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Motivation

Enumerative geometry is an old subject whose goal is to count the number
of geometric objects satisfying some given conditions. As his 15th problem,
Hilbert asked that a rigorous foundation for the field be established. In this
project we verify the validity of a classical enumerative result, namely de
Jonquières’ formula counting the number of divisors with multiplicities on
a curve. Moreover we hope to understand our problem from a different
perspective, namely that of cohomological field theories.

Objects of study

Let C be a smooth curve of genus g and L a complete linear series of degree
d and dimension r. Fix n ∈ N. Then D = p1 + · · ·+pn is a de Jonquières
divisor of length n if

L = O(a1p1 + · · · + anpn)

for some ai ∈ N with
∑

ai = d. Denote the space of all such divisors by
DJ r,d

n (C, L). This is a degeneracy locus in Cn and has expected dimension

exp dim DJ r,d
n (C, L) = n− d + r.

De Jonquières’ formula [1] states that, if we expect there to be a finite
number of de Jonquières divisors of length n, then this number is given by
the coefficient of the monomial t1 · · · tn in

(1 + a2
1t1 + · · · + a2

ntn)g(1 + a1t1 + · · · + antn)d−r−g.

Viewing C as embedded in Pr by L, the formula counts the number of
hyperplanes meeting C with prescribed multiplicities ai at some points pi.

Hyperplane section of C with de Jonquières divisor p1 + p2 + 2p3

Geometric interpretation for the counts:

• If r = 1 we recover the number of ramification points of a Hurwitz cover,

• If r = 2 we obtain the number of bitangent lines to a plane curve,

• If L = KC and ai = 2 for all i, we recover the number of odd theta
characteristics of C. In this case, if we allow C and the points p1, . . . , pn

to vary inMg,n, and we vary the de Jonquières structure with them, we
recover the strata of holomorphic differentials, studied for example in [3]
and [4].

Goals

First question: What does DJn(C, L) look like for a fixed curve C?
We must check that it is non-empty, smooth, reduced and of expected
dimension n− d + r in order to validate de Jonquières’ counts.

Long-term aim: Consider the basic object to be (C; p1, . . . , pn) and allow
it to vary inMg,n. Fix also r and d positive integers. We are interested in
the space

DJ r,d
n = {(C; p1, . . . , pn) such that C has an embedding in Pr of degree d

that admits the de Jonquières divisor p1 + · · · + pn} ⊂ Mg,n.

We would like to study its closure inMg,n and in particular, we would like
to know if it is (related to) a CohFT class in H∗(Mg,n,Q).

Results achieved

Expected dimension: A tangent space computation yields the fact that

dim DJ r,d
n (C, L) = n− d + r.

Existence and non-existence result: Let C be a general curve and L

a general linear series of degree d and dimension r. Then

• if n− d + r < 0 then DJ r,d
n (C, L) = ∅,

• if n− d + r ≥ 0 then DJ r,d
n (C, L) 6= ∅.

In the case r = 1 the result follows from a deformation theoretic argument
à la Kodaira–Spencer. For r ≥ 2, the proof is based on an induction on
degree, genus and dimension of embeddings of certain nodal curves using
constructions by Caporaso [2].

Work in progress: The next step is to find a suitable compactification of
DJ r,d

n inMg,n.
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