Exercise Sheet "Topics in Mathematical Physics"

Sheet Number 3

Due: Monday 10.11.25, 10 a.m., Letterbox 3.13, Ernst-Zemelo-Str. 1. Please try handing in as pairs

Exercise 6 (Young's Inequality):

(3 Points)

Consider $p, q, r \in [1, \infty]$ such that

$$\frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{p}.$$

Let $f \in L^q(\mathbb{R}^d)$, $g \in L^r(\mathbb{R}^d)$; prove that

$$||f * g||_p \le ||f||_q ||g||_r$$
.

HINT: Consider the functions

$$\alpha(x,y) := |f(y)|^q |g(x-y)|^r,$$

 $\beta(y) := |f(y)|^q,$
 $\gamma(x,y) := |g(x-y)|^r.$

Notice that

$$|f * g(x)| \le \int_{\mathbb{R}^d} \alpha(x, y)^{\frac{1}{p}} \beta(y)^{\frac{p-q}{pq}} \gamma(x, y)^{\frac{p-r}{pr}} dy$$

and that

$$\frac{1}{p} + \frac{p-q}{pq} + \frac{p-r}{pr} = 1$$

to apply Hölder's inequality.

Exercise 7: (4 Points)

Let A, B be bounded operators on a Hilbert space \mathcal{H} and $\alpha, \beta \in \mathbb{C}$. Prove the following equalities:

$$id^* = id,$$

$$(A^*)^* = A,$$

$$(AB)^* = B^*A^*,$$

$$(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*.$$

Moreover, prove that A^* is bounded and that $||A^*|| = ||A||$.

Exercise 8: (3 Points)

Let \mathcal{H} be a Hilbert space and A, B bounded self-adjoint operators on \mathcal{H} . Prove that

$$\frac{1}{i\hbar}[A,B] = \frac{1}{i\hbar}(AB - BA)$$

is self-adjoint.