a definition for the multiplicity of a local ring that makes sense in all the cases you
know?

Exercise 3.6. Let K be a field with a valuation as in Definition 5.3. Prove that

1. R = {z ∈ K | v(z) >= 0} is a ring.

2. For all z ∈ K∗ we have z ∈ R or z−1 ∈ R.

3. For all z, w ∈ R we have v(z) ≤ v(w) iff w ∈ (z).

4. The group of units of R is R∗ = {z ∈ R | v(z) = 0}

5. R is a local ring with maximal ideal m = {z ∈ R | v(z) > 0} and quotient field K.

6. R is a PID.
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Exercise 4.1 (3.14 of [1]). Let V = V (X2 − Y 3, Y 2 − Z3) ⊂ A3, P = (0, 0, 0), m = mP (V ). Find
dimk(m/m2). (See problem 1.40 of [1].)

Exercise 4.2 (3.17 of [1]). Find the intersection numbers of various pairs of curves from the
examples of Section 1 of [1], at the point P = (0, 0).

Exercise 4.3 (3.23 of [1]). A point P on a curve F is called a hypercusp if νP (F ) > 1, F has only
one tangent line L at P , and I(P,L ∩ F ) = νP (f) + 1. Generalize the results of problem 3.22 of [1]
to this case.

Exercise 4.4 (3.24 of [1]). The object of this problem is to find a property of the local ring OP (F )
that determines whether or not P is an ordinary multiple point on F .

Let F be an irreducible plane curve, P = (0, 0), ν = νP (F ) > 1. Let m = mP (F ). For
G ∈ k[X,Y ], denote its residue in Γ(F ) by g; and for g ∈ m, denote its residue in m/m2 by ḡ.
(a) Show that the map from {forms of degree 1 in k[X,Y ]} to m/m2 taking aX + bY to ax+ by is
an isomorphism of vector spaces (see problem 3.13 of [1]). (b) Suppose P is an ordinary multiple
point, with tangents L1, . . . , Lν . Show that I(P, F ∩ Li) > ν and l̄i 6= λl̄j for all i 6= j, all λ ∈ k.
(c) Suppose there are G1, . . . , Gν ∈ k[X,Y ] such that I(P, F ∩Gi) > ν and ḡi 6= λḡj for all i 6= j,
and all λ ∈ k. Show that P is an ordinary multiple point on F . (Hint : Write Gi = Li+higher terms,
l̄i = ḡi 6= 0, and Li is the tangent to Gi, so Li is tangent to F by property (5) of intersection
numbers. Thus F has ν tangents at P .) (d) Show that P is an ordinary multiple point on F if and
only if there are g1, . . . gν ∈ m such that ḡi 6= λḡj for all i 6= j, λ ∈ k, and dimOP (F )/(gi) > ν.

Exercise 4.5 (important). Let F be an irreducible cubic curve. Show that F has at most one
multiple point. Show that such a multiple point must be either a node or a cusp.
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Exercise 4.6. Let F and G be irreducible plane curves, and let P be a point. Check that the
intersection product I(P, F ∩G) as given in Definition 6.2 of Lecture 7 satisfies properties (3), (4),
and (7) given at the end of Lecture 7.

5 Sheet 5 — 09 June 2020
Exercise 5.1 (important, 4.28 of [1]). For simplicity of notation, in this problem we let X0, . . . , Xn

be coordinates for Pn, Y0, . . . , Ym be coordinates for Pm, T00, T01, . . . , T0m, T10, . . . , Tnm coordinates
for PN , where N = (n+ 1)(m+ 1)− 1 = n+m+ nm.

Define S : Pn × Pm → PN by the formula:

S([x0 : · · · : xn], [y0 : · · · : ym]) = [x0y0 : x0y1 : · · · : xnym.

S is called the Segre embedding of Pn×Pm in Pn+m+nm. (a) Show that S is a well-defined, one-to-one
mapping. (b) Show that if W is an algebraic subset of PN , then S−1(W ) is an algebraic subset
of Pn × Pm. (c) Let V = V ({TijTkl − TilTkj | i, k = 0, . . . , n; j, l = 0, . . . ,m}) ⊂ PN . Show that
S(Pn × Pm) = V . In fact, S(Ui × Uj) = V ∩ Uij , where Uij = {[t] | tij 6= 0}. (d) Show that V is a
variety.

Exercise 5.2 (important). Show that the Segre embedding S(P1 × P1) ⊂ P3 is the quadric surface.
On the quadric surface, there are two families of lines. Show that two lines intersect if they come
from different families, and are parallel if they are from the same family.

Exercise 5.3 (important, after 4.26 of [1]). (a) Define maps φi,j : An+m → Ui × Uj ⊂ Pn × Pm.
Using φn+1,m+1, define the “biprojective closure” of an algebraic set in An+m. Choose two items of
Proposition 3 of §4.3 in [1], and prove their analogues in the current setting. (b) Generalize part (a)
to maps φ : An1 × Anr × Am → Pn1 × Pnr × Am. Show that this sets up a correspondence between
{nonempty affine varieties in An1+···+m} and {varieties in Pn1 × · · · × Am that intersect Un1+1 × · · · × Am}.
Show that this correspondence preserves function fields and local rings.

Exercise 5.4 (4.27 of [1]). Show that the pole set of a rational function on a variety in any
multispace is an algebraic subset.

Exercise 5.5 (4.19 of [1]). If I = (F ) is the ideal of an affine hypersurface, show that I∗ = (F ∗).

Exercise 5.6 (4.20 of [1]). Let V = V (Y −X2, Z −X3) ⊂ A3. Prove:

(a) I(V ) = (Y −X2, Z −X3).

(b) ZW −XY ∈ I(V )∗ ⊂ k[X,Y, Z,W ], but ZW −XY /∈ ((Y −X2)∗, (Z −X3)∗).

So if I(V ) = (F1, . . . , Fr), it does not follow that I(V )∗ = (F ∗1 , . . . , F
∗
r ).

Exercise 5.7 (4.11 of [1]). A set V ⊂ Pn(k) is called a linear subvariety of Pn(k) if V =
V (H1, . . . ,Hr), where each Hi is a form of degree 1. (a) Show that if T is a projective change of
coordinates, then V T = T−1(V ) is also a linear subvariety. (b) Show that there is a projective
change of coordinates T of Pn such that V T = V (Xm+2, . . . , Xn+1), so V is a variety. (c) Show that
the m that appears in part (b) is independent of the choice of T . It is called the dimension of V
(m = −1 if V = ∅).
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Exercise 5.8 (5.2 of [1], see also Lecture 9, part of Example 7.14). Show that the following curves
are irreducible; find their multiple points, and the multiplicities and tangents at the multiple points.

(a) XY 4 + Y Z4 +XZ4.

(b) X2Y 3 +X2Z3 + Y 2Z3.

(c) Y 2Z −X(X − Z)(X − λZ), λ ∈ k.

(d) Xn + Y n + Zn, n > 0.
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Exercise 6.1 (5.5 of [1]). Let P = [0 : 1 : 0], F a curve of degree n, F =

∑
Fi(X,Z)Y n−i, Fi

a form of degree i. Show that νP (F ) is the smallest ν such that Fν 6= 0, and the factors of Fν
determine the tangents to F at P .

Exercise 6.2 (5.18 of [1]). Show that there is only one conic passing through the five points
[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1], and [1 : 2 : 3]; show that it is nonsingular.

Exercise 6.3 (5.23 of [1], important, slightly changed). A problem about flexes (see Problem 3.12
of [1]): Let F be a projective plane curve of degree n, and assume F contains no lines.

Let Fi = FXi
and Fij = FXiXj

, forms of degree n − 1 and n − 2 respectively. Form a 3 × 3
matrix with the entry in the (i, j)th place being Fij . Let h be the determinant of this matrix, a
form of degree 3(n− 2). This H is called the Hessian of F .

1. Show that H vanishes identically on an irreducible plane curve iff the curve is a line.

The following theorem shows the relationship between flexes and the Hessian.

Theorem. (char(k) = 0)

(i) P ∈ H ∩ F if and only if P is either a flex or a multiple point of F .

(ii) I(P,H ∩ F ) = 1 if and only if P is an ordinary flex.

Outline of the proof.

2. Let T be a projective change of coordinates. Then the Hessian of FT = (det(T ))2(HT ). So
we can assume P = [0 : 0 : 1]; write f(X,Y ) = F (X,Y, 1) and h(X,Y ) = H(X,Y, 1).

3. (n− 1)Fj =
∑
iXiFij . (Use Euler’s Theorem.)

4. I(P, f ∩h) = I(P, f ∩ g) where g = f2y fxx+f2xfyy−2fxfyfxy. (Hint : Perform row and column
operations on the matrix for h. Add x times the first row plus y times the second row to the
third row, then apply the preceding part. Do the same with the columns. Then calculate the
determinant.)

5. If P is a multiple point on F , then I(P, f ∩ g) > 1.
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6. Suppose P is a simple point, Y = 0 is the tangent line to F at P , so f = y+ ax2 + bxy+ cy2 +
ex2y + . . . . Then P is a flex if and only if a = 0, and P is an ordinary flex if and only if a = 0
and d 6= 0. A short calculation shows that g = 2a+ 6dx+ (8ac− 2b2 + 2e)y + higher terms,
which concludes the proof.

Corollary.

(i) A nonsingular curve of degree > 2 always has a flex.

(ii) A nonsingular cubic has nine flexes, all ordinary.

Exercise 6.4 (5.26 of [1]). (char(k) = 0) Let F be an irreducible curve of degree n in P2. Suppose
P ∈ P2, with νP (F ) = r ≥ 0. Then for all but a finite number of lines L through P , L intersects F
in n− r distinct points other than P . We outline a proof:

1. We may assume P = [0 : 1 : 0]. If Lλ = {[λ : t : 1] | t ∈ k}∪{P}, we need only consider the Lλ.
Then F = Ar(X,Z)Y n−r + · · ·+An(X,Z), Ar 6= 0. (See Problems 4.24, 5.5 of [1].)

2. Let Gλ(t) = F (λ, t, 1). It is enough to show that for all but a finite number of λ, Gλ has n− r
distinct points.

3. Show that Gλ has n−r distinct roots if Ar(λ, 1) 6= 0, and F ∩FY ∩Lλ = {P} (see Problem 1.53
of [1]).
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Exercise 7.1 (5.33 of [1]). Let C be an irreducible cubic, L a line such that L • C = P1 + P2 + P3,
Pi distinct. Let Li be the tangent line to C at Pi: Li • C = 2Pi +Qi for some Qi. Show that Q1,
Q2, Q3 lie on a line. (L2 is a conic!)

Exercise 7.2 (5.37 of [1]). Suppose O is a flex on C. (a) Show that the flexes form a subgroup
of C; as an abelian group, this subgroup is isomorphic to Z/(3)× Z/(3). (b) Show that the flexes
are exactly the elements of order three in the group. (I.e., exactly those elements P such that
P ⊕ P ⊕ P = O.) (c) Show that a point P is of order two in the group if and only if the tangent
to C at P passes through O. (d) Let C = Y 2Z −X(X −Z)(X − λZ), λ 6= 0, 1, O = [0 : 1 : 0]. Find
the points of order two. (e) Show that the points of order two on a nonsingular cubic form a group
isomorphic to Z/(2)× Z/(2). (f) Let C be a nonsingular cubic, P ∈ C. How many lines through P
are tangent to C at some point Q 6= P? (The answer depends on whether P is a flex.)

Exercise 7.3 (5.41 of [1]). Let C be a nonsingular cubic, O a flex on C. Let P1, . . . , P3m ∈ C. Show
that P1 ⊕ · · · ⊕ P3m = O if and only if there is a curve F of degree m such that F • C =

∑3m
i=1 Pi.

(Hint : Use induction on m. Let L • C = P1 + P2 +Q, L′ • C = P3 + P4 +R, L′′ • C = Q+R+ S,
and apply induction to S, P5, . . . , P3m; use Noether’s Theorem.)

Exercise 7.4 (5.43 of [1]). For which points P on a nonsingular cubic C does there exist a
nonsingular conic that intersects C only at P .

Exercise 7.5 (6.14 of [1]). Let X, Y be varieties, F : X → Y a mapping. Let X =
⋃
α Uα,

Y =
⋃
α Vα, with Uα, Vα open subvarieties, and suppose f(Uα) ⊂ Vα for all α. (a) Show that f is

a morphism if and only if each restriction fα : Uα → Vα of f is a morphism. (b) If each Uα, Vα is
affine, f is a morphism if and only if each f̃(Γ(Vα)) ⊂ Γ(Uα).

6



Exercise 7.6 (6.16 of [1]). Let f : X → Y be a morphism of varieties, X ′ ⊂ X, Y ′ ⊂ Y subvarieties
(open or closed). Assume f(X ′) ⊂ Y ′. Then the restriction of f to X ′ is a morphism from X ′ to Y ′.
(Use Problems 6.14 and 2.9 of [1].)
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Exercise 8.1. Show that the twisted cubic (projective or affine, whichever you prefer) has dimension
1 and is therefore a curve (i.e. variety of dimension 1).

Exercise 8.2 (6.40 of [1]). If there is a dominating rational map from X to Y , then dim(Y ) ≤
dim(X).

Exercise 8.3 (6.41 of [1]). Every n-dimensional variety is birationally equivalent to a hypersurface
in An+1 (or Pn+1).

Exercise 8.4 (6.43 of [1]). Let C be a projective curve, P ∈ C. Then there is a birational morphism
f : C → C ′, C ′ a projective plane curve, such that f−1(f(P )) = {P}. We outline a proof:

(a) We can assume: C ⊂ Pn+1. Let T,X1, . . . , Xn, Z be coordinates for Pn+1; Then C ∩ V (T )
is finite; C ∩ V (T,Z) = ∅; P = [0 : · · · : 0 : 1]; and k(C) is algebraic over k(u), where
u = T̄ /Z̄ ∈ k(C).

(b) For each λ = (λ1, . . . , λn) ∈ kn, let φλ : C → P2 be defined by the formula φ([t : x1 : · · · : xn :
z]) = [t :

∑
λixi : z]. Then φλ is a well-defined morphism, and φλ(P ) = [0 : 0 : 1]. Let C ′ be

the closure of φλ(C).

(c) The variable λ can be chosen so φλ is a birational morphism from C to C ′, and φ−1λ ([0 : 0 :
1]) = {P}. (Use Problem 6.32 of [1] and the fact that C ∩ V (T ) is finite.)
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Assume k is algebraically closed of characteristic 0.

Exercise 9.1 (6.43 of [1], important). Let C be a projective curve, P ∈ C. Then there is a birational
morphism f : C → C ′, C ′ a projective plane curve, such that f−1(f(P )) = {P}. We outline a proof:

(a) We can assume: C ⊂ Pn+1. Let T,X1, . . . , Xn, Z be coordinates for Pn+1; Then C ∩ V (T )
is finite; C ∩ V (T,Z) = ∅; P = [0 : · · · : 0 : 1]; and k(C) is algebraic over k(u), where
u = T̄ /Z̄ ∈ k(C).

(b) For each λ = (λ1, . . . , λn) ∈ kn, let φλ : C → P2 be defined by the formula φ([t : x1 : · · · : xn :
z]) = [t :

∑
λixi : z]. Then φλ is a well-defined morphism, and φλ(P ) = [0 : 0 : 1]. Let C ′ be

the closure of φλ(C).

(c) The variable λ can be chosen so φλ is a birational morphism from C to C ′, and φ−1λ ([0 : 0 :
1]) = {P}. (Use Problem 6.32 of [1] and the fact that C ∩ V (T ) is finite.)
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Exercise 9.2 (6.46 of [1], important). Let k(P1) = k(T ), T = X/Y (see Problem 4.8 of [1]). For
any variety V , and f ∈ k(V ), f /∈ k, the subfield k(f) generated by f is naturally isomorphic
to K(T ). Thus a nonconstant f ∈ k(V ) corresponds to a homomorphism from k(T ) to k(V ), and
hence to a dominating rational map from V to P1. The corresponding map is usualy denoted also
by f . If this rational map is a morphism, show that the pole set of f is f−1([1 : 0]).

Exercise 9.3 (7.2 of [1]). (a) For each of the curves F in §3.1 of [1], find F ′; show that F ′ is
nonsingular in the first five examples, but not in the sixth. (b) Let F = Y 2 −X5. What is F ′?
What is (F ′)′? What must be done to resolve the singularity of the curve Y 2 = X2n+1?

Exercise 9.4 (7.6 of [1]). If P is an ordinary cusp on C, show that f−1(P ) = {P1}, where P1 is a
simple point on C ′.
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Exercise 10.1. Show that a nonconstant morphism between two curves has finite fibre.

Exercise 10.2. Show that principal divisors form a subgroup of DivC.

Exercise 10.3. Make sure you understand the sequence of equalities in the last step of the proof of
Lemma 12.9, ii), Lecture 20 (specifically the third “=”).

Exercise 10.4. Show that if C is in good position, then so is C ′ (see notation from Lecture 19 and
hints therein).

Exercise 10.5 (7.12 of [1]). Find a quadratic transformation of Y 2Z2−X4−Y 4 with only ordinary
multiple points. Do the same with Y 4 + Z4 − 2X2(Y − Z)2.

11 Sheet 11 — 21 July 2020
Exercise 11.1. 1. Show that if a rational map of curves has degree one, then it is a birational

map.

2. If f0, . . . , fr are functions in k(C) for some smooth curve C that are regular and do not vanish
simultaneously on points of C, then [f0 : · · · : fr] is a morphism from C to Pr.

Exercise 11.2. Prove Lemma 12.16 from Lecture 22.

Exercise 11.3. Prove parts i) and iii) of Proposition 12.18 from Lecture 22.

Exercise 11.4. If P is a base point of a divisor D on a curve, then L(D) = L(D − P ).
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