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Billiards in convex polygons

I Ideal billiard ball

I Mass concentrated at one point

I No friction, no spin

I Optical rule



Billiards in convex polygons



Billiards in rational polygons

Rational polygon: all angles are rational multiples of π

I Many tools available

I Connections with algebraic geometry, Teichmüller theory,...

Motivation: the group generated by the reflections of a rational
polygon is finite
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Surfaces from polygons

Glue identified edges of polygon ⇔ surface with flat metric away
from some (conical) singularities

Singularities arise from corners of polygon

Angle around singularities is integer multiple of 2π



Surfaces from polygons

α =
π

8
and β =

3π

8



Surfaces from polygons

γ = 2× 3π
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=

3π

4

8× 3π

4
= 6π = 3× 2π



Surfaces from polygons

Gauss-Bonnet type theorem:

I n singularities with angle (ai + 1)2π

I
∑n

i=1 ai = 2g − 2

Take complex coordinate z on surface

ω := p(z)dz

ω vanishes at conical singularities with order ai



Surfaces from polygons

γ = 2× 3π

8
=

3π

4

8× 3π

4
= 6π = (2 + 1)2π

2g − 2 = 2⇒ g = 2



Strata of holomorphic differentials

Hg(µ)

I Riemann surface C of genus g

I n conical singularities pi with angles (ai + 1)2π

I (or with differential ω vanishing at pi at order ai)

I µ = (a1, . . . , an) partition of 2g − 2



Strata of holomorphic differentials

Kontsevich and Zorich: Hg(µ) has at most three connected
components

Lelièvre, Monteil, Weiss: there are at most finitely many points y
on the polygon not reachable by a billiard trajectory from an
arbitrary point x



To summarise

I Billiards in polygons

I Riemann surface of genus g with n conical singularities

I Riemann surface of genus g with differential vanishing at n
points with prescribed order ai such that∑

ai = 2g − 2

I Strata of differentials Hg(µ)



Studying Mg,n

Mg,n = moduli space of Riemann surfaces of genus g with n
marked points

(C; p1, . . . , pn) ∈Mg,n

I dimMg,n = 3g − 3 + n

I compactification Mg,n

Question
What is the cohomology of Mg,n?
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Studying Mg,n

Hg(µ) ⊂Mg,n

Take closure: Hg(µ) ⊂Mg,n

Question
What is the fundamental class [Hg(µ)]?

Answer
(potentially) Cohomological field theory!



Mg,n and 2-dimensional CFT

CFT

I 2-dimensional QFT invariant under conformal transformations

I defined over compact Riemann surfaces

Stick to holomorphic side

CFT = 2-dimensional QFT covariant w.r.t. holomorphic coordinate
changes



Mg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

z 7→ z + εf(z)

Local holomorphic vector field

f(z)
d

dz
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Mg,n and 2-dimensional CFT

Infinitesimal change of holomorphic coordinate

z 7→ z + εf(z)

Local meromorphic vector field

f(z)
d

dz

⇓

Virasoro algebra:

Ln = −zn+1 d

dz
⇒ [Ln, Lm] = (m− n)Lm+n, n ∈ Z

etc...



Mg,n and 2-dimensional CFT

Local meromorphic vector field

f(z)
d

dz

m

Infinitesimal deformation of complex structure

m

Infinitesimal deformation of an algebraic curve



Mg,n and 2-dimensional CFT

(C; p1, . . . , pn) ∈Mg,n

~λ = (λ1, . . . , λn) representation labels

V~λ(C; p1, . . . , pn) space of conformal blocks
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Mg,n and 2-dimensional CFT

(C̃; p1, . . . , pn, q+, q−) ∈Mg,n+2

~λ = (λ1, . . . , λn, λ, λ
†) representation labels

V~λ(C̃; p1, . . . , pn, q+, q−) space of conformal blocks



Mg,n and 2-dimensional CFT

Verlinde bundle
V~λ →Mg,n

Each fibre is given by space of conformal blocks

V~λ(C; p1, . . . , pn)→ (C; p1, . . . , pn)



Mg,n and CohFT

The characters ch(V~λ) define a CohFT on Mg,n!

A CohFT

I a vector space of fields U

I a non-degenerate pairing η

I a distinguished vector 1 ∈ U
I a family of correlators

Ωg,n ∈ H∗(Mg,n,Q)⊗ (U∗)⊗n

satisfying gluing...
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Mg,n and CohFT

Quantum multiplication ∗ on U

η(v1 ∗ v2, v3) = Ω0,3(v1 ⊗ v2 ⊗ v3) ∈ Q

(U, ∗) Frobenius algebra of the CohFT

Teleman: classification of all CohFT with semisimple Frobenius
algebra



Mg,n and CohFT

Hg(µ) = {(C; p1, . . . , pn) such that differential vanishes at pi to
order ai}

[Hg(µ)] =?

Maybe [Hg(µ)] is one of the Ωg,n



Hg(µ) and CohFT

[Hg(µ)] is not a CohFT class!

Conjecture (Pandharipande, Pixton, Zvonkine): it is related to one

Witten R-spin class

WR
g,µ ∈ H2g−2(Mg,n,Q)



de Jonquières’ divisors

Hg(µ) = {(C; p1, . . . , pn) such that differential vanishes at pi to
order ai}

={(C; p1, . . . , pn) such that Ω1
C has section that vanishes at pi to

order ai}

What if L 6= Ω1
C?



Ernest de Jonquières



Disclaimer



de Jonquières’ multitangency conditions

C smooth, genus g
f : C → Pr non-degenerate
Degree of f = #{f(C) ∩H} =: d

d = 3
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de Jonquières’ multitangency conditions
C smooth, genus g
f : C → Pr non-degenerate
Degree of f = #{f(C) ∩H} =: d

f−1{f(C) ∩H} = p1 + 2p2



de Jonquières’ multitangency conditions

de Jonquières counts the number of pairs (p1, p2) such that
there exists a hyperplane H ⊂ Pr with

f−1{f(C) ∩H} = p1 + 2p2



de Jonquières’ multitangency conditions

de Jonquières (and Mattuck, Macdonald) count the n-tuples

(p1, . . . , pn)

such that there exists a hyperplane H ⊂ Pr with

f−1{f(C) ∩H} = a1p1 + . . .+ anpn

where
a1 + . . .+ an = d



de Jonquières’ multitangency conditions

The (virtual) de Jonquières numbers are the coefficients of

t1 · . . . · tn

in
(1 + a21t1 + . . .+ a2ntn)g(1 + a1t1 + . . .+ antn)d−r−g



Constructing the moduli space

An embedding f : C → Pr of degree d is given by

A pair (L, V )

I a line bundle L of degree d on C

I an (r + 1)-dimensional vector space V of sections of L

Choose (σ0, . . . , σr) basis of V
⇓

f : C → Pr
p 7→ [σ0(p) : . . . : σr(p)]
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Constructing the moduli space

Space of all divisors of degree d on C

Cd = C × . . .× C︸ ︷︷ ︸
d times

/Sd

For example
p1 + 2p2 ∈ C3

We define de Jonquières divisors

p1 + . . .+ pn ∈ Cn

such that
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Constructing the moduli space

D = p1 + . . .+ pn is de Jonquières divisor

m

there exists a section σ whose zeros are

a1p1 + . . .+ anpn



To summarise...

I Fix curve C of genus g

I Fix embedding given by (L, V )

I Cn := space of divisors of degree n

I Defined de Jonquières divisors via multitangency conditions

DJn = {D ∈ Cn | D de Jonquières divisor for L}



Analysing the moduli space

DJn = {D ∈ Cn | D de Jonquières divisor for L}

I determinantal subvariety of Cn (degeneracy locus)

I if DJn 6= ∅, then dimDJn ≥ n− d+ r



Analysing the moduli space

Relevant questions

I n− d+ r < 0⇒ non-existence of de Jonquières divisors

I n− d+ r ≥ 0⇒ existence of de Jonquières divisors

I n− d+ r = 0⇒ finite number of de Jonquières divisors

I dimDJn = n− d+ r



Taking a variational perspective

I Allow C to vary in Mg,n

I Vary the de Jonquières structure with it



To summarise...

I Billiards in rational polygons

I Obtained Riemann surface with differential vanishing at
marked points

I Looked at strata Hg(µ) using CohFT

I Generalised to de Jonquières divisors


