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Enumerative geometry is an old subject whose goal is to count the number What does DJ,(C, L) look like for a fixed curve C7
of geometric objects satisfying some given conditions. As his 15th problem, We must check that it is non-empty, smooth, reduced and of expected
Hilbert asked that a rigorous foundation for the field be established. In this dimension n — d + r in order to validate de Jonquieres’ counts.

project we verify the validity of a classical enumerative result, namely de

Jonquieres’ formula counting the number of divisors with multiplicities on Consider the basic object to be (C';p1, ..., p,) and allow
a curve. Moreover we hope to understand our problem from a different it to vary in M ,,. Fix also 7 and d positive integers. We are interested in
perspective, namely that of cohomological field theories. the space

DT = {(C:pi,...,py) such that C has an embedding in P" of degree d
that admits the de Jonquiéres divisor p; + - - - + p,} C M.

We would like to study its closure in ngn and in particular, we would like

Let C' be a smooth curve of genus ¢ and L a complete linear series of degree to know if it is (related to) a CohFT class in H*(M,,,, Q).

d and dimension r. Fixn € N. Then D =p;+---+p, is a
if
L= O(aipr 4 -4 @uDn)

for some a; € N with » a; = d. Denote the space of all such divisors by A tangent space computation yields the fact that

DJ"(C, L). This is a degeneracy locus in C,, and has expected dimension dim DJ"NC, L) =n—d+.
expdim DJ"NC, L) =n —d +r.

Let C' be a general curve and L

[1] states that, if we expect there to be a finite a general linear series of degree d and dimension 7. Then
number of de Jonquieres divisors of length n, then this number is given by oifn—d-+r <0 then DJf;d(C’, L) =0,
the coefficient of the monomial ¢;---¢, in oif n — d+r > 0 then DJ;';’CZ(C, L)+ 0.
(L+ajt + -+ apt,)'(1+ arty + -+ + antn)d_r_g° In the case r = 1 the result follows from a deformation theoretic argument
Viewing ' as embedded in P" by L, the formula counts the number of a la Kodaira—Spencer. For r > 2, the proof is based on an induction on
hyperplanes meeting C' with prescribed multiplicities a; at some points p;. degree, genus and dimension of embeddings of certain nodal curves using

constructions by Caporaso [2].

he next step is to find a suitable compactification of

DI in M.

Hyperplane section of C' with de Jonquieres divisor p1 + po + 2p3
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