
THE CUBIC THREEFOLD AND FRIENDS

1. Background on Threefolds

• Fano, around the 1910s, proved that any smooth quartic threefold
is not rational. Later on, in the 1950s, Roth criticised the proof as
incomplete. In 1971, Iskovskikh and Manin provide a complete
proof.
• In 1972, Artin and Mumford gave an example of another unirational,

but not rational Fano threefold. This is a certain double cover X ofP3

ramified over a singular quartic surface. They showed that H3(X,Z)
is a birational invariant and obtained that H3(X,Z) = Z2, from which
they concluded that X cannot be rational.
• At the same time, Clemens and Griffiths showed that any smooth

cubic threefold V over a field of characteristic zero is unirational,
but not rational. In the same year, Murre proved the result in char-
acteristic p.

The idea of Clemens and Griffiths was to consider two auxiliary varieties
of a smooth cubic threefold V:

• The intermediate Jacobian J(V) - a principally polarised abelian variety
playing a role similar to that of the Jacobian for studying divisors
on curves.
• the Fano variety of lines F(V) - a smooth projective surface parametris-

ing lines on V.

In order to arrive at the result, they represented J(V) as the Albanese
variety of F(V), and studied its theta divisors.

2. The Cohomology of the Cubic Threefold

As before, let V be a cubic threefold, i.e. a hypersurface of degree three
in P4. A first idea is to compare the cohomology of V with that of P3 and
hope that we shall thus find a birational invariant that has different values
for V and P3, respectively.

For P3 we have

Hq(P3,Ω
p
P3) =

 C, for p = q ≤ 3.
0, otherwise.
1
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Dolbeault theorem says that Hp,q(X) = Hq(X,Ωp
X) for a projective variety,

and using Serre duality we can write down the relevant half of the Hodge
diamond for P3:

1
0 0

0 1 0
0 0 0 0

To compute the cohomology of V, we first use the Lefschetz theorem to
see that

Hq(P4,Ω
p
P4) ' Hq(V,Ωp

V), for p + q ≤ 2.

Furthermore Serre duality allows us to compute the whole Hodge dia-
mond with the exception of the middle line:

1
0 0

0 1 0
? ? ? ?

One could now hope that H3,0 is non-zero, which would prove the irra-
tionality of V. This is because

H3,0(V) = H0(V,Ω3
V) = H0(V, ωV)

is a birational invariant. Unfortunately ωV = OV(−2) which implies that
H3,0(V) = 0. As an aside, if V were a quintic threefold, then it would be
a Calabi-Yau manifold meaning that H3,0 = 1, so this would be enough to
prove that it is not rational. Going back to the cubic threefold, we still need
to compute the Hodge numbers h1,2 = h2,1. In particular we want to find
H2(V,ΩV).

In order to do this, consider the following exact sequence in P4:

(1) 0→N∨
V/P4 → ΩP4 |V → ΩV → 0,

where N∨
V/P4 = OV(−3). The idea is to compute H2(V,ΩV) from the long

exact sequence associated to (1). From Serre duality and Kodaira vanishing
we obtain

H2(V,OV(−3)) ' H1(V,OV(1))∨ = 0,

H3(V,OV(−3)) ' H0(V,OV(1))∨.

Moreover, we can easily compute h0(V,OV(1)) from the exact sequence
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(2) 0→ IV → OP4 → OV → 0,

where IV = OP4(−3). More precisely, we twist (2) by one and look at its
long exact sequence of cohomology

0→ H0(P4,OP4(−2))→ H0(OP4(1))→ H0(OV(1))→ H1(OP4(−2))→ . . . .

Since the first and last term vanish, we get the isomorphism

H0(OP4(1)) ' H0(OV(1)).

Therefore we conclude that

h0(OV(1)) = h0(OP4(1)) =

(
4 + 1

1

)
= 5.

Lastly, to obtain some information about the cohomology of ΩP4 |V , we
use the Euler sequence on P4 and restrict it to V to get:

0→ ΩP4 |V → OV(−1)⊕5
→ OV → 0.

As before we consider the long exact sequence of cohomology

. . .→ H0(OV)→ H2(ΩP4 |V )→

→ OV(−1)⊕5
→ H2(OV)H3(ΩP4 |V )→ H3(OV(−1))⊕5

→ . . . .

From the Lefschetz theorem, h0,1 = h0,2 = 0 and therefore the Dolbeault
theorem implies

H1(OV) ' H2(OV) = 0.

From Kodaira vanishing we also have that H2(OV(−1)) = 0, and from Serre
duality

H3(OV(−1)) = H0(OV(−1))∨ = 0.

Hence from the long exact sequence above we get that

H2(ΩP4 |V ) ' H3(ΩP4 |V ) = 0.

Therefore from the long exact sequence associated to (1) we conclude that

H2(ΩV) ' H3(OV(−3)),

which finally yields h1,2 = h0(OV(1)) = 5. Thus the Hodge diamond of V is

1
0 0

0 1 0
0 5 5 0.
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However, h1,2 is unfortunately not a birational invariant. To see this, con-
sider the example of the blowup X → P3 along an elliptic quartic curve.
This is a Fano threefold with

b2 = 2, k3 = 32, and h1,2 = 1.

So even though X is rational (the blowup is a birational morphism), h1,2

is nevertheless non-zero, hence it cannot be a birational invariant. We
therefore need some additional structure somehow connected to the groups
H1,2(V) and H2,1(V).

3. Intermediate Jacobians

We begin by recalling the notion of the Jacobian of a curve C:

J(C) = H0(ΩC)∨/H1(C,Z) ' H1,0(C)/H1(C,Z).

Now let X be an n-dimensional variety. We have two possible generalisa-
tions of the Jacobian to the case of a higher dimensional variety:

• The Albanese variety

Alb(X) = H0(ΩX)∨/H1(X,Z) ' Hn−1,n(X)/H2n−1(X,Z),

• The Picard variety

Pic0(X) = H1(OX)/H1(X,Z) ' H0,1(X)/H1(X,Z).

The idea now is to generalise this for odd cohomology in order to obtain a
torus with a complex structure on it.

Recall also that if X is a compact Kähler manifold, then its cohomology
admits a Hodge structure, i.e.

• it satisfies the Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X),

• it satisfies the symmetry property

Hp,q(X) ' Hq,p(X).

Equivalently the cohomology admits a Hodge filtration

0 ⊆ FkHk(X) ⊆ Fk−1Hk(X) ⊆ . . . ⊆ F0Hk(X) = Hk(X,C),

where
FrHk(X) =

⊕
p≥r

Hp,k−p(x),

for 0 ≤ r ≤ k. For example, if k = 1, we have

H1(X,C) = H1,0(X) ⊕H0,1(X) and H1,0(X) ' H0,1(X).
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We have the following isomorphism of real vector spaces

H1(X,R) ⊂ H1(X,C)→ H0,1(X),

where the last arrow is the projection from the Hodge decomposition. Hence
the lattice H1(X,Z) ⊂ H1(X,R) projects onto a lattice in the complex vector
space H0,1(X). We therefore get the complex torus

Pic0(X) = H0,1(X)/H1(X,Z)

associated to this decomposition.
For odd degree cohomology groups, we can write

H2k−1(X,C) = FkH2k−1(X) ⊕ FkH2k−1(X).

The the natural map

H2k−1(X,R)→ H2k−1(X,C)/FkH2k−1(X)

is an isomorphism of real vector spaces. Moreover

rk H2k−1(X,Z) = dim H2k−1(X,R),

which means that H2k−1(X,Z) gives a full-rank lattice

Lk := im
(
H2k−1(X,Z)→ H2k−1(X,C)/FkH2k−1(X)

)
in the complex vector space

Vk := H2k−1(X,C)/FkH2k−1(X).

We then define the k-th intermediate Jacobian to be the quotient

Jk(X) := Vk/Lk

' H2k−1(X,C)/
(
FkH2k−1(X) ⊕H2k−1(X,Z)

)
.

Note that for k = 1,
J1(X) = Pic0(X),

while for k = 2n − 1
J2n−1(X) = Alb(X).

Therefore the intermediate Jacobian of the cubic threefold V is given by

J(V) =
(
H1,2(V) + H0,3(V)

)
/H3(V,Z).

In Clemens and Griffiths it is shown that H1,2(V) + H0,3(V) admits a non-
degenerate Hermitian form. It corresponds to the cup product mapping on
H3(V,Z) which is non-degenerate by Poincaré duality. Therefore J(V) is a
principally polarised abelian variety.
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4. Fano Varieties of Lines

In this section we study the Fano variety of lines F(X) which parametrises
the lines contained in a smooth n-dimensional cubic hypersurface X ⊂ Pn+1.
It can be shown that it is always smooth and of dimension 2(n − 2).

We look at the local structure of F(X): at a point [l] (where l ⊂ X is a
line), the Zariski tangent space to F(X) is H0(l,NL/X). Locally, at the point
[l], F(X) is defined by h1(l,Nl/X) equations in a smooth scheme of dimension
h0(l,Nl/X). From Riemann-Roch we have

dim[l] F(X) ≥ χ(l,Nl/X) = deg(Nl/X) + rk(Nl/X).

Consider the exact sequence

0→ Nl/X → Nl/Pn+1 → Nl/Pn+1 |l → 0,

where
Nl/Pn+1 = Ol(1)⊕n and NX/Pn+1 |l = Ol(3).

We can then easily compute

deg Nl/X = degOl(1)⊕n
− degOl(3) = n − 3,

rk Nl/X = rkOl(1)⊕n
− rkOl(3) = n − 1.

Therefore Nl/X is of form

Ol(a1) ⊕ . . . ⊕ Ol(an−1),

where a1 ≤ . . . ≤ an−1 ≤ 1 and a1 + . . . + an−1 = n − 3. Therefore

a1 = (n − 3) − a2 − . . . − an−1 ≥ −1,

from which we conclude that H1(l,Nl/X) = 0. Hence F(X) is smooth of
dimension

χ(l,Nl/X) = (n − 3) + (n − 1) = 2(n − 2).

In the case of a cubic threefold V, F(V) is two-dimensional, i.e. we have a
two-dimensional family of lines. We can obtain this result in a less sophis-
ticated way: take a general hyperplane H in P4. Then the intersection

S = H ∩ V

is a smooth cubic surface in P3 and it therefore contains 27 lines. Consider
the following incidence correspondence

Σ = {(l,H) | l ⊂ S = H ∩ V} ⊂ G(1, 3) × P4,

and the projection maps p : Σ → G(1, 3) and q : Σ → P4. Since the fibre of
q is finite, the fibre of p is two-dimensional and both p and q are surjective
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finite morphisms we conclude that V indeed contains a two-dimensional
family of lines.

Finally, by looking at the normal bundles Nl/X we can distinguish two
types of lines in X:

• if Nl/X ' Ol ⊕Ol ⊕Ol(1)⊕(n−3), then l is called a line of the first type;
these are the lines that go through the general point.
• if Nl/X ' Ol(−1) ⊕ Ol(1)⊕(n−2), then l is called a line of the second type;

these lines occur in codimension (n − 2) in F(X).

In order to prove the unirationality of the cubic threefold V we make use
of the fact that we actually have plenty of lines in V. Pick a line L0 ∈ F(V)
and define the set

W := {(p,L) | p ∈ L0 and L0 is tangent to V at p}.

We have the map W → L0 given by (p,L) 7→ p which makes W into a
P2-bundle over L0. Moreover since the tangent bundle is locally trivial,⋃

p∈L0

P(TpV)←→ L0 × P
2
←→ P3 .

Therefore W is rational. Now take the other intersection point q = L ∩ V
with q , p. This defines a mapping ϕ : W → V given by (p,L) 7→ q. This
map is not defined if L ∈ F(V), which means it is not defined on a closed set
of dimension at most one. Thus ϕ is a rational map. Moreover ϕ is also 2-1:
for a general point x ∈ V, consider the plane Λ spanned by x and L. Then
Λ∩V = L0∪C, where C is the residual conic curve. The two lines connecting
the two points of intersection of L0 and C to x are the corresponding tangent
lines to V. See picture.

This argument can be generalised to prove the unirationality of any cubic
hypersurface. We give a very rough sketch. Let X be a cubic hypersurface
in Pn and let Θ ' Pl+1 be an (l + 1)-plane. Note that the planes Θ are
parametrised by Pn−l−1. Consider now the intersection

Θ ∩ X = Γ ∪ XΘ,

where Γ ' Pl and XΘ is an irreducible quadric hypersurface. But this
defines a regular map

π : X \ Γ→ Pn−l−1

with fibre π−1(Θ) = X. Blowing X up along Γ yields a conic bundle

(3) X̃ = BlΓ(X)→ Pn−l−1 .

We now use the fact that if E → B is a family of (generically irreducible)
quadric hypersurfaces over a rational base B and there exists a rational
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section B → E then E is rational to conclude that X is unirational. To do
this, apply a base change in (3) to a family H of pointed quadrics. More
precisely, let

I = {(Θ, p) ∈ Pn−l−1
×Γ | p ∈ XΘ}

and
H = X̃ ×Pn−l−1 I.

We then have the commutative diagram

H X̃

I Pn−l−1

ρ πσ

where σ : I → H given by (Θ, p) 7→ (p,Θ, p) is a rational section. One can
check that I is rational (as a family of planes) which implies that H is also.
Therefore X̃ is dominated by a rational variety, hence X̃ is unirational and
so is X.

In fact in [HMP98] it is shown that for any d ≥ 3 there exists a natural
number N(d) such that for any n ≥ N(d), any smooth hypersurface of de-
gree d in Pn is unirational. Moreover the Fano varieties of k-planes all have
expected dimension. Interestingly the results also hold for singular hyper-
surfaces, as long as the singularities occur in high enough codimension.

So far we have discussed only fields of characteristic zero. In the case of
an arbitrary field k, Kollár has shown that any smooth cubic hypersurface
is unirational if and only if it has a k-point.

5. The Abel-JacobiMap

Let X be a projective variety of dimension n. Recall our definition of the
k-th intermediate Jacobian of X:

Jk(X) = H2k−1(X,C)/
(
FkH2k−1(X) ⊕H2k−1(X,Z)

)
.

After a few manipulations this definition can be equivalently rewritten as

Jk(X) = Fn−k+1H2n−2k+1(X,C)∨/H2n−2k+1(X,Z).

Consider now the cycle class map

Z
k(X)→ H2k(X,Z)

Z 7→ [Z],

whereZk has as elements the cycles of codimension k in X.



THE CUBIC THREEFOLD AND FRIENDS 9

Then the Abel-Jacobi map is defined as

Z
k
hom(X)→ Jk(X)

Z 7→
(
ω 7→

∫
CZ

ω

)
,

whereZk
hom are the null-homologous cycles,i.e.

Z
k
hom = ker

(
Z

k
→ H2k(X,Z)

)
.

In other words Z is a null-homologous cycle if there exists a chain CZ

of dimension 2n − 2k + 1 such that ∂CZ = Z. Integrating over CZ gives
a functional on forms of degree 2n − 2k + 1. In fact, it only defines the
functional on the whole cohomology H2n−2k+1(X,C) if it vanishes on exact
forms. We choose such a piece. One can then show that(

ω 7→

∫
CZ

ω

)
∈ Fn−k+1H2n−2k+1(X,C)∨.

Note that there is still an ambiguity left in the definition caused by the
choice of cycle CZ. To get rid of it, we simply take the quotient with respect
to H2n−2k+1.
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