

# FROM DE JONQUIÈRES' COUNTS TO COHOMOLOGICAL FIELD THEORIES Mara Ungureanu Humboldt-Universität zu Berlin



### Motivation

Goals

Enumerative geometry is an old subject whose goal is to count the number of geometric objects satisfying some given conditions. As his 15th problem, Hilbert asked that a rigorous foundation for the field be established. In this **First question:** What does  $DJ_n(C, L)$  look like for a fixed curve C? We must check that it is non-empty, smooth, reduced and of expected dimension n - d + r in order to validate de Jonquières' counts.

project we verify the validity of a classical enumerative result, namely de Jonquières' formula counting the number of divisors with multiplicities on a curve. Moreover we hope to understand our problem from a different perspective, namely that of cohomological field theories.

# **Objects of study**

Let C be a smooth curve of genus g and L a complete linear series of degree d and dimension r. Fix  $n \in \mathbb{N}$ . Then  $D = p_1 + \cdots + p_n$  is a **de Jonquières divisor of length n** if

 $L = \mathcal{O}(a_1p_1 + \dots + a_np_n)$ 

for some  $a_i \in \mathbb{N}$  with  $\sum a_i = d$ . Denote the space of all such divisors by  $DJ_n^{r,d}(C,L)$ . This is a degeneracy locus in  $C_n$  and has expected dimension  $\exp \dim DJ_n^{r,d}(C,L) = n - d + r$ .

**Long-term aim:** Consider the basic object to be  $(C; p_1, \ldots, p_n)$  and allow it to vary in  $\mathcal{M}_{g,n}$ . Fix also r and d positive integers. We are interested in the space

 $\mathcal{DJ}_n^{r,d} = \{(C; p_1, \dots, p_n) \text{ such that } C \text{ has an embedding in } \mathbb{P}^r \text{ of degree } d$ that admits the de Jonquières divisor  $p_1 + \dots + p_n\} \subset \mathcal{M}_{g,n}$ . We would like to study its closure in  $\overline{\mathcal{M}}_{g,n}$  and in particular, we would like

to know if it is (related to) a CohFT class in  $H^*(\overline{\mathcal{M}}_{g,n},\mathbb{Q})$ .

## **Results achieved**

**Expected dimension:** A tangent space computation yields the fact that  $\dim DJ_n^{r,d}(C,L) = n - d + r.$ 

**De Jonquières' formula** [1] states that, if we expect there to be a finite number of de Jonquières divisors of length n, then this number is given by the coefficient of the monomial  $t_1 \cdots t_n$  in

 $(1 + a_1^2 t_1 + \dots + a_n^2 t_n)^g (1 + a_1 t_1 + \dots + a_n t_n)^{d-r-g}.$ 

Viewing C as embedded in  $\mathbb{P}^r$  by L, the formula counts the number of hyperplanes meeting C with prescribed multiplicities  $a_i$  at some points  $p_i$ .



Hyperplane section of C with de Jonquières divisor  $p_1 + p_2 + 2p_3$ 

Existence and non-existence result: Let C be a general curve and La general linear series of degree d and dimension r. Then • if n - d + r < 0 then  $DJ_n^{r,d}(C, L) = \emptyset$ , • if  $n - d + r \ge 0$  then  $DJ_n^{r,d}(C, L) \ne \emptyset$ . In the case r = 1 the result follows from a deformation theoretic argument à la Kodaira–Spencer. For  $r \ge 2$ , the proof is based on an induction on degree, genus and dimension of embeddings of certain nodal curves using constructions by Caporaso [2].

Work in progress: The next step is to find a suitable compactification of  $\mathcal{DJ}_n^{r,d}$  in  $\overline{\mathcal{M}}_{g,n}$ .

### References

E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. *Geometry of Algebraic Curves*. Vol. 267. A Series of Comprehensive Studies in Mathematics. Springer, (1985).
L. Caporaso. A compactification of the universal Picard variety over the moduli space of stable curves. *Journal of the AMS* 7 (1994), 589–660.
G. Farkas and R. Pandharipande. "The moduli space of twisted canonical divisors". arXiv:1508.07940 [math.AG].
A. Polishchuk. "Moduli spaces of curves with effective r-spin structures". *Gromov-Witten theory of spin curves and orbifolds*. Vol. 403. Contemporary

#### Geometric interpretation for the counts:

• If r = 1 we recover the number of ramification points of a Hurwitz cover,

• If r = 2 we obtain the number of bitangent lines to a plane curve,

• If  $L = K_C$  and  $a_i = 2$  for all i, we recover the number of odd theta characteristics of C. In this case, if we allow C and the points  $p_1, \ldots, p_n$  to vary in  $\mathcal{M}_{g,n}$ , and we vary the de Jonquières structure with them, we recover the strata of holomorphic differentials, studied for example in [3] and [4].

Mathematics. American Mathematical Society, 2006, pp. 1–20.