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Consider p, q, r ∈ [1,∞] such that
1

q
+ 1

r
= 1 + 1

p
.

Let f ∈ Lq(Rd), g ∈ Lr(Rd); prove that

∥f ∗ g∥p ≤ ∥f∥q ∥g∥r.

Hint: Consider the functions

α(x, y) ∶= ∣f(y)∣q ∣g(x − y)∣r,
β(y) ∶= ∣f(y)∣q,

γ(x, y) ∶= ∣g(x − y)∣r.

Notice that

∣f ∗ g(x)∣ ≤ ∫
Rd
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and that
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to apply Hölder’s inequality.
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Let A,B be bounded operators on a Hilbert space H and α,β ∈ C.
Prove the following equalities:

id∗ = id,
(A∗)∗ = A,
(AB)∗ = B∗A∗,

(αA + βB)∗ = ᾱA∗ + β̄B∗.

Moreover, prove that A∗ is bounded and that ∥A∗∥ = ∥A∥.
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Let H be a Hilbert space and A,B bounded self-adjoint operators on H. Prove that
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ih̵
(AB −BA)

is self-adjoint.
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