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1 Classical Mechanics

1.1 One-body Classical Mechanics

Newton’s Equation. Consider a point particle moving on R? at position z € R? with momentum
p € R? where p = mw, with m the mass and v = & the velocity of the particle. The set {(z,p)| (z,p) €
R2?} of all possible configurations of vectors (z,p) is referred to as the phase space of the system.
The time evolution of the system is given by the map t — (z(t),v(t)), for all times ¢ € R. Such map
is defined as the solution to the Newton’s equation

mi(t) = F(x(t)),

where F : RY — R? is the force field at point z. If F = —VK, with K a real-valued function called
potential, then Newton’s equation can be written as

L(t) = p(t)/m,
{p(t): —VEK (x(t)). (1.1)

Observe that, under assumptions on the vector field (p, ~VK) € R? x R? (e.g. (p, —VK) € Lip(R%))
there exists a unique solution (z,p) € R% to (1.1) (cfr. standard theory of o.d.e.). In other words,
given an initial configuration (z,p) € R?? at time ¢ = 0, the configuration at time ¢ > 0 is uniquely
determined by the solution (x(t),p(t)) to (1.1), that means that classical mechanics is deterministic.

Hamiltonian systems. An important quantity that describes the point particle in the phase space
is the Hamiltonian function H : R? x RY — R

2
H(z,p) = 2p—m + K(z), (1.2)

whose value represents the energy of the system.

Proposition 1.1.1 (Hamiltonian system). Given the differentiable Hamiltonian function (1.2), New-
ton’s equation (1.1) reads

{:’c(t)— I (x(8),p(1)),
p(t) = —GE(x(t), p(t)).

Proof. The statement follows by direct inspection. O
Corollary 1.1.2. The energy is conserved by the time evolution.

Proof. Proposition 1.1.1 yields
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Hence the Hamiltonian is preserved by the time-evolution. O

Definition 1.1.3. A (possibly vector-valued) function A defined on the phase space R*? is called
observable.



Definition 1.1.4. Let A and B be two observables. The Poisson brackets {A, B} of A and B are
given by
A OB A OB
(4.5} 2428 _ 2405,
Odxr dp  Op Ox
Proposition 1.1.5. Let A be an observable of the system with Hamiltonian H. The time-evolution
of A is given by the Poisson brackets of A and H

d

2 A(), p(1)) = {A, H} (2 (1), p(1)).

Proof. The statement follows by direct inspection. O

Remark 1.1.6 (Conservation laws). Every observable A such that {A,H} = 0 is preserved along
the time-evolution. In particular, the conservation of energy follows easily from {H,H} = 0. In
the specific case of a free particle (no force acting on the particle) H(z,p) = p*/2m and therefore
{p,H} = 0, which means that momentum is preserved. The importance of conservation laws is due
to the fact that they are often the main tool to solve Newton’s equation.

1.2 Many-body Classical Mechanics

Most physical systems are made of a big number of particles N > 1. Let N be the number of
particles moving in R?. A configuration of the system is given by the collection of positions of the
N particles 2 = (z1,...,zy) € R*® and velocities v = (v1,...,vx) € R¥N. The time evolution of
the configuration (z,v) € R?* is given by the system of Newton’s equations

miii(t) = Fi(z(t)), i=1,...N,

where m; is the mass of i-th particle, and F; : R — R? is the force acting on particle i, which a
priori depends on the whole configuration z € R,

Coulomb potential. One special interaction in nature is the electrostatic interaction, or Coulomb
potential, describing the interaction between two charged particles. To better understand what
happens in many-body Coulomb systems, consider N = 2 and d = 3. The Coulomb potential then
writes K(z1,%2) = qi1g2/|r1 — x2|, where g; is the charge of particle 7, i = 1,2. The corresponding
force field F' = (Fy, Fy) € R? x R?, also called Coulomb force, is given by

Fi(a1,22) =~V K (21,23), K(z1,00) = —2 2 i=1,2,

=l
It describes the electrostatic attraction (if g1g2 < 0) or repulsion (if g1g2 > 0) between two charged
particles with charges ¢; and gs.
The Hamiltonian associated with such system is

2
Py + 41492

—2m |z — 9|

H(‘T7p) =

Observe that there are two possible scenarios:



i) either g1g2 > 0 (i.e. the two particles have charges of the same sign), then the total energy of
the system (that is the Hamiltonian) is minimized by taking the particles as much as possible
separated. This implies that the electrostatic repulsion prevents the system from forming
bound states and the two particles flow away;

i) or q1q2 < 0 (i.e. the two particles have opposite signs), then the total energy of the system
is minimized when the two particles are close to each other, in such case the Hamiltonian in
unbounded below and the system is unstable.

Both situations fail to explain stability of atoms, that are made of neutrons (neutral particles),
protons (positively charged particles) and electrons (negatively charged particles). As we shall see,
stability of matter finds its rigorous justification in the theory of quantum mechanics.

2 Introduction to Quantum Mechanics

2.1 Basic Notions

Quantum mechanics is the microscopic theory of nature that describes physics on the scale of atoms
and molecules. In analogy with classical mechanics, we will define evolution and observables in
quantum mechanics. To this end, we will introduce basic functional analysis notions, which are
collected in Appendix A.

Observables. Quantum systems are described on Hilbert spaces H (see Definition A.1.2), that are

the analogue of classical mechanic phase spaces. Following the comparison with classical mechanics,
states of the system are therefore elements of the Hilbert space, i.e. they are represented by vectors
1 € H, such that ||[¢|| = 1, while observables are associated with self-adjoint operators on H. Here
|| - || denotes the norm induced by the inner product on H. We shall see that |1)|? can be interpreted
as a probability, making quantum mechanics a non-deterministic theory. It therefore makes sense to
consider the expectation of an observable described by the operator A in the state 1) by defining the
inner product (¢, At).
In analogy with the classical case, consider a system consisting of a particle moving in R¢, which can
be described on the Hilbert space H = L?(R%; C) of complex-valued, square integrable functions on
R<. Physically, |¢(z)|? is interpreted as the probability density for finding the particle at position z.
Accordingly, for a measurable set B C R?, the probability that the particle is located in a region B
is given by

/ () P = / 15(2) () P = (16, 1 p()e)
B

where 1p is the characteristic function of B. Similarly, the expectation value of the position of the
particle is determined by

[alvta)Pds = (6. 20)

The function ¢ € L?(R?) is often referred to as the wave function. It does not only determine the
distribution of the position of the particle, but also every observable physical quantity is associated
with a self-adjoint operator A acting on the Hilbert space L?(R?) so that the expectation value of the



observable is given by the inner product (1, Ay) and the probability that a measurement of A gives
a result in a set B C R? is determined by (1), 15(A)1), where 15(A) is defined through functional
calculus.

The self-adjoint operator associated with the observable position of the particle is the multiplication
operator 9 (z) + x1)(x). More precisely, for each component i = 1,...,d of the vector € R?, we
define the map 1 (z) — z;1(z) and define the vector made of the d components as the action of
the position operator. Notice that the position operator, defined as multiplication through z, is an
unbounded self-adjoint operator on L?(R%). For this reason, it is not defined on the full Hilbert space
L%(R%) but only on the dense subspace consisting of functions ¢ € L2(R?) such that z¢(z) is again
square integrable.

The observable momentum of the particle is associated with the self-adjoint operator p = —iAV.
Notice that also p is a vector-valued observable with components p; = —ihd;;, j = 1,...,d and it is
an unbounded self-adjoint operator. Here A is the Planck constant, which we will henceforth assume
to be h = 1. The expected value of the momentum is therefore given by the expectation

(6, —iV) = —i / PRV (x)dz

Since the Fourier transform diagonalizes the derivative, we can write
(b, =ive) = [ ko) P

In other words, |¢)(k)|? is the probability density for finding the momentum close to k. This ob-
servation explains why it is important for 1 to be complex valued: while |1)(z)|? determines the
distribution of the position observable, it is the phase of v, the oscillations of 1, which contributes
to [¢(k)|? and determines the distribution of the momentum observable.

We moreover notice that the position operator is a multiplication operator and its distribution is
determined directly by the probability density [1/(z)[?>. The momentum operator is a differential
operator, it is diagonal in Fourier space and its distribution is determined by the probability density
(k) 2.

For a general self-adjoint operator A on L?*(R?), its distribution is determined by the spectral de-
composition of A. Suppose H to be finite dimensional. Then we know from Linear Algebra that the
spectral theorem holds for self adjoint operators (i.e. symmetric matrices), that is for A self adjoint
operator on the finite dimensional space H,

A= NPy,
J

where \; € R are the eigenvalues of A and Py, are orthogonal projections onto the eigenvector ;.
ie.
Py = (Y5, 9); .
Thus
(0, 49) = D Nl o).
J



Moreover, by completeness of the orthonormal basis we have > [(1), V)2 = 1.

Now, if H is infinite dimensional and A is self adjoint with discrete spectrum, an extension of the
spectral theorem holds leading to A =) j AjPy,, Aj € R eigenvalues and Py, orthogonal projections
onto the eigenvectors v; of A. Then, for ¥ € H, B C R, we have

(¥, Ap) = §)|¢%
(,1p0) = §313 W)= > 1@l
j: NEB

This means that the observable A takes the values \; with probability |(1,;)|?. But what is
the spectrum of A is not be purely discrete? If the spectrum of the self-adjoint operator A has a
continuous component, let (Ey)xer be the projection-valued measure associated with A. Then the
generalization of the spectral theorem allows us to write

= /)\dEA

WAW=/MWEW>

and we have

where d(i, Ext) is a Borel measure.

Heisenberg’s uncertainty principle. Consider a quantum system described on a Hilbert space H.
States of the systems are associated to vectors ¢ € H, normalized so that ||1|| = 1. Since observable
quantities are given by expectations of the form (1, Ay), for self-adjoint operators A, the vector ¢
is only defined up to a phase (ie. 1 and ¢y describe the same state, if # € R is a constant).
Taking into account that 1 determines simultaneously the distribution of all observables of the
system, it follows that these distributions cannot be independent of each other. An important
consequence of this observation is Heisenberg’s uncertainty principle.

Theorem 2.1.1. Let A, B be two self-adjoint operators acting on a Hilbert space H and let p € H
be a normalized (so that ||| = 1). We define the variance of A in the state 1 by

Then, we have .
AAAB, > 11{, [A, By

Proof. Replacing A and B by A = A— (1, AY) and B = B — (¢, By)), we can assume that (1, Ayh) =
(¢, By = 0. Then

(¥, [A, BlY) = (¢, ABY) — (¢, BAY) = 2ilm (4, ABY)



This implies that
[, [4, Bl)| < 2|(t, ABY)| = 2/(Ay, BY)| < 2| A||| BY|| = 2AAY*AB)/

and therefore that )

O]

Ezample. Consider a particle moving on R, take A = z and B = —ihd,. Then [A, B] = ih. It

follows that 5

AxyApy > hz

In other words, x and p cannot be measured simultaneously with arbitrary precision. If 1) concentrates
very much around a position x¢ (meaning that the variance Az, is very small), then 1) is flat, meaning
that the variance Ap,, is large. Only commuting observables can be measured simultaneously.

The Hamilton operator and the time evolution. In every quantum system there is an ob-
servable that plays a particularly important role. The Hamilton operator, or the Hamiltonian, is a
self-adjoint operator H on the Hilbert space H, corresponding to the energy of the system. Through
the Schrodinger equation

() = Hib (1) (2.3)

for ¢(t) € H, the Hamilton operator generates the time evolution of the quantum system. Notice
that

d d
Sl = 2w, ()

)
= i [(10()Y(t), (1)) — (¥(t),i0:(1))]
[(Hep(t), 9(2)) — ((2), Hy(t))]

?
0

since H is self-adjoint. Hence, the Schrédinger equation defines a unitary evolution on H, preserving
the norm. Denoting by e ! the unitary group generated by H, we can write the solution of the
Schrédinger equation (2.3) with initial data ¢(0) as ¢(t) = e~ t4)(0).

Suppose that ¢ € H is a normalized eigenvector of H, ie Hp = E¢p. Then, the solution of the
Schrédinger equation with initial data v(0) = ¢ is simply given by 1 (t) = e~*F!p. This implies that
(W(t), A(t)) = (@, Ap), independently of t. For this reason, eigenvectors of H are referred to as
stationary states.

Consider now a quantum particle in R¢, described on the Hilbert space L2(Rd). As explained
above, the observables depending on the position are associated with multiplication operators, while

the momentum is associated with the differential operator p = —iV. Recalling the classical energy
H = p?/(2m) + V(x), we can guess that the Hamilton operator for this system takes the form
A
H=—+4+YV 2.4
= V() (2.9

7



where A = V -V is the Laplace operator on H?(R%). Operators of the form (2.4) are known as
Schrodinger operators. Understanding their spectral properties is crucial to understand properties
of the time-evolution they generate.

Conservation laws. Let A be a self-adjoint operator on the Hilbert space H. Let 1 (t) denote the
solution of the Schrédinger equation

i0n(t) = Hy(t)
The variation of the expectation of the observable A has the form

P2 (), Ap()) = o(e), 14, (1)
where [A,H] = AH — HA is the commutator between the operators A and H. This should be
compared with the Poisson brakets in the classical setting; the commutator replaces here the Poisson
brackets.
In particular, for an observable A satisfying [A, H] = 0, the expectation (1(t), A(t)) remains con-
stant over time.
The free Schrodinger Equation. If there is no interaction and the quantum particle is moving
freely, we talk about the free Schrédinger equation. In such case the Hamiltonian reads H = —A/2m
on H?(R?) (this is the Hamilton operator of a free particle moving in RY), then [H, —iV] = 0, ie.
momentum is conserved. Similarly, the Hamilton operator H = —A/2m + V(|z|) acting on H?(R3),
with a radial potential (ie. V' only depends on the ||z||), then [H,z A —iV] = 0, ie. (each component
of) the angular momentum operator L = —iz A V is conserved. We will use this conservation law
below, to compute the spectrum of the Hamilton operator describing the hydrogen atom.

Ezample: the Stern-Gerlach experiment. In quantum mechanics, elementary particles have an in-
ternal degree of freedom, known as spin. The spin is an angular momentum; it has three components,
0z, 0y, 05. Experimentally, the existence of a spin can be verified with a Stern-Gerlach experiment,
using the fact that spins couple to magnetic fields. In the Stern-Gerlach experiment, neutral particles
(in the original experiment in 1922, silver atoms) are sent through a non-constant magnetic field,
which deflects them according to their spin. Particles are then detected on a screen. The outcome
of the experiment was, at the beginning, surprising (it led to the Nobel Prize for Stern in 1943); the
screen does not show a continuous distribution but, instead, it reveals discrete accumulation points,
showing that the spin (more precisely, the component of the spin in the direction parallel to the
applied magnetic field) is quantized. Particles are associated with a spin number n € N/2; each
spin component has then 2n + 1 possible values. In particular, for spin 1/2 particles (like electrons,
protons), each spin component has two possible values (spin up or spin down).

If we forget about all other degrees of freedom, we can describe the setting of the Stern-Gerlach
experiment, restricting for simplicity our attention to spin 1/2 particles, as a quantum system on
C2. If the magnetic field in the Stern-Gerlach apparatus points in the z-direction, it is convenient to
choose the vectors (1,0), (0,1) € C? to describe particles with the z-component of the spin pointing
up and, respectively, down. In this representation of the system, the z-component of the spin is
associated with the self-adjoint matrix
10
az—<0 1 > (2.5)



The z- and the y-component of the spin are associated instead with the matrices

ox:(?é), ay:<?ai> (2.6)

The matrices 0,0y, 0, are known as Pauli matrices. They satisfy the commutation relation
(02, 0y] = 2i0, (2.7)

and its cyclic permutations. In particular, notice that spins in different directions do not commute.
Notice that we did not try to justify the choice of the matrices (2.5), (2.6). In fact, as we will
discuss later, relations between operators associated to different spin components (in particular the
commutator relations (2.7)), are determined by the properties of the group of rotations SO(3).

The Stern Gerlach experiment is a measurement of the z-component of the spin. If the initial state
of the system is described by the vector 1 = (a, 3) € C?, normalized so that |a|? + |3|?> = 1, the
measurement of o, will give the value +1 with probability |a|? and the value —1 with probability
|32. In other words, after going through the Stern-Gerlach appartus, the particle will move up and
hit the upper accumulation point on the screen with probability |a|? and it will move down and hit
the lower accumulation point on the screen with probability |3|?. If the measurement of o, gives
the value +1, after going through the apparatus the particle is described by the vector (1,0). In
this case, if we let the particle go through a second Stern-Gerlach experiment, again with magnetic
field pointing in the z direction, the particle will show spin up with probability one. On the other
hand, if the measurement of o, gives the value —1, after going through the apparatus the particle is
described by the vector (0,1). In this case, a second measurement of o, will give again the value —1
with probability one. It is also possible to insert, after the first Stern-Gerlach apparatus measuring
the z-component of the spin, a Stern-Gerlach apparatus measuring, say, the z-component of the spin.
Let us assume, for example, that the first measurement of o, returns the value +1 and therefore
that after the first measurement the system is described by the vector (1,0). The expectation value

of o, is given by
0 1

Since 02 = 1, the variance of o, is given by Ao, = 1. A different approach to reach the same
conclusion consists in noticing that the matrix o, has the two eigenvalues +1 associated with the

normalized eigenvectors (1/v/2,1/4/2) and (1/4/2,—1/+/2). Since

1 1

7 \/5(1/ V2,-1/V?2)

we conclude that the measurement of o, gives the value +1 and the value —1 both with probability
1/2 (this explains also why the expectation of o, vanishes and its variance equals one). This result
shows a well-known phenomenon in quantum systems. Non-commuting observables cannot be mea-
sured simultaneously. It is impossible to know the precise value of o, and of o, at the same time
(mathematically, this means that two non-commuting self-adjoint operators cannot be diagonalized
simultaneously).

(1,0) = —=(1/3/2,1/V2) +



Density matrices and mixed states. As explained above a quantum mechanical system is
described on a Hilbert space H. States of the system are associated with normalized vectors 1) € H.
Observables are associated with self-adjoint operators A acting on H. The expectation value for the
measurement of the observable A in the state ¢ is then given by the inner product (¢, Ay). The
same state can be described through the orthogonal projection onto 1), denoted by

v = [¥) (¥

The expectation of the observable A is then given by

(¢, AY) = trAy

In this case, describing the system through ~ is fully equivalent to the description given by 1.
Moreover, observe that the description through ~ shows that ¢ and v describe the same state.
The description through ~ has the advantage that it can be easily extended to mixed states.

Definition 2.1.2. A density matriz over the Hilbert space H is a non-negative (in particular self-
adjoint) trace class operator v on H, with try = 1. A trace class operator is a compact operator, with
the property that the sequence {\;}; of its eigenvalues is summable, ie. > . |\j| < co. The trace of
a trace class operator v is defined by try = Zj Aj

Given a density matrix v over H, we can always decompose it as
v = Nl (sl
J

where {¢;}; is an orthonormal basis in H and where A; > 0 for all j, with >, A; = 1. Such a density
matrix describes the system, if it is in the state 1; with probability A;. If the density matrix + is not
an orthogonal projection, it is said to describe a mixed state (on the other hand, if v = [¢))(¢| is an
orthogonal projection, it is said to describe the pure state, which can be equivalently be described
by the vector ¢ € H).

There is an important consequence of being a pure or a mixed state, which is connected to the
information we have on the quantum system. Consider pure states, given by linear combinations
of vectors in H, and mixed states, given by a density matrix that is a (convex) linear combination
of orthogonal projections. Suppose for example 11,19 are two orthogonal normalized vectors in H.

Then
1

Y= ﬁ(% +1b2) (2.8)

is again a normalized vector in H. The expectation of an observable A in the pure state 1 is given
by

(Y, Ap) = % (1, A1) + (2, Adpa) + (Y1, Atha) + (ha, Athr)] (2.9)

On the other hand, consider the mixed state, described by the density matrix
1
7= 5 (1) (@] + [92) (]| (2.10)

10



The expectation of A in the mixed state with density matrix - is given by

Ay = o (b1, Aun) + (s, Avo)]

In contrast to (2.9), there are here no “interference” terms of the form (1, Aya), (12, AY1). We call
(2.8) a coherent superposition of the quantum states 11,192. On the other hand, (2.10) is called an
incoherent superposition of quantum states.

Mixed states are needed, when there is no complete information about the system. For example,
equilibrium states at positive temperature are mixed.

2.2 Many-Body Quantum Mechanics

Bosonic and fermionic statistics. A system of N particles moving in the 3-dimensional space is
described on the Hilbert space

Hy = L2R¥™N dxy ... dey) = LAH(R?)®N

given by the tensor product of N copies of the one-particle space L?(R3). Wave functions ¢y € Hy
are normalized so that

||1/JN||2 = / ’1/)]\7(1‘1, e ,xN)|2d:z:1 . .dl‘N =1

Accordingly, |¢)n (21, ..., zN)|? is the probability density for finding particle 1 close to x1, particle 2
close to x5, and so on.

When considering systems of N indistinguishable particles, we need to restrict the Hilbert space
to subspaces with appropriate statistics. Indistinguishability plays an important role in quantum
mechanics, much more important than in classical mechanics. Classical particles follow trajectories
and can be labeled. Quantum particles do not. Indistinguishability translates, in quantum system,
into a restriction of the set of physical observables. Only observables that are invariant with respect
to permutations of the N particles can be measured.

Let us denote by Sy the group of permutations 7 of the set {1,2,...,N}. We define a unitary
representation of Sy on the N-particle Hilbert space L? (]R3N ) setting

(wa)('fh e ,xN) = 1/)(1’7@, e ,.Tﬂ-N)

Physically meaningful observables of the N-particle system are self-adjoint operators A on L?(R3N)
with the property UXAU, = A (or, equivalently, [A, U] = 0) for all 7 € Sy.

The existence of such unitary representation is justified by the Abelianization of the group of per-
mutations. More precisely, there exists a homeomorphism () : Sy — U(1), where U(1) is the
unit circe, that is a one-dimensional representation of the symmetric group. We can therefore
consider the Abelianization of Sy with the standard procedure! and construct the Abelian group

!By Abelianization of a group G we refer to the existence of a homeomorphism h : G — G’ such that G’ is Abelian.
Such homeomorphism can be constructed by considering the kernel given by the commutator subgroup [G, G], which
is the unique smallest normal subgroup of G such that the quotient group G’ = G/[G, G] is Abelian.

11



Sn/[Sn,Sn]. Observe that in dimension d > 3 this is topologically justified (whereas for d = 2 there
are infinitely many choices for ). The largest Abelian quotient is then made of two elements: the
identity and the parity of the permutation. Since any one-dimensional representation must factor
through the Abelianization, there are only two possibilities: for every = € Sy, either (™) =1 or
e?(m) = (—1)%en(™) | where sgn () is the sign of the permutation 7. More precisely, if 7 consists of an
even number of transpositions, o, = —1 if 7 consists of an odd number of transpositions). For each
quantum particle, either completely symmetric or completely antisymmetric wave functions can be
considered, not both at the same time. Particles described by wave functions that are symmetric
w.r.t. permutations are called bosons. Particles described by antisymmetric wave function are called
fermions. Systems of N bosons moving in the three dimensional space are described on the Hilbert
space
LAR3N) = L2(R)®N = {op € L2R*™N) - h(xr1, ..., 2an) = (21, ..., 2N)}

Systems of N fermions on R? are described, on the other hand, on the Hilbert space
LyRY) = 2RO = {¢ € L2(RY) - (rr, .o 2nn) = oxtb(@1, .., o)}

The choice between bosonic and fermionic statistics is related with the internal degree of freedom
of quantum particles, known as spin (already discussed in the Stern-Gerlach experiment). Particles
with integer spin are bosons (they are described by wave functions that are symmetric w.r.t. per-
mutations). Particles with half-integer spin are fermions (they must be described by wave functions
that are antisymmetric w.r.t. permutations).

Ezxamples of bosonic wave function: The simplest example of a bosonic wave function is the
product of N copies of the same one-particle normalized wave function ¢ € L?(R3), ie

N
Yn(ay, . an) = [ ela))
j=1

which is clearly normalized and symmetric w.r.t. permutations.
More generally, if {¢;}jen is an orthonormal basis in L?(R?), we can describe the N-particle state
with one particle in the state ;,, one particle in the state ¢;,, and so on, the symmetrized wave

function
/ 1
Yp(@1,...,aN) = 0! OINT XS: @it (Tr1) i (Tr2) - - Piy (TrN)
TESN

if the set {i1,...,in} contains k different indices, appearing respectively ¢1,... ¢ times, with ¢ +
bo+---4+ 4= N.

Similarly, we can define construct fermionic wave functions. In this case, however, each one-particle
state can be “occupied” by at most one-particle, otherwise the antisymmetrization is going to vanish
(this is known as the Pauli principle). The fermionic state with one particle in the state ;,, one
particle in the state ¢;,, and so on (with all different indices 41,...,in) , can be described by the
wave function

Yp(T1,...,TN) = \/% Z Ox0iy (Tr1) - - Qin (TaN)

" meSy

12



The wave function ¥y can be written as

1
Yr(x1,...,oN) = mdet (@i (TK))1<jk<N

Such wave functions are known as Slater determinants.

Reduced density matrices. The density matrix of a normalized N-particle wave function ¢y €
L?(R3N), with either bosonic or fermionic statistics, is defined as yn = |¢n){¥n|, ie. 7y is the
orthogonal projection onto ¢ n. More generally, mixed states of an N-particle system are described
by non-negative trace class operators vy with tryy = 1.

For a density matrix vy, we denote by vn(x1,...,ZN;y1,...,yn) the integral kernel of yy. This is
defined so that

(fVN{N)(xlvaxN) :/’YN(:Ulw"axN;yla"'7yN)§N(y17"'7yN)

Every trace class operator can be associated with an integral kernel (since every trace class operator
is Hilbert Schmidt, the integral kernel is in fact a L2(R3*"N x R3")-function).

Using the integral kernel of 5, we can define its reduced density matrices. For 1 < k < N, we define
the k-particle reduced density matrix associated with vy (and therefore with ¢n) by

W N
= (N — k:)! k+1,k+2,..,NTYN

8
where tryy1, NN denotes the partial trace of yx over the last (N — k) particles. Taking the partial
trace means integrating out the degrees of freedom associated with the last (N — k) particles. In

other words, *y](\lf) is defined through its integral kernel

k
7§V)($17--->mk§yla---ayk)
N!

= (]V_k)!/’7N($1a-~'CCk»xk—s-la-nanNlew--yka$k+1a~--yf’3N)d93k+1---dl“N

By definition, it is easy to check that 'y](\l;) is a non-negative operator, for all 1 < k < N. In fact, for
an arbitrary ¢ € L?(R?*) we have

(.7 Pg) = /dxl...dxkdyl...dyk¢<x1,...,mmfé“)(xl,...,xk;yl,...,ywso(yl,...,yk>

2
:/dxkﬂ...dacN‘/dacl...d:ck.go(xl,...,:ck)¢N(a:1,...,xk,xk+1,...,xN) >0

Moreover,
N!

(k) ) _
_(N_k)!/dazl...dxk’y]v (xlj...,azk,xl,...,xk)—m

Reduced density matrices are useful, because they allow us to compute the expectation of observables
that depend only on a fixed number k of particles. Let O®) be an operator on the k-particle space

N!
tr’y](\l;) =
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L%(R3*). Then O®) @ 1(N=F) is an operator on L?(R3N), acting as O®) on the first k particles and
as the identity on the other (N — k) particles. A simple computation shows that

(N —k)!
N!
where, on the r.h.s., tr denotes the trace over L?(R3¥). Interesting k-particle observables in N-body
systems must be invariant w.r.t. permutations of the N particles and are therefore given by sums over

all possible choices of the k indices, over which O*) must act non-trivially. Using the permutation
invariance of 1y, their expectation is given by

N
Z (VN 011, de)N): Z Q O(k) () tr(’)(k) (k)

1<41 <9< <ip, <N 1<i1 <2< <1p <N

<¢N,(@(k) ® 1(N*k))¢N> tr OK) ( )

For example, the kinetic energy of an N-body system is the one-particle operator Z;v:1 —Ag;. Its
(1)

expectation in the state ¢y can be computed through the one-particle reduced density ~,’:

N
(¥, Z —Ag;YN) = tr(_A),Y](Vl)

J=1

A two-body interaction has the form ZZ <j Viz — xj). To compute its expectation we need its
2-particle reduced density:

N
1 2
(¥n: D Ve = )on) = 5tV (@1 — )7y
1<j
Let us compute a couple of reduced density matrices, for simple example of N-particle states. In
the bosonic setting, the simplest class of N-particle states are factorized wave functions of the form

YN(x1, ... zN) = vazl @(z;). In this case, it is very easy to compute reduced density matrices. We

find N'
(k) _ : ®k

where |¢)(p| is the orthogonal projection onto .
In the fermionic setting, the simplest class of N-particle states are Slater determinant, having the

form
1

YN (21, .., 2N) = mdet (@i(%j))1<ij<n

where {¢; }jvzl is an orthonormal system on L?(R3). The one-particle reduced density matrix asso-
ciated with ¥ has the integral kernel

'7](\})($ ."L‘) N' Z U7r0'7r’907r1( )Spw’l /de .dxrn HSOWJ Zj Soﬂ](xj)

T, €SN Jj=2

1
ZWZSOM( or1 (@ Z‘Pﬂ
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Hence 'y](\}) = Z;V:1 ) (p;] is the orthogonal projection onto the N-dimensional subspace of L?(R?),

spanned by ¢1,...,pnN. Similarly, one can compute higher order reduced density matrices of the
Slater determinant ¥y. It turns out, they satisfy Wick’s theorem, stating that

k
k 1
'y](v)(acl,...xk;xll,...,x%): E UWH’}/](V)(I‘]‘;.%;.j)
TES 7=1

In particular, the 2-particle reduced density is given by

Y (@1, 20324, 7h) = W (@128 (22:25) — 43 (@15 25)7 (w2 21)

Typical N-particle Hamilton operators have the form

N
Hy = Z [— Am]. + Véxt(xj)] + ZV(%Z — l’j)

j=1 1<j

The first term is a one-particle operator, it describes the kinetic energy of the particles and their
interaction with external fields. The second term is a two-body operator, describing the interaction
among the particles. The energy of the N-particle system in a state 1 can be expressed in terms
of the reduced density matrix ’y](\%) associated with ¢ . We find

1
(Un, Hyon) =tr [ — A+ Vext]fy](\}) + itr V(z1 — xg)’y](\?) (2.11)

This identity suggests that a possible approach to compute the ground state energy of an N-particle
system, ie. the infimum of (v, Hyvxn) over all normalized wave functions ¢ € L?(R3*Y) with the

appropriate statistics, consists in minimizing the r.h.s. of (2.11) over all possible choices of 'y](\?) (the

one-particle density matrix 7](\}) can be computed from 'y](\?), taking the partial trace over one of the

two particles).

A Mathematical Background

A.1 [P spaces and Hilbert spaces

Let (©, A, 1) be a measure space, where ) is a set, A a o-algebra on {2 and p a measure on the
o-algebra A. For 1 < p < oo, let

LP(Q,A 1) = {f :Q — C A-measurable s.t. /]f|pdu < oo}

1/p
1l = [/Ifl”du] .
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For p = o0, let
LA p) ={f: Q— C measurable s.t. 3C > 0 with |f(x)| < C almost everywhere}
and, for f € LP(Q, A, ) let
[ flloc = inf{C > 0:|f(x)] < C almost everywhere}.
Hence ||.[|, : LP(Q2, A, 1) — [0;00), for any 1 < p < oo

IAf 1l = A1l

for all A € C and all f € £P(Q, A, ). Moreover, for all f,g € LP(Q, A, u) the triangular inequality
holds:

1+ glly < [1fllp + [lgllp, (A.12)

Nevertheless, ||.||, does not define a norm on the vector space L£P(€2, A, i), because || f||, = 0 does
not imply that f = 0 (it only implies that f(x) = 0 almost everywhere).

To make ||.||, into a norm, we define the following equivalence relation on £P(€2, A, i), an equivalence
relation. For f,g € LP(Q, A, 1) we write

f~g ifand only if f(x) = g(x) p-almost everywhere.
We can therefore define, for any 1 < p < oo,
LP(L A ) = L2 A, )/ ~={[f]: F € LU A )}

where [f] = {g € LP(2, A, 1) : g ~ f} is the equivalence class associated with f, which contains all
functions that coincide with f almost everywhere. Switching from £P(Q, A, n) to LP(Q, A, 1), we
make the space smaller, because we identify functions that coincide almost everywhere. By definition,
elements of LP(Q), A, 1) are not functions, they are equivalence classes of functions.

On LP(Q, A, u) we can define the structure of a vector space, by setting

fl+lgl=1f+4gl,  Alfl =[]

We can also define ||.||, : LP(€2, A, u) — [0;00) through ||[f]ll, :== || fllp (|||, is well defined, because
| fllp = llgllp if f ~ g). When defined on LP(Q2, A, 1), ||.||l, is indeed a norm, because [|[f]||, = 0
implies that f(z) = 0 almost everywhere, and therefore [f] = [0]. We conclude that, for every
1 <p < oo, (LP(Q A, 1), |.]lp) is a normed vector space. As every norm, |.||, induces a metric
on LP(Q, A, ) (the metric is defined by d(f,g) = ||f — gllp), and thus a notion of convergence for
sequences in LP(Q, A, p).

Theorem A.1.1. Let (2, A, u) be a measure space, 1 < p < co. Then LP(Q, A, i), equipped with the
norm ||.||p. is a Banach space, ie. it is a normed vector space, complete with respect to the metric
induced by ||.||p. In other words, every Cauchy sequence on LP(S, A, 1) converges.

16



Definition A.1.2 (Hilbert space). Let H be a vector space over C, equipped with a scalar product
(-,-) and let || - || be the norm induced by this scalar product. If H, equipped with this norm, is
complete, then the pair (H,(-,-)) is called a Hilbert space.

A notable example of Hilbert space is the Lebesgue space L%(€2, A, 1). Indeed, we can define an inner
product on L2(Q, A, u). For f,g € L*(, A, 1), we set

(f,9) = /fg dp (A.13)

It is easy to check that (-,-) is linear in its second argument, and antisymmetric (ie. (g, f) = (f,9))-
Moreover,

(f./=1fl3=0

Thus (-, -) is an inner product on L?(9, A, 1) and it induces the norm | - ||o. Hence, L?(2, A, u1) is a
Hilbert space. In particular, we have the Cauchy-Schwarz inequality

‘/fgdu‘ )] < I allgll

for all f,g € L?>(Q, A, dpu).
The generalization of Cauchy-Schwarz inequality to LP-spaces is called Holder’s inequality.

Theorem A.1.3 (Holder’s inequality). Let 1 < p,p’ < oo, with 1/p + 1/p' = 1. For f €
LP(Q, A, p), g € LV (Q, A, 1), we have

‘ / fgdu' < [ 1fllldie < 171l (A.14)

The dual of LP(Q, A, i1). For an arbitrary normed vector space (X, ||.||) over C, a linear functional
on X is a linear map L : X — C. A linear functional L is continuous if and only if it is bounded, ie.
if there exists a constant C' > 0 such that |L(f)| < C| f]| for all f € X. We define the dual space of
X as

X*={L:X — C: L isa continuous linear functional on X}

On X* we can naturally introduce a sum and a multiplication with complex numbers. Hence X* is
a vector space. Since continuous functionals are bounded, we can also introduce a norm on X*, by
setting, for L € X*,

L= s (L(p = sp 2O (A15)

fex:|fll<t rex:f20 ISl

Equipped with this norm, X* is a normed vector space. In fact, X* is always complete (w.r.t. the
norm (A.15), of course), and thus a Banach space.
In the following, we would like to characterize the dual space of LP(2, A, ). To this end, we observe
that, choosing 1 < p’ < oo so that 1/p+1/p’ =1, for every g € LY (Q, A, w), we can define a linear
functional L, : LP(Q, A, i) — C by setting

Ly(f) = /fgdu

17



Linearity of L, is clear, continuity follows from Hoélder’s inequality. For 1 < p < oo, it turns out that
all linear functionals on LP(, A, ;1) have this form.

Theorem A.1.4. Let (Q, A, 1) be a measure space, 1 <p < oo and1 < p < oo with1/p+1/p' =1.
If p=1 and p’ = oo, we make the additional assumption that the measure space is sigma-finite. The

map ¢ : LP (Q, A, ) — LP(Q, A, p)* defined by ¢(g) = bg : LP(Q, A, ) — C, with

bg(f) = / fodp
s an isometric isomorphism, meaning that it is linear, it preserves the norm, in the sense that
||¢>g||Lp(QvA7M)* = ||g||Lp/, and it is a bijection.

Remark: If p = oo and p/ = 1, the map ¢ : L'(Q, A, u) — L¥(Q, A, p)* is still well defined,
linear, isometric (and therefore injective), but it is (in general) not surjective.

A.2 Self-adjoint operators

On the Hilbert space H we define linear operators A : H — H as maps from the Hilbert space H to
itself satisfying linearity, i.e.

A + pg) = AA(f) + pA(g) for all f,g€H, YA peR

Such operators are called self-adjoint if

(f,Ag)=(Af,g9 Vf,geH.

An operator is called bounded if for all elements of the domain (in this case V f € H) there exists a
positive constant C' such that

[AfIF< ClIFI, (A.16)

where || - || is the norm induced by the inner product on #. The operator norm of a bounded operator
is defined as the minimal constant C for which (A.16) holds true. Let |||A||| denote the operator
norm of the operator A, then the following characterization holds:

A
aj = sup 1AL
fer: fr< 1A

Proposition A.2.1. For any bounded operator A, there is a unique bounded operator A*, called the
adjoint of A, such that

(¢, Av) = (A"¢,v) Vo, €H
The proof of the proposition replies on the celebrated Riesz Theorem:

Theorem A.2.2 (Riesz’s Theorem). If £ : H — C is a bounded linear functional, then there exists
a unique x € H sich that (1) = (x, ) for all p € H.

18



Proof of Proposition A.2.1. For each fixed ¢ € H consider the map ¢ — (¢, AY) for all y» € H. For
each fixed ¢ € H, the map is a linear functional on H. Therefore, by Riesz’s Theorem, there exists
a unique x € H such that (x,v) = (¢, A, ) and we use the notation y = A*¢. Boundedness and
linearity follow from the boundedness of A and by construction of the map. O

Definition A.2.3. A is an unbounded operator on H if it is not a bounded operator and it is a linear
map from a dense subspace D(A) C H into H.

Definition A.2.4. Let A be an unbounded operator on H. A* is defined as follows:
i) ¢ € H belongs to D(A*) if ¢ — (¢, A-) defined on H is bounded;

i1) for each ¢ € D(A*), A*¢ is the unique vector x € H such that (x,v) = (¢, AY), for all
Y € D(A).

Definition A.2.5. An unbounded operator A on H is symmetric if (¢, Ap) = (Ap, ) for all P, ¢ €
D(A).

It is self-adjoint if D(A) = D(A*) and A*¢ = A¢ for all ¢ € D(A).

A.3 The Fourier Transform

For f € L*(R%), we define the Fourier transform f : R — C of f, setting

~

F04) = i [ @) warte), (A17)

where )y is the Lebesgue measure in R
The Fourier transform has the following important properties.

e Boundedness and continuity. Let f € L*(R%). Then f € L®(RY) with

1Flloo < (2m) =] fIlx

Moreover, f is continuous.

Riemann-Lebesgue Lemma. Let f € L'(R%). Then f(k) — 0, as |k| — occ.

Fourier transform of convolutions. For f,g € L'(R%) we have (from Young’s inequality) f*g €
LY(R%). Then

k) = @m)¥2f(k)a(k)

Fourier transform of a Gaussian. Let fu(x) = e=*/2 Then

fa (k) _ afd/267k2/2a

Derivatives and Fourier transform. Let f € L'(R%), and g : R? — C? be defined through
g(z) = —izf(z). If g is integrable, then f € C*(R%) with Vf = g.
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e Plancherel’s identity. Let f € L'(R%) N L2(R%). Then f € L2(R%) and ||f]j2 = ||f]-

Plancherel’s identity can be used to extend the Fourier transform to L?. For an arbitrary f € L*(R%),
we can find a sequence f; € L'(R?)NL?(RY) with f; — f in L% Since f; € LY(R?), we can define the
Fourier transform f;. From Plancherel’s identity, it follows that f; € L*(R%), with || fjll2 = || f;l2-
Moreover

1F; = Fllz = 15 — Fmllz = 15 = fomll2 = O

as j,m — o0o. We conclude that fj is a Cauchy sequence in L?(R?) and thus it must converge. We
can therefore define
f = lim fj (A.18)

]%OO

It is important to observe that f does not depend on the choice of the sequence fi € LYRY)NLA(RY).
The map * : L2(R%) — L2(R%) is clearly linear and isometric, i.e. ||f|l2 = ||f|l2. It also preserves the
inner product, i.e. (f;g) = (f;g) for all f,g € L2(R%). In fact, * : L2(R%) — L2(R%) is also invertible
(the inverse is the map * : L2(R%) — L2(RY), defined by f(k) := f(—k) for all f € L2(R%)). Thus,
the Fourier transform °: L*(R%) — L?(R?) is a unitary map.

So far, we defined the Fourier transform as a linear map from L!(R%) to L>(R¢) and as a linear
map from L?(R%) to L?(R?%). By interpolation, it can also be extended as a linear map from LP(R?)
to LV (R9), for all 1 < p < 2, choosing 2 < p’ < 0o so that 1/p+1/p’ = 1. The extension is based on
the Hausdorff-Young inequality (which replace the Plancherel’s identity, for p < 2).

Theorem A.3.1. Let 1 < p <2 and 2 < p’ < oo such that 1/p + 1/p = 1. Then there exists a
constant C > 0 (depending on the dimension n and on p) such that f erLV (R™) and

£l < ClED (A.19)
for any f € LY(R%) N LP(RY).

A.4 Distributions and Sobolev Spaces

Definition and basic properties. We start with the definition of the space of test functions.

Definition A.4.1. Let n € N\{0} and Q C R™ be an open non-empty set (@ = R"™ is allowed). We
denote the space of test functions on Q by D(Q). It consists of all functions in C°(Q) (the space of
infinitely differentiable functions that are compactly supported inside Q2), equipped with the following
notion of convergence. A sequence ¢, € C°(Q2) converges in D(Q) to ¢ € C°(Q) if and only if
there exists a fixed compact set K C ) such that supp (¢p, — ¢) C K for all m € N and

D%y, — D%
uniformly on K, for all multi-index o € N™. In other words,

| o]
sup 0 (z)  0%e(x)

cek |0zt . 0zpm Ozt .. Oz

as m — oo, for all a = (aq,...,an) € N" (with |a] = a1 + -+ + ap).
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Distributions are then continuous linear functionals on D(2) (since the notion of convergence on
D(Q) is very strong, it is very easy for a linear functional on D(£2) to be continuous).

Definition A.4.2. A distribution T is a continuous linear functional on the space of test functions
D(Q). In other words, it is a map T : D(2) — C, with

T(¢1 + Ap2) = T(¢1) + AT'(¢2)

for all A € C, ¢1, ¢ € D(R), such that T(¢pp,) — T(P) as m — oo, whenever ¢, — ¢ in D(Q). We
denote by D'(Q) the space of distributions on Q. Observe that D'(Q) has the structure of a vector
space (distributions can be summed and multiplied with scalars A € C).

An important observation is that every LP-function defines a distribution. Since the behavior at
infinity is not important, we define local LP-spaces.

Definition A.4.3. For 1 < p < oo, we define the space of locally p-th power integrable functions

LP

loc

(Q) = {f : @ — C measurable such that || f||rr(x) < 0o for all K C §2 compact}

Notice that LY () is a vector space. In contrast with LP(§2), however, there is no natural norm on
L? (Q). Notice also that L1 (Q) Cc L (Q) if 1 < p < q < co. In particular, L} () D L? (Q) D

loc loc loc loc loc

LP(Q) for all 1 < p < 0.
Every locally integrable function defines a distribution.

Lemma A.4.4. Let Q C R" open, non-empty, f € L}, (Q). We define Ty : D(Q) — C setting

loc

Ty(9) = /Q £ dAn(z) (A.20)

for all € D(Q). Then Ty € D'(Q) is a distribution (it is the distribution associated with f).

While every locally integrable function f € L () defines a distribution Ty € D'(£2), not every

loc

distribution in D’(2) has the form T} for an f € L{ (). An example of a distribution which is not
associated with a locally integrable function is the Dirac delta-distribution

0z(0) = ¢(x) (A.21)
for all ¢ € D(2) and for a x € .

Distributional derivatives and Sobolev spaces. The derivative of a distribution is defined as
follows.

Definition A.4.5. Let Q C R™ be open and non-empty, T € D'(Q) a distribution. For a multi-index
a=(ag,...,an) € N* we define DT € D'(Q) through

DT(¢) = (~1)*IT(D"¢) (A.22)

with |o] = oq + - -+ + .
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Remark: Let o = (ay,...,a,) € N* be a multi-index and f € Cl°l(Q). In this case, we have
DTy = Tpay. In other words, if we identify functions with the corresponding distributions, classical
derivatives coincide, when they exist, with distributional derivatives. But, of course, distributional
derivatives are much more general, since they can be applied to arbitrary locally integrable func-
tions (for which classical derivatives do not need to exist) and, even more generally, to arbitrary
distributions.

We can now define the Sobolev space WP (Q) as the space of all functions f € LP(§2) whose
distributional derivatives of order up to m (defined through the distribution T associated with f)
are again functions in LP(Q).

Definition A.4.6. For Q2 C R"™ open, non-empty, m € N and 1 < p < 0o, we define
W™P(Q) ={f € LP(Q) : Va € N" with |a| < m there is go € LP(Q2) with DTy =T, }

For f € W™P(Q) and o € N™ with |o] < m, we define D*f = g, € LP(Y) (the functions D*f are
known as the distributional or weak derivatives of f). For 1 < p < oo, we define
1/p

Iflwmo = > IDfI

aeN":|a|<m

For p = oo, we set

1fllwmee = >~ 1D flloc-

laj<m

Then ||.||wm.» is a norm on W™P(Q) and (W™P(Q), ||.|[wmr) is a complete Banach space.

An important property of functions in the Sobolev space W™P(Q), for 1 < p < o0, is the fact that
they can be approximated by sequences of smooth functions. This is known as the Meyers-Serrin
theorem.

Theorem A.4.7. Let m € N, 1 < p < 0o, Q C R" open, non-empty. Let f € W™P(Q). Then there
exists a sequence f; € C™(Q) N W™P(Q) such that

1f = fillwme@) — 0
as j — oo. If Q =R", the sequence f; can be chosen in CZ°(R™) (ie. to have compact support).

Remark. If Q@ C R™ has a boundary and m € N\{0}, C°(Q) is not dense in W"P(Q). The
completion of C2°(2) with respect to the W"P(€2) norm is a subspace of WP (Q), typically denoted
by W;"P(€), which is used to solve differential equations with Dirichlet boundary conditions.

The Hilbert spaces H"(Q2). Let Q C R™ open and non-empty, m € N. We will use the notation
H™(Q) for the space W™2(Q). For f,g € H™(2), we define the inner product

(f;g)um = > (Df; D)

aeN":|al<m
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where (.;.)2 denotes the usual inner product on L?(Q). Clearly,

£ 1yme = F 1 = (F: .

Thus, (H™(R), (.;.)gm) is a Hilbert space.
For 2 = R™, there is a useful characterisaztion of H™(€2) in terms of Fourier transform.

Theorem A.4.8. Let f € LQ(R”)Z and f € L2(R™) be its Fourier transform. Then f € H™(R™) if
and only if the function k — |k|™f(k) is in L?>(R™). In this case, the distributional derivatives of f
satisfy DOf (k) = i1k f (k) for all o € N™ with || < m and therefore

1l = D /Rn\k1\2a1|k2|2a2...|kn|2°‘"|f(k:)|2dk:

aeN™:|a|<m

Green’s functions of the Laplacian. Let Go(x) = (27) 'log |z — y| and, for n € N, n > 3,

1 1
G =
"= s
where |S"" 1| = 27/2/T'(n/2) is the measure of the (n — 1)-dimensional sphere with radius one.

Then, we have, in the sense of distributions,
-AG, =90 (A.23)

where § € D'(R") is defined through §(¢) = #(0). Thus, if f € LL (R") such that y — G, (z—y)f(y)

loc
is integrable, for almost every = € R™, then the function v = G,, * f € L (R") solves the Poisson

loc
equation —Awu = f, in the sense of distributions.

A.5 Sobolev Inequalities and Sobolev Embeddings

Sobolev inequalities for gradients. We begin with the standard Sobolev inequality for functions
in HY(R™), n > 3.

Theorem A.5.1. Let n € N, n > 3. Let f € HY(R"). Then f € LYR"), for ¢ = 2n/(n — 2).
Moreover, there exists a constant Cy, (depending only on the dimension n) such that

1fllg < CullV£2 (A.24)
for all f € HY(R™).

In dimensions n = 1,2, we cannot bound high L¢ norms just with the L? norm of V£, we also
need the L? norm of f.

Theorem A.5.2. One-dimension: There exists a constant C > 0 such that
1 fllg < Clfll g
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for all f € HY(R) and all 2 < q < 0o. Moreover, every f € H'(R) has a representative satisfying

f(z) — fW)| < 110f 2]z — y|*/?

for all x,y € R. In other words, H'-functions in one-dimension are automatically Hélder continuous
with exponent o = 1/2.
Two-dimensions: For every 2 < q < oo there exists C' > 0 such that

1fllg < ClIfll
for all f € HY(R?).
Remark: in two dimensions, the L*>-norm cannot be bounded by the H'-norm.

Compact Sobolev embedding. The Sobolev inequality implies that the unit ball in H(R") is a
subset of LY(R"), if ¢ < 2n/(n—2) (or if ¢ < oo in two dimensions, ¢ < oo in one dimension). When
restricting on sets with finite measure, it turns out that the unit ball of H' is sequentially compact
subset of L9. This follows from the following theorem.

Theorem A.5.3. Let {fj}jen be a weakly convergent sequence in H'(R™), let f denote its weak
limit. Let moreover A C R™ be a set of finite measure and x4 the corresponding characteristic
function. Then xaf; — xaf strongly in LY(R™), for all1 < ¢ < 2n/(n —2), if n > 3, and for all
1<qg< oo, ifn=1,2. For n =1, the convergence is pointwise and uniform on every compact
subset of R.

General Sobolev inequalities and embedding theorems. Sobolev inequalities can be extended
to domains with the cone property, defined as follows.

Definition A.5.4. Forr >0 and 0 € [0; 27|, let
Krp={zecR":2#0,0 <z, <|z|cosb} N B,(0)

denote a finite cone of angle 8 and length r. We say that an open domain € C R™ has the cone
property if there exists r,0 such that, for all x € € there is a finite cone K, congruent to K, g which
is contained in ) and has vertex x.

We state now the general form of Sobolev inequality.

Theorem A.5.5. Let Q2 C R™ be an open set, with the cone property for some r,0. Let 1 < p <
q < oo, mk € N, withm > 1 and k < m. Then there exists a constant C > 0 (depending on
m, k,q,p,0,7) such that, for all f € W™P(Q), we have

i) If kp < n,
[fllwm-ra@y < Cllf lwme @

for allp < q <np/(n — kp).
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it) If kp = n,
[flwm-ra@) < Cllf lwme @
for allp < g < 0.

1) If kp > n,
||f||Wm*kwq(Q) < C||f||wm,p(Q)
for all p < q < c0. In particular,

a sup | D% <C m,
oslamwsfw—k xlelg’ f@)l < Clifllwr)

The next theorem, known as the Rellich-Kondrachov theorem, provides the general statement
for compact Sobolev embeddings.

Theorem A.5.6. Let Q2 C R"™ be an open set, with the cone property for some r,0. Let 1 < p < q <
0o, m,k €N, withm > 1 and k <m. Let f € W™P(Q) and {f;};en be a sequence in W™P(Q) with
fi = [ weakly in W™P(Q) (meaning that D*f; — D f weakly in LP(Q), for all multiindex o € N"
with 0 < |a| < m). Let w C Q be open and bounded (in particular, we can take w = Q, if @ C R3 is
bounded). Then, we have

i) If kp <n, 1 < g <np/(n—kp), then || f; — fllwm-ra@) — 0, as j — oo.
i) If kp=mn, 1 < q<oo, then ||f; — fllwm-raq) — 0, as j — occ.

i) If kp >mn, 1 <q < oo, then ||fj — fllwm-raw) — 0, as j = oo. In particular, taking g = oo,
we conclude that

D° f(z) — D* 0
og|g|123§_k§25| fi(@) f@)]—

as j — oo.
Poincaré inequality. Finally, let us also mention a useful variant of the Sobolev inequality, known
as the Poincaré inequality, which allows us to bound fluctuations of functions in Sobolev spaces.

Theorem A.5.7. Let 2 C R" be a bounded, connected, open set with the cone property for somer, 6.
Let 1 < p < oo, and let g € LP () with J gd\, = 1. Then there exists a constant C = C(%2,g,p,q)
< OV £l

such that
Hf— [ saan,
Q La(Q)

forall f e W'P(Q) and all 1 < qg<pn/(n—p)ifp<n, all<qg<ocoifp=mn, and all1 < q< oo
if p>n.
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