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Billiards in convex polygons

Ideal billiard ball

Mass concentrated at one point

v

v

v

No friction, no spin

v

Optical rule



Billiards in convex polygons




Billiards in rational polygons

Rational polygon: all angles are rational multiples of w
» Many tools available

» Connections with algebraic geometry, Teichmiiller theory,...

Motivation: the group generated by the reflections of a rational
polygon is finite



Unfolding rational polygons
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Unfolding rational polygons
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Surfaces from polygons

Glue identified edges of polygon < surface with flat metric away
from some (conical) singularities

Singularities arise from corners of polygon

Angle around singularities is integer multiple of 27



Surfaces from polygons




Surfaces from polygons
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Surfaces from polygons

Gauss-Bonnet type theorem:
» n singularities with angle (a; + 1)27
> Z?Zlaizzq—?

Take complex coordinate z on surface
w = p(2)dz

w vanishes at conical singularities with order a;



Surfaces from polygons
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Strata of holomorphic differentials

Hg(p)
» Riemann surface C' of genus g

» n conical singularities p; with angles (a; + 1)27
» (or with differential w vanishing at p; at order a;)

» u=(ay,...,a,) partition of 2g — 2



Strata of holomorphic differentials

Kontsevich and Zorich: #4(x) has at most three connected
components

Lelievre, Monteil, Weiss: there are at most finitely many points y
on the polygon not reachable by a billiard trajectory from an
arbitrary point x



To summarise

v

Billiards in polygons

v

Riemann surface of genus g with n conical singularities

v

Riemann surface of genus g with differential vanishing at n
points with prescribed order a; such that

> ai=2g-2

Strata of differentials #, (1)

v



Studying M, .,

My = moduli space of Riemann surfaces of genus g with n
marked points

(C;plv s 7pn) € Mg,n

» dimM,, =3g9g—-3+n

» compactification M,



Studying M, .,

My = moduli space of Riemann surfaces of genus g with n
marked points

(Cip1s...,pn) € Mgy

» compactification M,

Question
What is the cohomology of M, ,,?



Studying M, .,

Hg(p) € Mgpn

Take closure: Hy(p) C Myp

Question
What is the fundamental class [H,(x)]?

Answer
(potentially) Cohomological field theory!



My, and 2-dimensional CFT

CFT
» 2-dimensional QFT invariant under conformal transformations

» defined over compact Riemann surfaces

Stick to holomorphic side

CFT = 2-dimensional QFT covariant w.r.t. holomorphic coordinate
changes



ﬂg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate
2+ z+€ef(2)

Local holomorphic vector field
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ﬂg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate
z—=z+ef(z)

Local meromorphic vector field

Virasoro algebra:

d
L,= —Z"de = [Lp, L] = (m —n)Lyyn,n €Z
2

etc...



M, and 2-dimensional CFT

Local meromorphic vector field

Infinitesimal deformation of complex structure

)

Infinitesimal deformation of an algebraic curve



ﬂg,n and 2-dimensional CFT

(Cip1,. .- pn) € Mg
X = (A1,...,Ap) representation labels

V3(Csp1, ..., pn) space of conformal blocks
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(Cip1,. .- pn) € Mg
X = (A1,...,Ap) representation labels

V3(Csp1, ..., pn) space of conformal blocks



ﬂg,n and 2-dimensional CFT

Cipty v Py G, 4—) € Mgt
A= (A1, oy A A, )\T) representation labels
V3(C5p1,- .- Pn, g4, q—) space of conformal blocks



ﬂg,n and 2-dimensional CFT

Verlinde bundle
VX — Mg,n

Each fibre is given by space of conformal blocks

VX(Capla . 7pn) — (Capla . 7pn)



M., and CohFT

The characters ch(V5) define a CohFT on M ,,!



M., and CohFT

The characters ch(V5) define a CohFT on M ,,!

A CohFT
> a vector space of fields U
> a non-degenerate pairing n
> a distinguished vector 1 € U

> a family of correlators
Qg € H' (Mg, Q) ® (U")*"

satisfying gluing...



M., and CohFT

Quantum multiplication % on U
n(v1 * v2,v3) = Qo3(v1 ® V2 ®v3) € Q

(U, %) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius
algebra



M., and CohFT

Hq(p) = {(C;p1,...,pn) such that differential vanishes at p; to
order a;}

Maybe [H,(4)] is one of the



H, (1) and CohFT

[Hg(p)] is not a CohFT class!
Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one

Witten R-spin class

Wl e H¥72(My,, Q)



de Jonquieres’ divisors

Hg(1) = {(C;p1,-..,pn) such that differential vanishes at p; to
order a;}

={(C;p1,...,pn) such that Q}; has section that vanishes at p; to
order a;}

What if L # QL?



Ernest de Jonquieres
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de Jonquieres’ multitangency conditions

C smooth, genus g
f : C" — P" non-degenerate
Degree of f = #{f(C)NH} =:d

]P)’I”




de Jonquieres’ multitangency conditions

C smooth, genus g
f : C" — P" non-degenerate
Degree of f = #{f(C)NH} =:d

]P)’I”

‘D1

P2

&



de Jonquieres’ multitangency conditions

C smooth, genus g
f : C" — P" non-degenerate
Degree of f = #{f(C)NH} =:d

]P)’I”




de Jonquieres’ multitangency conditions

C smooth, genus g
f: C — P" non-degenerate
Degree of f = #{f(C)NH} =:d

]PJ’I‘

D1 ‘P1

22 P2

FTHAC) N HY = p1+ 2p2



de Jonquieres’ multitangency conditions

de Jonquiéres counts the number of pairs (p1,p2) such that
there exists a hyperplane H C P" with

FHAC)NHY = p1+2p



de Jonquieres’ multitangency conditions

de Jonquiéres (and Mattuck, Macdonald) count the n-tuples

<p17 cee 7pn)
such that there exists a hyperplane H C P” with
fﬁl{f(C) NH} =aip1+...+ appn

where
ai+...+a,=d



de Jonquieres’ multitangency conditions

The (virtual) de Jonquiéres numbers are the coefficients of

t1-...-1lp

(L4 a2t + ... +a2t)9(1 + arty + ... + anty)? "9



Constructing the moduli space

An embedding f : C'— P" of degree d is given by

A pair (L, V)
> a line bundle L of degree d on C

» an (r + 1)-dimensional vector space V' of sections of L



Constructing the moduli space

An embedding f : C'— P" of degree d is given by

A pair (L, V)
> a line bundle L of degree d on C

» an (r + 1)-dimensional vector space V' of sections of L

Choose (0y, ..., 0.) basis of V

U
f:C =P
ploo(p) i ... 00(p)]



Constructing the moduli space

Space of all divisors of degree d on C

Cqg=Cx...xC/S
d >;. x C [Sq
times

For example
p1+2p2 € Cs



Constructing the moduli space

Space of all divisors of degree d on C

Cqg=Cx...xC/S
d >;. x C [Sq
times

For example
p1+2p2 € Cs

We define de Jonquiéres divisors

such that
f_l{f(c) OH} =aip1+...+anpn



Constructing the moduli space

D =p; +...4 p, is de Jonquieres divisor

)

there exists a section o whose zeros are

ai1p1+ ...+ apPn



To summarise...

v

Fix curve C of genus ¢
Fix embedding given by (L, V)

C,, := space of divisors of degree n

v

v

v

Defined de Jonquiéres divisors via multitangency conditions

DJ, ={D € C,, | D de Jonquiéres divisor for L}



Analysing the moduli space

DJ, ={D € C, | D de Jonquiéres divisor for L}

» determinantal subvariety of C), (degeneracy locus)
» if DJ, # 0, then dimDJ, >n—d+r



Analysing the moduli space

Relevant questions
» n —d+r < (0= non-existence of de Jonquieres divisors
» n—d+r >0 = existence of de Jonquiéres divisors
» n—d+r =0 = finite number of de Jonquiéres divisors
dimDJ,=n—d+r

v



Taking a variational perspective

» Allow C' to vary in Mg,

> Vary the de Jonquiéres structure with it



To summarise...

v

Billiards in rational polygons

v

Obtained Riemann surface with differential vanishing at
marked points

Looked at strata H4(y) using CohFT
Generalised to de Jonquiéres divisors

v

v



