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Abstract. We solve two long-standing open problems regarding the com-
binatorics of ℵω+1. We answer a question of Shelah by showing that it is
consistent for any n ≥ 1 that GCH holds and there is a stationary set of points
of cofinality ℵn which is not in the approachability ideal. As a corollary, we
obtain a model where the notions of goodness and approachability are distinct
for stationarily many points of cofinality ℵ1, answering an open question of
Cummings, Foreman, and Magidor.

The concept of independence is fundamental to set-theoretic research. It refers to
the phenomenon that many statements are neither proven nor refuted by the axioms
of ZFC. One of the first independence proofs was carried out by Paul Cohen, who
showed using his method of forcing that the Continuum Hypothesis – the statement
that 2ℵ0 = ℵ1 – is independent. Once it became apparent that independence was
an essential consideration in the study of cardinal exponentiation, an important
distinction arose between regular and singular cardinals. A cardinal κ is regular if
it cannot be written as

∪
i<τ λi, where τ and all λi are less than κ; otherwise it is

singular. For the continuum function on the regular cardinals, William Easton was
able to show that it is constrained only by the properties that it is increasing and
that cf(2κ) > κ.

However, it turns out that for the singular cardinals, a surprising number of
significant statements are determined by ZFC: Saharon Shelah introduced PCF
theory precisely to study the behavior of non-regular cardinals like ℵω. As the first
singular cardinal, it is a natural object to study. Using his PCF framework, he was
able to show the remarkable result that if ℵω is a strong limit, 2ℵω < ℵω4

. This is
one example showing that the behavior of the continuum function on the singular
cardinals is subject to additional non-trivial constraints. Another example of the
rigidity of the continuum function for singular cardinals is a result by Jack Silver,
who showed that, if γ is a singular cardinal of uncountable cofinality and 2α = α+

for stationarily many α < γ, then 2γ = γ+ as well (see [Jec03, Theorem 8.12]).
Shelah’s proof of the bound on 2ℵω relied on two canonical invariants which he

isolated: The set of good points – those points which behave in an orderly manner
with respect to a cofinal sequence through

∏
n ℵn – and the set of approachable

points – those points which are limits of particularly strong elementary substruc-
tures of the universe.

Shelah showed that any ordinal of cofinality >ℵ3 is good (which is deeply con-
nected to his bound on 2ℵω ) and that any approachable point must also be a good
point. However, it was not known if the latter implication can be reversed or if
there can be non-approachable points of cofinality >ℵ3. It was even speculated by
Cummings, Foreman and Magidor (see [CFM04, Page 2]) that it might be the case
that any good point must also be approachable. From that fact it would of course
follow immediately that there are no non-approachable points of cofinality >ℵ3.
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These questions are challenging because we lack a diversity of techniques for
obtaining non-approachable points. Shelah showed that there can be a stationary
set of non-approachable points with cofinality ℵ1 by starting with a supercompact
cardinal κ, finding a regular γ < κ such that there are stationarily many non-
approachable points of cofinality γ+ω+1 in κ+ω+1, and then collapsing γ+ω to ℵ0

(thus turning γ+ω+1 into ℵ1) and κ to ℵ2. In the resulting model, κ+ω+1 becomes
ℵω+1 and a straightforward argument shows that there are still stationarily many
α ∈ κ+ω+1 (which becomes ℵω+1 in the forcing extension) of cofinality γ+ω+1

(which becomes ℵ1) that are not approachable. However, these techniques are
isolated to ℵ1 and the non-approachable points obtained in this way are also not
good.

In this paper, we aim to remedy the situation. We will provide a forcing poset
which turns ℵω+1 into a non-approachable ordinal while (1) also making it a good
point and (2) collapsing it to have size ℵn for any desired n. This forcing will be an
iteration of a variant of Namba forcing together with the Levy-collapse and have
two ostensibly conflicting properties: A weak form of the approximation property
without adding any new functions from ℵ0 into any ℵn. It is precisely this tension
which allows us to show that the forcing does not make ℵω+1 approachable.

Moreover, our variant of Namba forcing will be a Prikry-type poset and thus
iterable using a technique of Magidor. When starting from sufficiently large cardi-
nals, we obtain, for any n ≥ 1, a model where GCH holds and there are stationarily
many points in ℵω+1∩cof(ℵn) which are not approachable. As a corollary (but also
a consequence of our proof) we obtain that there can consistently be stationarily
many points (even of cofinality ℵ1) which are good but not approachable:

Theorem. Assume GCH holds and (κk)k∈ω is an increasing sequence of supercom-
pact cardinals. Let n ∈ ω, n ≥ 1. There is a forcing extension in which GCH holds,
κ0 = ℵn+1, (supk κk)

+ = ℵω+1 and there are stationarily many γ ∈ ℵω+1 ∩ cof(ℵn)
which are good, but not approachable.

We note that, since □ℵω necessarily fails in our model, at least some large car-
dinals are necessary (see [Sar14]).

The paper is organized as follows. In Section 1, we give a more in-depth intro-
duction into the combinatorics at ℵω+1 and our results. In Section 2, we provide
proofs of a few well-known lemmas about iterations of Prikry-type forcings. In
Section 3, we show the consistency of the existence of a certain sequence of ideals
that will be necessary for the definition and properties of our main forcing poset,
which will occur in Section 4. In Section 5, we prove the main result. In the last
section we modify the proof of our main theorem to obtain the existence of a model
where all scales are good but the approachability property fails.

We assume that the reader is familiar with the basics of cardinal arithmetic, forc-
ing and large cardinals. Good introductory material can be found in the textbooks
of Jech (see [Jec03]) and Kunen (see [Kun11]). A more in-depth introduction into
the combinatorics at singular cardinals can be found in the chapters of Abraham-
Magidor (see [AM10]) or Eisworth (see [Eis10]) in the Handbook of Set Theory.
In the proof of the main theorem, we will lift a ground-model embedding. Results
related to this technique can be found in Cummings’ chapter in the Handbook of
Set Theory (see [Cum10, Section 9]).

Acknowledgments. The first author would like to thank Chris Lambie-Hanson for
many illuminating conversations surrounding this problem during a recent research
visit.
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1. Combinatorics at ℵω+1

In this section, we will explain the notions of goodness and approachability and
state standard facts that we will use freely throughout the paper. For simplicity, we
will focus on the special case where our singular cardinal has countable cofinality,
but the definitions and results can be generalized to singulars of any cofinality.
Definition 1.1. Let δ be a singular cardinal with countable cofinality. Let (δn)n∈ω

be an increasing sequence of regular cardinals converging to δ. A (δ+, (δn)n∈ω)-scale
is a sequence (fα)α<δ+ such that:

(1) For all α < δ+, fα ∈
∏

n∈ω δn.
(2) For all α < β < δ+, fα <∗ fβ , i.e. there is k ∈ ω such that fα(n) < fβ(n)

for all n ≥ k.
(3) For all g ∈

∏
n∈ω δn there is α < δ+ such that g <∗ fα.

Given a (δ+, (δn)n∈ω)-scale (fα)α<δ+ , we say that an ordinal γ < δ+ is good for
(fα)α<δ+ if there exists an unbounded A ⊆ γ and k ∈ ω such that for all n ≥ k,
the sequence (fα(n))α∈A is strictly increasing.

Shelah showed that whenever δ is singular with countable cofinality, there is an
increasing sequence (δn)n∈ω of regular cardinals converging to δ such that there
exists a (δ+, (δn)n∈ω)-scale (see [Eis10, Theorem 3.53]). Moreover, if δ = ℵω, there
is a maximal choice of (δn)n∈ω modulo finite sets (this is folklore). Additionally,
whenever (fα)α<δ+ and (f ′

α)α<δ+ are both (δ+, (δn)n∈ω)-scales, there is a club
C ⊆ δ+ such that any γ ∈ C is good for (fα)α<δ+ if and only if it is good for
(f ′

α)α<δ+ , since there is a club of points γ ∈ δ+ such that {fα | α < γ} is unbounded
in {f ′

α | α < γ} and vice versa. Ergo it makes sense to speak of “good points”
without referring to the exact scale, knowing that this is well-defined modulo club
sets.

The following characterization of goodness is often easier to verify (see [Eis10,
Theorem 3.50]):
Fact 1.2. Let (fα)α<δ+ be a (δ+, (δn)n∈ω)-scale and γ < δ+. Then γ is good for
(fα)α<δ+ if and only if there exists h ∈

∏
n∈ω δn such that:

(1) For almost all n ∈ ω, cf(h(n)) = cf(γ).
(2) For all α < γ, fα <∗ h.
(3) For all g ∈

∏
n∈ω δn with g <∗ h there is some α < γ such that g <∗ fα.

Points (2) and (3) state that h is an exact upper bound of (fα)α<γ .
The approachability ideal was introduced by Shelah (see [She91]) in order to

obtain indestructibility results for stationary sets under sufficiently closed forcing
notions.
Definition 1.3. Let λ be a cardinal. A set S is in the approachability ideal I[λ+]
if there is a club C ⊆ λ+ and a sequence (aα)α<λ+ of elements of [λ+]<λ such that
whenever γ ∈ S∩C, there is an unbounded set A ⊆ γ such that A∩β ∈ {aα | α < γ}
for all β < γ.

If λ<λ ≤ λ+ (so e.g. if 2λ = λ+) there is a single sequence (aα)α<λ+ enumerating
all of [λ+]<λ. In this case, the approachability ideal is generated by a single set
modulo the club filter. So again it makes sense to speak of “approachable points”
without referring to a specific sequence (aα)α<λ+ , knowing that this is well-defined
modulo club sets.

The approachability ideal behaves quite differently at successors of regulars when
compared to successors of singulars: For regular cardinals λ, λ is often referred to
as the critical cofinality, since the set λ+ ∩ cof(<λ) is always in I[λ+]. Due to this,
the approachability ideal is completely determined by the membership of subsets
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of λ+∩ cof(λ). For singular cardinals λ however, there are many more possibilities:
ZFC only implies that the set λ+∩cof(≤cf(λ)) is in I[λ+] and since there are many
cardinals between cf(λ) and λ there is a great potentiality regarding the behavior
of I[λ+].

The notions of goodness and approachability share a deep connection: Shelah
showed that any approachable point is also good. Additionally, he was the first to
show that consistently there can be stationarily many non-approachable points in
ℵω+1 of cofinality ℵ1 (see [She87], for a proof see [She79]). In the first paper, he
raised the following question:

Question 1.4. Is GCH+ {δ < ℵω+1 | cf(δ) > ℵ1} /∈ I[ℵω+1] consistent with ZFC?

A related question appears in a survey by Foreman (see [For05]):

Question 1.5. Can there be a stationary set of good points which are not ap-
proachable?

These questions have the following connection: It can be shown that any point
of cofinality >2ℵ0 is good (see [Eis10, Corollary 4.61]). Additionally, Shelah showed
that, regardless of any cardinal arithmetic, any point of cofinality >ℵ3 is good as
well (see [AM10, Section 2.1]). So answering the question of Shelah would furnish
us with a model where there are necessarily stationarily many points of cofinality
say ℵn which are good, but not approachable. One could then even use the simple
Levy collapse of ℵn−1 to ℵ0 in order to obtain a model where there are stationarily
many non-approachable points of cofinality ℵ1 which are good.

A very powerful characterization of approachability, specifically at successors of
singular cardinals, can be obtained using normal, subadditive colorings. For ease
of notation, we will regard [κ]2 as the set of all pairs (α, β) with α < β < κ.

Definition 1.6. Let δ be a limit cardinal with countable cofinality and let (δn)n∈ω

be an ascending sequence of regular cardinals converging to δ. Let d: [δ+]2 → ω be
a coloring. Then we say that:

(1) d is normal if for any n ∈ ω,

sup
α∈δ+

|{β < α | d(β, α) ≤ n}|< δ

(2) d is (δn)n∈ω-normal if for any n ∈ ω and α ∈ δ+,

|{β < α | d(β, α) ≤ n}|≤ δn

(3) d is subadditive if for any α < β < γ < δ+,

d(α, γ) ≤ max{d(α, β), d(β, γ)}

The notion of (δn)n∈ω-normality is not really necessary for the arguments but
it does streamline the notation, so we have chosen to define it. It can be shown
easily that whenever δ is singular of countable cofinality and (δn)n∈ω is a sequence
of regular cardinals converging to δ, there exists a (δn)n∈ω-normal subadditive
coloring on δ+.

Definition 1.7. Let δ be a limit cardinal with countable cofinality and d: [δ+]2 → ω
a normal subadditive coloring. Then an ordinal α ≤ δ+ with cf(α) > ω is d-
approachable if there is an unbounded A ⊆ α and n ∈ ω such that d(β0, β1) ≤ n
for any β0 < β1, both in A. We let S(d) consist of all those α < δ+ which are
d-approachable.

Whenever d: [δ+]2 → ω is a normal subadditive coloring, δ+ itself can never be
d-approachable. However, we have chosen to include it in the definition since it
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might become d-approachable in forcing extensions where it is no longer a cardinal
(so we can say “δ+ does not become d-approachable”).

Interestingly, there is the following straightforward link between scales and col-
orings:

Example 1.8. Let f⃗ = (fα)α<δ+ be a (δ+, (δn)n∈ω)-scale. The scale coloring df⃗ is
defined by

df⃗ (α, β) := min{n ∈ ω | ∀k ≥ n(fα(k) < fβ(k))}
this coloring is subadditive (if fα(k) < fγ(k), it follows that either fα(k) < fβ(k)
or fβ(k) < fγ(k)), but not normal.

Clearly, a point γ is good if for (fα)α<δ+ if and only if it is df⃗ -approachable.

This highlights an interesting problem when trying to obtain non-approachable
good points: In order to make a point γ non-d-approachable, we have to make sure
that there is no unbounded subset of γ on which d is bounded. However, in order to
make γ good, there needs to be an unbounded subset of γ on which df⃗ is bounded.
Therefore we have to obtain preservation theorems which incorporate the normality
of the coloring.

We will also need the following fact about d-approachability (see [She79, Remark
28]):

Fact 1.9. Let δ be a limit cardinal with countable cofinality and let d: [δ+]2 → ω
be a subadditive coloring. Let α < δ+, cf(α) > ω. Then α is d-approachable if and
only if whenever B ⊆ α is unbounded, there is B′ ⊆ B unbounded and n ∈ ω such
that d(β0, β1) ≤ n for any β0 < β1, both in B′.

Proof. Let A ⊆ α be unbounded such that d ↾ [A]2 is bounded by some n. By
refining A and B if necessary, we can assume that A = {αi | i < cf(α)}, B =
{βi | i < cf(α)} and for any i, αi < βi < αi+1. For i < cf(α), let

ni := max{d(αi, βi), d(βi, αi+1), n}
Then there is an unbounded X ⊆ cf(α) such that ni = n∗ for all i ∈ X. In
particular, {βi | i ∈ X} is unbounded in α. Moreover, for any i < j, both in X, we
have

d(βi, βj) ≤ max{d(βi, αi+1), d(αi+1, βj)}
≤ max{d(βi, αi+1), d(αi+1, αj), d(αj , βj)}
≤ n∗

so d is bounded on {βi | i ∈ X} ⊆ B. □

The following fact, which was first proven by Shelah (see [She87] and [Eis10,
Corollary 3.35] for a more modern proof), connects normal subadditive colorings to
the approachability ideal (recall that Sδ+

ω := δ+ ∩ cof(ω)):

Fact 1.10. Let δ be a singular strong limit cardinal with countable cofinality and
let d: [δ+]2 → ω be a normal subadditive coloring. Then S(d) ∪ Sδ+

ω generates I[λ]
modulo nonstationary sets.

The upshot of the previous fact is that to show the existence of stationarily many
non-approachable points it suffices to fix an arbitrary normal subadditive coloring
d and show that there exist stationarily many non-d-approachable points. Addi-
tionally, since the properties of being subadditive and normal are often preserved
by forcing extensions, one can take such a coloring from the ground model.

Our approach is therefore the following: We will introduce a forcing which col-
lapses the current ℵω+1 to some arbitrary ℵn while not making it d-approachable
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for any normal subadditive coloring d from the ground model (but necessarily mak-
ing it e-approachable for some non-normal colorings e). Then we iterate instances
of this forcing with supercompact length and obtain the desired forcing extension.

2. Iterations of Prikry-Type Forcings

We will be using Namba-style forcings to obtain our consistency results. In
many cases, these forcings derive their regularity properties from very abstract
considerations (such as Shelah’s I-condition) and are typically only iterable with
revised countable support. This is due to the fact that we need countable supports
in order not to introduce too many “tasks” but also have to revise our supports in
order to accomodate new countable sets which are not covered by any countable
set from the ground model.

In this work, we will use Namba-style forcings derived from particularly well-
behaved ideals which function in a similar way to diagonal Prikry forcing (see
[Git10, Section 1.3]) and derive their regularity properties from the Prikry property
together with a sufficiently closed direct extension ordering. Due to this, we can
iterate such forcings in a much simpler way. This material can be found in Gitik’s
chapter in the Handbook of Set Theory (see [Git10]), but we have chosen to include
the proofs as some of them are only sketched in the chapter.

Definition 2.1. Let (P,≤) be a partial order and ≤0 another partial order on P
such that ≤ refines ≤0. We say that (P,≤,≤0) is a Prikry-type forcing if for every
p ∈ P and every statement σ in the forcing language there is q ≤0 p which decides
σ (this is known as the Prikry property).

It turns out that Prikry-type forcing is iterable. Since we need the iteration to
be ν-cc at Mahlo cardinals ν, we have chosen to iterate with Easton support instead
of full support (see [Git10, Section 6.3]). This involves a strange requirement where
we allow only finitely many non-direct extensions in the support but arbitrarily
many non-direct extensions outside of it. The reason for this will become apparent
later in the proof of the Prikry property.

Definition 2.2. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be a sequence such that
each (Pα,≤α,≤α,0) is a poset and each (Q̇α, ≤̇α, ≤̇α,0) is a Pα-name for a Prikry-
type poset. We define the statement “((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ is an
Easton-support Magidor iteration of Prikry-type forcings of length ρ” by induction
on ρ.

((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ is an Easton-support Magidor iteration of
Prikry-type forcings of length ρ if ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ′ is an Easton-
support Magidor iteration of Prikry-type forcings of length ρ′ for every ρ′ < ρ and
moreover:

(1) If ρ = ρ′ + 1, then (Pρ,≤ρ) := (Pρ′ ,≤ρ′) ∗ (Q̇ρ′ , ≤̇ρ′) and (p′, q̇′) ≤ρ,0 (p, q̇)

if and only if p′ ≤ρ′,0 p and p′ ⊩ q̇′≤̇ρ′,0q̇.
(2) If ρ is a limit, then Pρ consists of all functions p on ρ such that

(a) For all α < ρ, p ↾ α ∈ Pα,
(b) If ρ is inaccessible and |Pα|< ρ for every α < ρ, then there is some

β < ρ such that for all γ ∈ (β, ρ), p ↾ γ ⊩ p(γ) = 1Q̇γ
.

and the following holds:
(i) p′ ≤ρ p if and only if p′ ↾ ρ′ ≤ρ′ p ↾ ρ′ for every ρ′ < ρ and there exists

a finite subset b such that whenever ρ′ /∈ b and p ↾ ρ′ ̸ ⊩ p(ρ′) = 1Q̇ρ′
,

then p′ ↾ ρ′ ⊩ p′(ρ′)≤̇ρ′,0p(ρ
′).

(ii) p′ ≤ρ,0 p if and only if p′ ≤ρ p and the set b is empty.
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It turns out that this notion of an iteration of Prikry-type forcings preserves the
Prikry property. We first prove the statement for the two-step iteration.

Lemma 2.3. Assume (P,≤,≤0) is a Prikry-Type forcing and (Q̇, ≤̇, ≤̇0) is a P-
name for a Prikry-Type forcing. Then P ∗ Q̇ is a Prikry-type forcing.

Proof. Let σ be a statement in the forcing language of P ∗ Q̇ and let (p, q̇) ∈ P ∗ Q̇.
Because Q̇ is forced to be a Prikry-type forcing we can apply the maximum principle
and find q̇′ such that (p, q̇′) ≤0 (p, q̇) and p forces that q̇′ decides σ. Now we can
find p′ ≤0 p which decides the statement “q̇′ ⊩ σ”. Then either p′ ⊩ q̇′ ⊩ σ and
so (p′, q̇′) ⊩ σ or p′ ⊩ q̇′ ̸ ⊩ σ in which case it follows that p′ ⊩ q̇′ ⊩ ¬σ since q̇′ is
forced to decide σ and thus (p′, q̇′) ⊩ ¬σ. □

We now show that the Prikry property is preserved by Easton-support Magidor
iterations (see [Git10, Lemma 2] for the full support case):

Lemma 2.4. Let ρ be an ordinal. Assume that ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ

is an Easton-support Magidor iteration of Prikry-type forcings of length ρ. Then
Pρ has the Prikry property.
Proof. We prove the statement by induction on ρ. In case ρ = 1, it is easy and the
successor step is Lemma 2.3. So assume that ρ is a limit ordinal and the statement
holds for all ρ′ < ρ.

For the first case, assume ρ is not inaccessible or that there is α < ρ such that
|Pα|≥ ρ (in other words, assume we are taking a full support limit at ρ). Let
p ∈ Pρ and let σ be a statement in the forcing language. Fix any unbounded and
continuous function f : cf(ρ) → ρ such that either |Pα|≥ ρ for every α ∈ im(f) or
no inaccessible cardinal is in the image of f (again, in other words, assume we are
taking full support limits at every point in the image of f). For any ρ′ < ρ′′ ≤ ρ,
let (Ṗρ′,ρ′′ , ≤̇ρ′,ρ′′ , ≤̇(ρ′,ρ′′),0) be a Pρ′ -name for a forcing poset such that Pρ′′ ∼=
Pρ′ ∗ Ṗρ′,ρ′′ . We regard Pρ as the full support limit of (Pf(β), Ṗf(β),f(β+1))β<cf(ρ).
Moreover, for any β < cf(ρ), (Ṗf(β),f(β+1), ≤̇f(β),f(β+1), ≤̇(f(β),f(β+1)),0) is forced
to be forcing equivalent to an Easton-support Magidor iteration of Prikry-type
forcings: Whenever ν ∈ (f(β), f(β + 1)) is inaccessible in the ground model and
|Pα|< ν for every α < ν, ν remains inaccessible in any extension by Pf(β), since
|Pf(β)|< ν. Ergo, (Ṗf(β),f(β+1), ≤̇f(β),f(β+1), ≤̇(f(β),f(β+1)),0) is forced to be dense
with respect to both orderings in the Easton-support Magidor iteration of Prikry-
type forcings with iterands ((Q̇α)α∈[f(β),f(β+1)) (for more details, see the discussion
before [Git10, Lemma 6.15]). It follows from the inductive hypothesis that any
(Ṗf(β),f(β+1), ≤̇f(β),f(β+1), ≤̇(f(β),f(β+1)),0) is forced to have the Prikry property.

So assume toward a contradiction that no p′ ≤ρ,0 p decides σ. We can assume
without loss of generality that p ↾ f(β) ⊩ p(f(β)) ̸= 1Ṗf(β),f(β+1)

for all β ∈ cf(ρ)

(because we are taking full support limits at every point in the image of f). We
define by recursion on β < cf(ρ) a condition p∗ ↾ f(β) ∈ Pf(β) such that p∗ ↾
f(β) ≤f(β),0 p ↾ f(β) and

p∗ ↾ f(β) ⊩Pf(β)
¬σβ

where
σβ := ∃q ∈ Pf(β),ρ(q≤̇(f(β),ρ),0p ↾ [f(β), ρ) ∧ q||Ṗf(β),ρ

σ)

Suppose p∗ ↾ f(β) has been defined. Let p∗(f(β)) be such that
p∗ ↾ f(β) ⊩

(
p∗(f(β))≤̇f(β),0 p(f(β)) and p∗(f(β))||Pf(β),f(β+1)

σf(β+1)

)
This is possible as (Ṗf(β),f(β+1), ≤̇f(β),f(β+1), ≤̇(f(β),f(β+1)),0) is forced to have the
Prikry property. We claim that p∗ ↾ f(β + 1) ⊩ ¬σf(β+1), i.e. p∗ ↾ f(β) ⊩
p∗(f(β)) ⊩ ¬σf(β+1). Otherwise there is r ≤ p∗ ↾ f(β) forcing p∗(f(β)) ̸ ⊩
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¬σf(β+1), so (because p∗(f(β)) is forced to decide σf(β+1)) r ⊩ p∗(f(β)) ⊩ σf(β+1).
But then we can take (by the maximum principle) q ∈ Pf(β+1) which is forced to
witness Pf(β+1) and p∗(f(β))⌢q is forced by r ≤ p∗ ↾ f(β) to witness σf(β), a
contradiction.

Suppose p∗ ↾ f(β) has been defined for all β < β′ and β′ is a limit. We need
to show that p∗ ↾ f(β′) ⊩ ¬σf(β′). Otherwise there is r ≤ p∗ ↾ f(β′) forcing
σf(β′), witnessed by some q̇ ∈ Pf(β′),ρ. But then there is β < β′ such that r ↾
[f(β), f(β′)) ≤(f(β),f(β′)),0 p∗ ↾ f(β′) (recall that p ↾ f(β) ⊩ p(f(β)) ̸= 1Ṗf(β),f(β+1)

for every β ∈ cf(ρ)), so only finitely many non-direct extensions are allowed).
However, then (r ↾ [f(β), f(β′)))⌢q̇ is forced by r ↾ f(β) ≤ p∗ ↾ f(β) to witness
σf(β), a contradiction.

Lastly, simply let r ≤ p∗ decide σ. Then we obtain a contradiction just like in
the limit step before, since r non-directly extends p∗ only finitely often.

For the second case, assume that ρ is inaccessible. Let p ∈ Pρ and let σ be
a statement in the forcing language. Let ρ′ < ρ be such that p ∈ Pρ′ . Then
p ⊩Pρ′ ∃τ(τ ||Ṗρ′,ρ

σ). By the maximum principle, fix such a τ . Let p′ ≤ρ′,0 p such
that p′ decides whether τ ⊩Ṗρ′,ρ

σ. Then, as in the case of the two-step iteration,
(p′, τ) ≤ρ,0 p and (p′, τ) decides σ (here we use that we can take arbitrarily many
non-direct extensions outside of the support). □

It is clear that whenever ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ is an Easton-support
Magidor iteration of Prikry-type forcings of length ρ, the sequence of direct or-
derings ((Pα,≤α,0), (Q̇α, ≤̇α,0)) is just the normal Easton-support iteration of the
forcings ((Pα,≤α,0), (Q̇α, ≤̇α,0))α<ρ. Consequently:

Lemma 2.5. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be an Easton-support Magi-
dor iteration of Prikry-type forcings and µ a cardinal which is below the first inac-
cessible. If for all α < ρ, Pα forces (Q̇α, ≤̇α,0) to be < µ̌-closed, then for all α < ρ,
(Pα,≤α,0) is <µ-closed.

We note another easy result for later. It is clear that whenever (P,≤,≤0) is
a Prikry-type forcing and the direct extension ordering ≤0 is <µ-closed, we can
decide names for ordinals <γ using direct extensions whenever γ < µ. In most
cases (e.g. when P is Prikry forcing at a measurable cardinal µ) this is the best
we can hope for. However, in our case µ will often be a successor cardinal. In this
case, we have the following:

Lemma 2.6. Let (P,≤,≤0) be a Prikry-type forcing and µ a regular cardinal such
that (P,≤0) is <µ-closed. Then:

(1) Whenever γ < µ, p ∈ P and τ is a P-name with p ⊩ τ < γ̌, there is q ≤0 p
and α such that q ⊩ τ = α̌.

(2) Whenever γ, γ′ < µ, p ∈ P and τ is a P-name with p ⊩ τ : γ̌ → γ̌′, there is
q ≤0 p and f : γ → γ′ such that q ⊩ τ = f̌ .

(3) Assume that µ is not a strong limit. Whenever p ∈ P and τ is a P-name
with p ⊩ τ < µ̌, there is q ≤0 p and α such that q ⊩ τ = α̌.

Proof. Easy. For (3) we can use that ordinals below µ correspond to functions from
ν to 2 for some ν < µ because µ is not a strong limit. □

3. The Laver-Ideal Property

The idea of using Namba forcing associated to certain ideals goes as far back
as work of Bukovský and Copláková-Hartová (see [BCH90]). Of special interest is
the usage of ideals which cause the Namba forcing to behave similarly to Prikry
forcing by having a closed dense subset of the collection of positive sets. This idea
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was recently used by Cox and Krueger (see [CK18]) in order to obtain stationarily
many models which are weakly guessing but not internally approachable.
Definition 3.1. Let µ ≤ κ be regular cardinals. We say that LIP(µ, κ+) holds if
there is I, a <κ+-complete normal ideal over κ+ such that there is B ⊆ I+ which
is dense in I+ and <µ-closed.

The consistency of this property is attributed to unpublished work of Laver (see
[GJM78, page 291]). A published proof of almost the same property was given by
Galvin, Jech and Magidor (see [GJM78, Theorem 4]). We will slightly adapt their
proof because we want the set B to be <µ-closed and not merely <µ-strategically
closed. The Laver-Ideal property also occurs in work of Shelah (see [She17, Chapter
X, Def. 4.10]).
Lemma 3.2. Let ν be regular and κ > ν measurable. Then Coll(ν,< κ) forces
LIP(ν, ν+). Moreover, the ideal witnessing LIP(ν, ν+) concentrates on ordinals of
cofinality ν.
Remark 3.3. Actually, work of Shelah (see [She96, Claim 9]) shows that any ideal
witnessing even LIP(ω1, ν

+) must concentrate on ordinals of cofinality ν.
Proof of Lemma 3.2. Let G be Coll(ν,< κ)-generic. Let U be a <κ-complete ul-
trafilter over κ in V . In V [G], let I consist of those X ⊆ κ such that X ∩ Y = ∅
for some Y ∈ U . Since U concentrates on regular cardinals > ν, I concentrates on
ordinals of cofinality ν.
Claim 1. I is <κ-complete and normal.
Proof. In V , let ḟ and p ∈ G be such that p forces ḟ to be a function from some
γ̌ into İ+, where γ < κ. For each α < γ, let Aα be a maximal antichain of
conditions q ≤ p forcing ḟ(α̌) ∩ X̌α

q = ∅ for some Xα
q ∈ U . By the κ-cc of the

collapse, |Aα|< κ and so Xα :=
∩

q∈Aα
Xα

q ∈ U . Moreover,
∩

α<γ Xα ∈ U . But
p ⊩

∪
α<γ ḟ(α̌) ∩ X̌ = ∅, so we are done.

Now let ḟ be forced by some p ∈ G to be a function from κ̌ into İ+. As before,
find (Xα)α<κ in U such that p ⊩ ḟ(α̌)∩X̌α = ∅. Let X be the diagonal intersection
of all Xα. Then p forces that the diagonal union of ḟ is disjoint from X̌. □

Now we construct B so that I and B together witness LIP(ν, ν+). Work in V .
Let Q := Coll(ν,< κ) and for α < κ, let Qα := {p ∈ Q | dom(p) ⊆ ν × α},
Qα := {p ∈ Q | dom(p) ∩ ν × α = ∅}. Clearly Q is isomorphic to Qα ×Qα.

Let τ be a Q-name for an element of İ+ (without loss of generality assume that
this is forced by ∅). Then there is a dense set D(τ) of conditions p such that
Xτ,p := {α < κ | ∃q ∈ Qα p ∪ q ⊩ α̌ ∈ τ} (which is in V ) is in U (see [GJM78,
Lemma 2]). In V [G], whenever p ∈ D(τ)∩H and f ∈ V is a function such that for
each α ∈ Xτ,p, f(α) witnesses α ∈ Xτ,p, let

A(τ, p, f,G) := {α ∈ Xτ,p | f(α) ∈ G}
Let B be the collection of all A(τ, p, f,G). Clearly, for all τ which are forced to
be in İ+, we can find p and f such that A(τ, p, f,G) ⊆ τG, so B is indeed dense
in I+. Moreover, by [GJM78, Lemma 3], each A(τ, p, f,G) is in I+. We are done
after showing:
Claim 2. Whenever (Aα)α<γ ∈ <νB is descending,

∩
α<γ Aα ∈ I+.

Proof. In V [G], let (τi)i<γ , (pi)i<γ and (fi)i<γ be sequences such that the sequence
(A(τi, pi, fi, G))i<γ is descending, where γ < ν. We can assume that all these
sequences are in V by the <ν-distributivity of Q. Let r ∈ G force that the sequence
is descending.
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Subclaim. For all i < j < γ there is αi,j such that fi(α) and fj(α) are compatible
for all α ∈ Xτi,pi

∩Xτj ,pj
∖ αi,j.

Proof. We know that r ⊩ A(τ̌i, p̌i, f̌i,Γ) ⊇ A(τ̌j , p̌j , f̌j ,Γ). Let αi,j be such that
r′ := r ∪ pi ∪ pj ∈ Qαi,j

. Then whenever α ∈ (Xτi,pi
∩Xτj ,pj

)∖ αi,j , we know that
r′ ∪ fj(α) ⊩ α̌ ∈ A(τi, p̌i, f̌i,Γ), so r′ ∪ fj(α) ⊩ f̌i(α̌) ∈ Γ which implies that fi(α)
and fj(α) are compatible. □

Let X :=
∩

i<γ Xτi,pi (which is in U). In V , let p :=
∪

i<γ pi and let f(α) :=∪
i<γ fi(α) for α ∈ X∖ supi,j αi,j , empty otherwise. This is possible as {pi | i < γ}

as well as {fi(α) | i < γ} for every α ∈ X ∖ supi,j αi,j is a directed subset of Q and
Q is <ν-directed closed.

Claim 3. In V [G], A :=
∩

i<γ A(τi, pi, fi, G) ∈ I+.

Proof. Assume toward a contradiction that there is r ∈ G and C ∈ U such that
r ⊩ Ȧ ∩ Č = ∅. Assume r ≤ p and let α be such that r ∈ Qα. Let β ∈ X ∩ C
with β > α, supi,j αi,j . Then clearly r ∪ f(β) is a condition. However, for any
i < γ, r ∪ f(β) ≤ pi ∪ fi(β), so for any i < γ, r ∪ f(β) ⊩ p̌i ∪ f̌i(β̌) ∈ Γ, which
implies r ∪ f(β) ⊩ β̌ ∈ A(τ̌i, p̌i, f̌i,Γ). In summary, r ∪ f(β) ⊩ β̌ ∈ Ȧ ∩ Č, a
contradiction. □

This ends the proof of Claim 2. □

So now we can simply take another element of B which is below
∩

α<γ Aα and
obtain that B is <ν-closed. □

The statement we are really after is the following:

Lemma 3.4. Let (κn)n∈ω be an increasing sequence of supercompact cardinals. Let
µ < κ0 be regular. There is a <µ-directed closed forcing extension in which for
every n ∈ ω, κn = µ+n+1 and LIP(µ, κn) holds.

Proof. By a technique of Laver (see [Lav78]) we can assume that the supercom-
pactness of every κn is indestructible under <κn-directed closed forcing (in partic-
ular, this preparation is possible with a <µ-directed closed forcing). Let P :=∏

n∈ω Coll(κn−1, < κn) (with κ−1 := µ). Clearly, for every n ∈ ω, P forces
κ̌n = µ̌+n+1.

Let n ∈ ω be arbitrary. Then we can write

P =
∏
k<n

Coll(κk−1, <κk)× Coll(κn−1, <κn)×
∏
k>n

Coll(κk−1, <κk)

After forcing with
∏

k>n Coll(κk−1, <κk), κn is still supercompact and in particular
measurable. Ergo Coll(κn−1, < κn) ×

∏
k>n Coll(κk−1, < κk) forces LIP(κ̌n−1, κ̌n).

We are done after showing the following:

Claim 4. Let P be of size <κ and <δ-closed. If LIP(δ, κ) holds, it is preserved by
P.

Proof. Let I and B witness LIP(δ, κ) and let G be P-generic. In V [G], let J be
generated by I, i.e. X ∈ J if and only if X ⊆ Y for some Y ∈ I. We will verify
that J and B witness LIP(δ, κ). Clearly, B is still <δ-closed by the closure of P
and J is normal and <κ-complete by the κ-cc of P.

Let τ be a P-name and p ∈ P such that p ⊩ τ ∈ J̇+. Then p forces that τ
is contained in

∪
q≤p{α ∈ κ | q ⊩ α̌ ∈ τ}. As I is <κ-complete and |P|< κ,

there is q ≤ p such that {α ∈ κ | q ⊩ α̌ ∈ τ} ∈ I+. Ergo there is X ∈ B with
X ⊆ {α ∈ κ | q ⊩ α̌ ∈ τ}. It follows that q ⊩ X̌ ⊆ τ . □
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Since
∏

k<n Coll(κk−1, < κk) is <µ-closed and of size κn−1 < κn, we are done.
□

4. The Namba Forcing

Namba forcing is intimately connected to the study of good points. This is mostly
due to the fact that (at least in the Laver-style variant with splitting into normal
ideals) it adds exact upper bounds to scales and thus, by choosing the splitting
sets correctly, we can decide whether we want points to be good or bad. However,
in this work we will use Namba forcing for a different reason: By techniques of
Shelah (see [She17, Chapter XI]), assuming GCH, Namba forcing does not add
any new functions from ω into any cardinal smaller than the limit superior of the
completeness of the used ideals. Despite this, Namba forcing and any iteration of
Namba forcing together with a sufficiently closed forcing will have a weak variant of
the approximation property (see [LM24, Theorem 2.1]). The combination of these
two properties is what allows us to show that any such iteration will not make ℵω+1

d-approachable with respect to any normal subadditive coloring d on ℵω+1.
The basic poset could just as well be defined with “normal” Namba forcing

(just splitting into the nonstationary ideal) on
∏

n ℵn and still have the property
that it does not make ℵω+1 d-approachable for any normal subadditive coloring.
However, we will use a variant of Namba forcing which splits into LIP-ideals for the
following two reasons: For one, even in the case where we collapse ℵω+1 to ℵ1 it
seems necessary to obtain the desired regularity properties for the tail forcing and
secondly, in the case where we collapse ℵω+1 to larger ℵn we need it to be able to
show that all cardinals below and including ℵn are preserved.

Definition 4.1. Let (κn)n∈ω be an increasing sequence of regular cardinals. For
each n ∈ ω, let In be a <κn-complete ideal over κn. Then L((κn, In)n∈ω) consists
of all p ⊆

∪
k∈ω

∏
n≤k κn such that

(1) p is closed under restriction.
(2) there is some stem(p) ∈ p such that for all s ∈ p, s ⊆ stem(p) or stem(p) ⊆ s

and whenever stem(p) ⊆ s,

osuccp(s) := {α ∈ κ|s| | s⌢α ∈ p} ∈ I|s|

We let q ≤ p if and only if q ⊆ p. We let q ≤0 p if and only if q ≤ p and
stem(q) = stem(p).

This forcing was used by Cox and Krueger (see [CK18]) to obtain non-internally
unbounded weakly guessing models. In that same work, they showed that if the In’s
are LIP-ideals, the associated Namba forcing has a weak form of the approximation
property. However, it is not known to us whether their proof can also work for
iterations of Namba forcing and closed forcing. This is due to the fact that they
seem to require a stronger closure than we have: In order to obtain the weak <µ-
approximation property they require a <µ+-closed direct extension ordering while
our direct extension ordering is merely <µ-closed.

For the rest of this section, we fix the following:

Assumption. (κn)n∈ω is an increasing sequence of regular cardinals and for each
n ∈ ω, In is a <κn-complete ideal over κn. Define κ∗ := (supn κn)

+. µ < κ0 is a
regular cardinal. For each n ∈ ω there is a set Bn ⊆ I+n which is dense in I+n and
<µ-closed.

In other words, we are assuming that each In witnesses LIP(µ, κn).
The following is [CK18, Lemma 6.5]:
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Fact 4.2. Whenever p is a condition in L((κn, In)n∈ω) and τ is an L((κn, In)n∈ω)-
name for an ordinal such that p ⊩ τ < λ̌ for some ordinal λ < κ|stem(p)|, there is
q ≤0 p which forces τ = δ̌ for some δ < λ.

Since we can code statements in the forcing language as ordinals in {0, 1}, it fol-
lows that L((κn, In)n∈ω) has the Prikry property and is thus a Prikry-type forcing.

For names of ordinals in κ∗, we of course cannot hope for decisions using direct
extensions. However, we do have the following:

The following first appeared in work of the second author and Mildenberger (see
[LM24]). Since our forcing notion is slightly different and we are slightly generalizing
the lemma (in order to later be able to collapse ℵω+1 to any ℵn in a non-fresh way),
we are giving the proof here, although the argument is quite similar to the one in
that article.

Theorem 4.3. Let Q̇ be an L((κn, In)n∈ω)-name for a <µ-closed forcing. Assume
supn κn is a strong limit and 2supn κn = (supn κn)

+.
Then whenever Ḟ is an L((κn, In)n∈ω) ∗ Q̇-name for a cofinal function from µ

into κ∗, it is forced that Ḟ ↾ ǐ /∈ V for some i ∈ µ.

Let us note that whenever a poset Q does not have an explicitely defined direct
extension ordering, we simply let ≤0=≤ (it follows easily that (Q,≤,≤0) then
has the Prikry property). Before we can prove Theorem 4.3 we will need some
preliminary results.

Proposition 4.4. Let Q̇ be an L((κn, In)n∈ω)-name for a forcing poset. Suppose τ

is an L((κn, In)n∈ω) ∗ Q̇-name and (p, ċ) ∈ L((κn, In)n∈ω) ∗ Q̇ forces τ ∈ V . Then
there is (q, ḋ) ≤0 (p, ċ) and some k such that whenever t ∈ q, |t|= k, (q ↾ t, ḋ) ⊩
τ = x̌ for some x.

Proof. It is clear that the set D of all r ∈ L((κn, In)n∈ω) such that for some ė and
x, (r, ė) ≤ (1L, ḋ) and forces τ = x̌, is open dense in L((κn, In)n∈ω). By standard
statements about Laver-style Namba forcings (see [CK18, Lemma 6.4]), there is
q ≤0 p and k such that whenever t ∈ q, |t|= k, q ↾ t ∈ D. For any t ∈ q with
|t|= k, let ėt witness q ↾ t ∈ D. Since {q ↾ t | t ∈ q, |t|= k} is an antichain, we can
find ḋ such that for all t ∈ q with |t|= k, q ↾ t ⊩ ḋ = ėt. It follows that (q, ḋ) is as
required. □

We will also need the concept of a fusion sequence:

Definition 4.5. Let p, q ∈ L((κn, In)n∈ω). For n ∈ ω, we write q ≤n p if q ≤0 p
and for all t ∈ q, if |t|≤ |stem(p)|+n, then t ∈ p.

We say that (pn)n∈ω is a fusion sequence if pn+1 ≤n pn for all n ∈ ω.

The following is standard:

Fact 4.6. If (pn)n∈ω is a fusion sequence of conditions in L((κn, In)n∈ω), then∩
n∈ω pn ∈ L((κn, In)n∈ω) and extends every pn.

The reason for introducing the Laver-ideal property is that by using these ideals
we can show that our version of Namba forcing has a sufficiently closed direct
extension ordering:

Definition 4.7. Let L′((κn, In)n∈ω) consist of those p ∈ L((κn, In)n∈ω) such that
whenever t ∈ p and stem(p) ⊆ t, osuccp(t) ∈ B|t|.

Lemma 4.8. The suborder L′((κn, In)n∈ω) is dense in L((κn, In)n∈ω) with re-
spect to both ≤ and ≤0 and the direct extension ordering ≤0 is <µ-closed on
L′((κn, In)n∈ω).
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Proof. It is easily seen using a simple fusion argument and the density of each Bn

that L′((κn, In)n∈ω) is dense in L((κn, In)n∈ω) (for a proof, see [CK18, Lemma
6.12]). Moreover, the set is clearly <µ-closed because we can take the intersection
of a descending sequence of conditions, using the <µ-closure of each Bn (see the
proof of [CK18, Lemma 6.12]). □

From now on, we will tacitly replace L((κn, In)n∈ω) by L′((κn, In)n∈ω) in order
to simplify notation.

Lastly we show that our iteration does not collapse κ∗ “too much”:

Lemma 4.9. Let µ < κ0. Let Q̇ be an L((κn, In)n∈ω)-name for a <µ-closed poset.
Let κ∗ := (supn κn)

+. After forcing with L((κn, In)n∈ω) ∗ Q̇, cf(κ∗) ≥ µ.

Proof. This is classical for variants of Namba forcing. If τ is an L((κn, In)n∈ω)-
name for an ordinal below κ∗, forced by p, there is a <κ∗-sized set x and p′ ≤0 p
such that p ⊩ τ ∈ x̌: Let D be the open dense set of all q ∈ L((κn, In)n∈ω) which
force τ = α̌q for some αq. As in the proof of Lemma 4.4, there is p′ ≤0 p and k
such that whenever t ∈ p′, |t|= k, p′ ↾ t ∈ D, witnessed by some αt. It follows that
p′ ⊩ τ ∈ {αt | t ∈ p′ ∧ |t|= k} and the latter set has size <κ∗.

The previous statement combined with the <µ-closure of a dense subset of the
direct extension ordering on L((κn, In)n∈ω) (see Lemma 4.8) shows that no un-
bounded function from any γ < µ into κ∗ is added. This is forced to be preserved
by Q̇ by its closure. □

We can now prove that L((κn, In)n∈ω) and any iteration of it with a <µ-closed
forcing notion has the stated weak form of the <µ-approximation property.

Proof of Theorem 4.3. For simplicity, define L := L((κn, In)n∈ω) and assume Ḟ is
as in the statement of the theorem. Suppose toward a contradiction that there is a
condition (p∗, q̇∗) ∈ L ∗ Q̇ which forces “∀i < µ(Ḟ ↾ i ∈ V )”. Assume for notational
simplicity that (p∗, q̇∗) = 1L∗Q̇.

For i < µ and (q, ḋ) ∈ L ∗ Q̇ let ϕ(i, q, ḋ) state that there exists a sequence
(Aα)α∈osuccq(stem(q)) such that for all α, β ∈ osuccq(stem(q)), |Aα|< κ∗, Aα and Aβ

are disjoint for α ̸= β and (q ↾ (stem(q)⌢α), ḋ) ⊩ Ḟ ↾ ǐ ∈ Ǎα.

Claim 1. If j < µ and (p, ċ) ∈ L ∗ Q̇, there is some i ∈ (j, µ) and (q, ḋ) ≤0 (p, ċ)

such that ϕ(i, q, ḋ) holds.

Proof. Let W := osuccp(stem(p)). By induction on α ∈ W we will define a se-
quence of conditions (qα, ḋα)α∈W with (qα, ḋα) ≤0 (q ↾ (stem(q)⌢α), ċ), a sequence
of natural numbers (nα)α∈W , a sequence of ordinals (iα)α∈W below µ, and sets
(Aα)α∈W of cardinality <κ∗.

Let α = min(W ). Choose any iα ∈ (j, µ). Apply Proposition 4.4 to find
(qα, ḋα) ≤0 (p ↾ (stem(p)⌢α), ċ) and nα ∈ ω such that whenever s ∈ qα, |s|= nα,
(qα ↾ s, ḋα) decides Ḟ ↾ iα. Let

Aα := {a | ∃t ∈ qα(|t|= nα ∧ (qα ↾ t, ḋα) ⊩ Ḟ ↾ iα = ǎ)}
Clearly, |Aα|< κ∗.

Now suppose all objects have been defined for β ∈ W ∩ α and α ∈ W . Let
B :=

∪
β∈W∩α Aβ . Then |B|< κ∗. So in particular,

(p ↾ (stem(p)⌢α), ċ) ⊩ {Ḟ ↾ i | i ∈ (j, µ)} ̸⊆ B̌

since every Ḟ ↾ i is forced to be bounded in κ∗ (by Lemma 4.9), the negation of the
above statement would imply that Ḟ is forced by some condition to be bounded in
κ∗, a contradiction.
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Therefore (p ↾ (stem(p)⌢α), ċ) ⊩ ∃i ∈ (j, µ)(Ḟ ↾ i /∈ B̌). By Fact 4.2 there exists
(q′α, ḋ

′
α) ≤0 (p ↾ (stem(p)⌢α), ċ) deciding i̇ = ǐα for some iα < µ. So we have

(q′α, ḋ
′
α) ⊩ Ḟ ↾ ǐα /∈ B̌

Now simply proceed as in the base case and find (qα, ḋα) ≤0 (q′α, ḋ
′
α) and nα such

that whenever t ∈ qα has length nα, (qα ↾ t, ḋα) decides Ḟ ↾ ǐα and let Aα be the
set of possible decisions. Then clearly |Aα|< κ∗, Aα ∩B = ∅ and thus Aα ∩Aβ = ∅
for all β < α.

Finally we can choose W ′ ⊆ W which is I|stem(p)|-positive such that there exists
i < µ such that for all α ∈ W ′, iα = i. Let q :=

∪
α∈W ′ qα which is clearly a direct

extension of p and let ḋ be such that qα ⊩ ḋ = ḋα for every α ∈ W ′. Clearly (q, ḋ)
is as required. □

We now define a game Gk for every k < µ. The game is defined as follows:
Player I starts by playing a pair (Z0, δ0) where Z0 ⊆ κ0, Z0 ∈ I0 and δ0 < k.
After (Zn, δn) has been played, Player II chooses α ∈ osuccqn−1

(stem(qn−1)) ∖ Zn

and (qn, ḋn) ≤0 (qn−1 ↾ (stem(qn−1)
⌢α), ḋn−1) and some in ∈ (δn, k) such that

ϕ(qn, ḋn, in) holds (we let (q−1, ḋ−1) := 1L∗Q̇). Then Player I responds by playing
(Zn, δn) such that Zn ⊆ osuccqn(stem(qn)), Zn ∈ In and δn < k (note we are not
requiring δn > in). Player II loses if they cannot play at some stage n. Otherwise,
they win.

Claim 2. There is k ∈ µ∩ cof(ω) such that Player II has a winning strategy in Gk.

Proof. Assume otherwise. By the Gale-Stewart theorem and since the game is open,
Player I has a winning strategy σi for every i ∈ µ∩cof(ω). Let M ≺ H(Θ) be of size
<µ such that M contains everything relevant (in particular, (σi)i∈µ∩cof(ω) ∈ M)
and k := M ∩µ ∈ µ∩cof(ω). We will construct a run of the game in which Player I
loses despite using σk. Let (Z0, δ0) be the opening move chosen by σk. At stage n,
let W be the set of indices i ∈ µ∩cof(ω) such that (q0, ḋ0, i0), . . . , (qn−1, ḋn−1, in−1)
is a legal sequence of Player II’s moves in a game where Player I follows the strategy
σi. W is nonempty (as witnessed by k) and is in M by elementarity. Let

Y :=
∪

{Zi | i ∈ W,σi((q0, ḋ0, i0), . . . , (qn−1, ḋn−1, in−1)) = (Zi, δi)}

Note that Y ∈ M . Furthermore, since |W |≤ µ, Y ∈ In. So let α be any element of
osuccqn−1

(stem(qn−1))∖ Y and apply Claim 1 to (qn−1 ↾ stem(qn−1)
⌢α, ḋn−1, δn)

to obtain (qn, ḋn, in). By elementarity, we can assume (qn, ḋn, in) ∈ M , so in < k
and the move is allowed. □

Now we build a fusion sequence in such a way that any stronger condition de-
ciding Ḟ ↾ ǩ will also decide the generic sequence for L, thereby obtaining a con-
tradiction.

Let (δn)n∈ω be a sequence converging to k. By induction on n ∈ ω we will define
a fusion sequence (pn)n∈ω and a sequence (ċn)n∈ω such that pn+1 ⊩ ċn+1 ≤ ċn and
such that:

Assumption. For all n < ω, for all t ∈ pn with |t|= n, there is a sequence
Zt
0, . . . , Z

t
n such that

(Zt
0, δ0), (p0 ↾ (t ↾ 1), ċ0, i0), (Zt

1, δ1), (p0 ↾ (t ↾ 2)), . . . , (Zt
n, δn), (pn ↾ t, ċn, in)

is a run of the game Gk where Player II played according to their winning strategy.

For convenience, define (p−1, ċ−1) := 1L∗Q̇. Assume we have defined (pn−1, ċn−1).
Let t ∈ pn−1 with |t|= n and let St be the set of all α ∈ osuccpn−1

(t) such that
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there is some Zα
n such that the winning strategy for Player II applied to

(Zt
0, δ0), (p0 ↾ (t ↾ 1), ċ0, i0), (Zt

1, δ1),

(p0 ↾ (t ↾ 2)), . . . , (Zt
n, δn), (pn ↾ t, ċn, in), (Zα

n , δn)

produces (qn, ḋn, in) where (qn, ḋn) ≤0 (pn−1 ↾ t⌢α, ċn−1). We claim that St ∈ I+n .
Otherwise (St, δn) would be a legal move for player I at stage n with no possible
response by player II. So for each t ∈ pn−1 with |t|= n and α ∈ St, let (qt,α, ḋt,α, it,α)
be the response of player II according to their winning strategy to (Zα

n , δn). Let
pn :=

∪
{qt,α | t ∈ pn−1, |t|= n, α ∈ St} and let ḋn be such that qt,α ⊩ ḋn = ḋt,α for

each t ∈ pn−1, |t|= n and α ∈ St.
Now let q :=

∩
n∈ω pn be the fusion limit of (pn)n∈ω and let ḋ be an L-name for

a lower bound of (ḋn)n∈ω, forced by q. We claim that no extension of (q, ḋ) decides
Ḟ ↾ ǩ. Assume toward a contradiction that (r, ė) ≤ (q, ḋ) forces Ḟ ↾ ǩ = ǧ for some
g ∈ V .

Let b be a function on ω defined by induction as follows such that b ↾ n ∈ r for all
n ∈ ω. Let b ↾ |stem(r)|= r. If b ↾ n has been defined, then we know by construction
that ϕ(it, r ↾ (b ↾ n), ḋ) holds and thus there is exactly one α ∈ osuccr↾(b↾n)(b ↾ n)
such that g ↾ it ∈ Aα. Let b(n) := α.

Let H ∗G be L ∗ Q̇-generic containing (r, ė). Then:

Claim 3. For every s ∈ H, stem(s) = b ↾ |stem(s)|.

Proof. We do the proof by induction on |stem(s)|. Let s ∈ H and assume the
statement holds for all t ∈ H with |stem(t)|< |stem(s)|. We may assume that
|stem(s)|> |stem(r)| since otherwise we know stem(s) ⊆ stem(r) = b ↾ |stem(r)| by
construction.

Find t ∈ H such that stem(s) = stem(t)⌢α. We want to show b(|stem(t)|) = α.
Since r ∈ H and H is a filter, r and t are compatible and in particular there is
t′ ≤ s, r with stem(t′) = stem(t) (just intersect r and s), so we may as well assume
t ≤ r. By the same argument, assume s ≤ t. Then ϕ(i|stem(t)|, t, ḋ) holds and since
stem(s) = stem(t)⌢α, (s, ḋ) ⊩ Ḟ ↾ ǐ|stem(t)| ∈ Ǎα. Since Aα ∩ Aα′ = ∅ for α′ ̸= α

and (r, ė) forces Ḟ ↾ ǐ|stem(s)| = ǧ ↾ ǐ|stem(s)| ∈ Ǎb(n), we are done. □

This is a clear contradiction to the fact that whenever H is L-generic, the generic
function

∪
{stem(p) | p ∈ H} is outside of the ground model, since the latter set is

equal to b. Ergo (q, ḋ) forces Ḟ ↾ ǩ /∈ V , which contradicts our assumptions. □

We now present an interesting contrasting property of L((κn, In)n∈ω):

Lemma 4.10. L((κn, In)n∈ω) does not add any new functions from γ to κk when-
ever γ < µ and k ∈ ω.

Proof. Let ḟ be a L((κn, In)n∈ω)-name for a function from γ̌ to κ̌k, where k ∈ ω,
forced by some p ∈ L((κn, In)n∈ω). Assume that |stem(p)|≥ k + 1. By induction
on δ < γ, let pδ be a lower bound (with respect to ≤0) of (pα)α<δ (with p0 ≤0 p)
which decides ḟ(δ̌) (this is possible by Lemma 4.2 and Lemma 4.8). Now let p∗ be
a lower bound of (pδ)δ<γ . It follows that p∗ decides ḟ . □

The previous two lemmas seem to be in contention: On one hand, every new
function on µ has an initial segment which is in the ground model. On the other
hand we are not adding new functions from ordinals below µ into any κn. However,
this tension is precisely what allows us to show that the iteration L((κn, In)n∈ω) ∗
˙Coll(µ̌, κ̌∗) collapses κ∗ to µ without making it approachable.
The following is the crux of this paper:



16 HANNES JAKOB AND MAXWELL LEVINE

Theorem 4.11. Let d: [κ∗]2 → ω be a (κn)n∈ω-normal coloring. The forcing
L((κn, In)n∈ω)∗ ˙Coll(µ̌, κ̌∗) does not add a cofinal subset of κ∗ on which d is bounded.

Proof. It follows that after forcing with L ∗ ˙Coll(µ̌, κ̌∗), cf(κ∗) = µ. Let G ∗H be
L ∗ ˙Coll(µ̌, κ̌∗)-generic. Assume that in V [G ∗H] there is an increasing and cofinal
function F :µ → κ∗ and n ∈ ω such that d(α, β) ≤ n for every α, β ∈ im(F ).

By Lemma 4.3 there is i < µ such that F ↾ i /∈ V . We will show that this leads
to a contradiction. Let α := F (i). Then F ↾ i: i → {β < α | d(β, α) ≤ n} since
F is increasing and d is bounded on the image of F . But {β < α | d(β, α) ≤ n}
is in V and has size ≤ κn there (since d is (κn)n∈ω-normal). So modulo coding
in the ground model, F ↾ i is a function from i to κn which is in V [G ∗ H] ∖ V .
This contradicts Lemma 4.10, since clearly ˙Coll(µ̌, κ̌∗) is forced not to add any new
functions from i < µ into the ordinals by its closure. □

The following lemma will be used to show that even in the case µ = ℵ1, our
Namba forcing makes κ∗ into a good point. Since our Namba forcing is a “Laver-
style” version (i.e. it splits everywhere above the stem) and we are using normal
ideals, its generic is an exact upper bound of any (κ∗, (κn)n∈ω)-scale:

Lemma 4.12. Let (fα)α<κ∗ be a (κ∗, (κn)n∈ω)-scale. Let G be L((κn, In)n∈ω)-
generic. In V [G], the set b :=

∪
{stem(p) | p ∈ G} is an exact upper bound of

(fα)α<κ∗ .

Proof. We repeat a proof by Cummings and Magidor (see [CM11, Claim 4]). It is
clear by genericity that b is an upper bound of (fα)α<κ∗ : Given any p ∈ G and
α < κ∗, there is a direct extension p0 ≤0 p in G such that whenever s ∈ p0 and
n ≥ |stem(p0)|, s(n) > fα(n) (if it is defined) by simply taking away the values
below fα from the possible ordinal successors.

The more substantial claim is showing that b is exact. To this end, let ġ be an
L((κn, In)n∈ω)-name for an element of

∏
n∈ω κ̌n which is forced by some condition

p to be <∗ ḃ. Assume without loss of generality that ġ is forced to be strictly below
ḃ. Let n := |stem(p)|. If q ≤ p, l := |stem(q)|, then for any α ∈ osuccstem(q)(q)

there is some qα ≤0 q ↾ (stem(q)⌢α) which forces ġ(ľ) = β̌α for some βα < α, since
q ↾ (stem(q)⌢α) ⊩ ġ(ľ) < ḃ(ľ) = α̌ and α < κl < κl+1. By the normality of Il,
there is W ⊆ osuccstem(q)(q) with W ∈ I+l such that βα = β for some β and all
α ∈ W . If q′ :=

∪
α∈W qα, then q′ ≤0 q and q′ ⊩ ġ(ľ) = β̌.

We repeat this argument and build a fusion sequence (pi)i∈ω such that for all
s ∈ pi with n ≤ |s|< n+ i there is an ordinal αs such that pi ↾ s ⊩ ġ( ˇ|s|) = α̌s. Let
pω be the fusion limit of all pn. Then whenever s ∈ pω with n ≤ |s|< n+ i, there is
an ordinal αs such that pi ↾ s ⊩ ġ( ˇ|s|) = α̌. Moreover, for each l there are at most
κl−1 many s ∈ pω with |s|= l and each αs is in κl, so αl := sups∈p, |s|=l αs < κl.

Let h be defined by h(l) := αl for l ≥ n, 0 otherwise. Then it follows that
h ∈

∏
n κn and pω ⊩ ġ <∗ ȟ. Moreover, since (fα)α<κ∗ is a scale, h <∗ fα for some

α < κ∗. In particular pω ⊩ ġ <∗ f̌α, so we are done. □

5. The Main Theorem

In this section we will prove the main theorem:

Theorem 5.1. Assume GCH holds and (κk)k∈ω is an increasing sequence of super-
compact cardinals. Let n ∈ ω, n ≥ 1. There is a forcing extension in which
GCH holds, κ0 = ℵn+1, (supk κk)

+ = ℵω+1 and there are stationarily many
γ ∈ ℵω+1 ∩ cof(ℵn) which are good but not approachable.

Remark 5.2. Note that in the case n > 1, the goodness of γ is trivial by GCH.
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Before we can go through with the proof of Theorem 5.1, we will need a result
regarding the preservation of non-approachability under sufficiently closed forcing.
This result is well-known but we will provide a proof because in our case, only the
direct extension ordering is sufficiently closed.

Lemma 5.3. Assume γ ≤ δ are ordinals such that cf(γ) is not a strong limit
and d: [δ]2 → ω is a subadditive function such that γ is not d-approachable. Let
(P,≤,≤0) be a Prikry-type forcing and assume that (P,≤0) is < cf(γ)-closed. Then
γ is not d-approachable after forcing with P.

Proof. Fix an unbounded and increasing function F : cf(γ) → γ. By Fact 1.9, after
forcing with P, γ is d-approachable if and only if there exists an unbounded subset
of im(F ) on which d is bounded. By Lemma 2.6 (3) we can decide ordinals below
cf(γ) using ≤0. In particular, P does not collapse cf(γ).

So assume that Ġ is a P-name for an unbounded and increasing function from
cf(γ̌) into im(F̌ ) such that ď is bounded by ľ on the image of Ġ, forced by some p ∈ P.
By induction on α < cf(γ), we define a ≤0-decreasing sequence (pα)α<cf(γ) with
p0 ≤0 p such that for any α < cf(γ) there is some χα such that pα ⊩ Ġ(α̌) = F̌ (χ̌α).

Assume (pβ)β<α has been defined for α < cf(γ). Let p′α be a ≤0-lower bound of
(pβ)β<α. Then p′α ⊩ ∃i < cf(γ)(Ġ(α̌) = Ḟ (i)). Let pα ≤0 pα force the statement
for i = χ̌α for some χα.

Now let B := {F (χα) | α < cf(γ)}. We note that B is in the ground model. Since
Ġ is forced to be increasing and F is actually increasing, χα ≥ α for every α < cf(γ).
In particular, B is unbounded in γ. It follows that for any α < α′ < cf(γ),

p′α ⊩ ď(F̌ (χ̌α), F̌ (χ̌α′)) = ď(Ġ(α̌), Ġ(α̌′)) ≤ ľ

so d is bounded on [B]2 by l, a contradiction, as B ∈ V . □

Now we can prove the main theorem:

Proof of Theorem 5.1. Let κ := κ0 and κ∗ := (supk κk)
+. Let l:κ → Vκ be a Laver

function. We define an Easton-support Magidor iteration (Pα, Q̇α)α<κ with the
following iterands:

(1) Case 1: α is Mahlo, |Pβ |< α for every β < α and Pα forces that l(α) is a
<α-strategically closed poset which forces that LIP(α̌, α̇+k) holds for every
k ≥ 1, witnessed by some İk. In this case, we let Q̇α be a Pα-name for

l(α) ∗ L̇((α̇+k, İk)k≥1) ∗ ˙Coll(ℵ̌n, α̇
+ω+1)

For simplicity, we will replace L̇((α̇+k, İk)k≥1) by its subset which is
dense in both orderings and <α-closed with regards to ≤0 (see Definition
4.7 and Lemma 4.8).

(2) Case 2: Otherwise, we let Q̇α be a Pα-name for ˙Coll(ℵ̌n, α̌).
Let Pκ be the direct limit of (Pα, Q̇α)α<κ and let P := Pκ∗

∏
k∈ω

˙Coll(κ̌k, < κ̌k−1).

Claim 1. After forcing with P, all cardinals ≤ ℵn and ≥ κ∗ are preserved. Every
cardinal in the interval (ℵn, κ) is collapsed to ℵn and every κk is collapsed to κ+k.
Consequently, κ∗ becomes ℵω+1.

Proof. Pκ has the Prikry property by Lemma 2.4. By induction on α ≤ κ it follows
that Pα has a <ℵn-closed direct ordering (using Lemma 2.5) and thus preserves all
cardinals up to and including ℵn (the direct extension ordering on L((α̌+k, İk)k∈ω)
is forced to be < ℵ̌n-closed because Pα forces α̌ ≥ ℵ̌n). So after forcing with Pκ,
all cardinals below and including ℵn as well as ≥ κ are preserved and every regular
cardinal in (ℵn, κ) is collapsed to have size ℵn.
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Moreover, for any k < n, Pκ does not add new subsets to ℵk by the Prikry
property and the closure of the direct extension ordering. Since κ0 is collapsed to
ℵn, we obtain that Pκ forces GCH.

Now clearly
∏

k∈ω
˙Coll(κ̌k, < κ̌k−1) is forced to preserve cardinals below and

including κ̌0 as well as above and including κ̌∗ (since every < κ̌k-sequence is forced
to have been added by a κ̌k+1-cc forcing), so the claim follows easily. □

The more substantial claim is of course showing that P forces that there are
stationarily many γ ∈ ℵω+1∩cof(ℵn) which are not approachable. Let d: [κ∗]2 → ω
be any subadditive coloring which is (κk)k∈ω-normal. We will show that there are
stationarily many γ ∈ ℵω+1∩cof(ℵn) which are not d-approachable in any extension
by P.

Let G := Gκ ∗Hκ be Pκ ∗
∏

k∈ω
˙Coll(κ̌k, < κ̌k−1)-generic and let C ∈ V [G] be

club in κ+ω+1, C = ĊG. We will verify that there is a point in C ∩ cof(ℵn) which
is good but not d-approachable. To this end, let j:V → M be a κ∗-supercompact
embedding such that j(l)(κ) is a Pκ-name for

∏
k∈ω

˙Coll(κ̌k, < κ̌k−1).

Claim 2. There is a filter Gκ,j(κ) ∗ Hj(κ) such that Gκ ∗ Hκ ∗ Gκ,j(κ) ∗ Hj(κ) is
j(P)-generic over V and in V [Gκ ∗Hκ ∗Gκ,j(κ) ∗Hj(κ)], j lifts to

j:V [Gκ ∗Hκ] → M [Gκ ∗Hκ ∗Gκ,j(κ) ∗Hj(κ)].

Proof. Since j(l)(κ) =
∏

k∈ω
˙Coll(κ̌k, < κ̌k−1) is a Pκ-name for a <κ-strategically

closed (even directed-closed) poset which forces LIP(κ̌, κ̇+k) for every k ≥ 1 (by
Lemma 3.4), j(Pκ) = P ∗ Ṗκ,j(κ) for some Ṗκ,j(κ). So we can let Gκ,j(κ) be any
ṖGκ∗Hκ

κ,j(κ) -generic filter over V [Gκ ∗Hκ]. Since j[Gκ] = Gκ ⊆ Gj(κ), the embedding
lifts to j:V [Gκ] → M [Gj(κ)].

By assumption Hκ ∈ M [Gj(κ)]. Since Hκ is a filter, it is directed. Moreover,
j[Hκ] ∈ M [Gj(κ)] by the size of Hκ and the closure of M . Furthermore, j[Hκ] is a
directed subset of j(

∏
k∈ω

˙Coll(κ̌k, < κ̌k−1))
Gκ∗Hκ∗Gκ,j(κ) . Therefore q :=

∪
j[Hκ] is

a condition in the aforementioned poset, since that poset is <j(κ)-directed closed
and |j[Hκ]|= κ∗ < j(κ). By forcing with j(

∏
k∈ω

˙Coll(κ̌k, < κ̌k−1))
Gκ∗Hκ∗Gκ,j(κ)

over V [Gκ ∗ Hκ ∗ Gκ,j(κ)] below the condition q, we obtain Hj(κ). It follows that
j[Gκ ∗Hκ] ⊆ Gκ ∗Hκ ∗Gκ,j(κ) ∗Hj(κ), so j indeed lifts as claimed. □

Let Gj(κ) := Gκ ∗ Hκ ∗ Gκ,j(κ). It follows that ρ := sup(j[κ∗]) ∈ j(C). So all
that is left to show is that ρ is not j(d)-approachable and that it is good and has
cofinality ℵn in the model M [Gj(κ) ∗Hj(κ)].

Claim 3. ρ is not j(d)-approachable in M [Gj(κ) ∗Hj(κ)].

Proof. In M [Gκ ∗Hκ ∗Gκ,j(κ)], j[κ∗] is a cofinal subset of ρ and has order-type κ∗.
Moreover, for any α = j(α′) ∈ j[κ∗] and k ∈ ω, we have

{β ∈ j[κ∗] ∩ j(α′) | d(β, j(α′)) ≤ k} = j[{β ∈ κ∗ ∩ α′ | d(β, α′) ≤ k}]
and the latter set has size ≤ κk by the (κk)k∈ω-normality of d. It follows that
j(d) induces a (κk)k∈ω-normal coloring e on κ∗ such that in any extension, ρ is
j(d)-approachable if and only if κ∗ is e-approachable: Simply let F :κ∗ → j[κ∗] be
order-preserving and let e(α, β) := d(F (α), F (β)).

Moreover, κk = κ+k in M [Gκ ∗Hκ ∗Gκ,j(κ)]. Let Hκ+1 be the L̇((κ̇+k, İk)k≥1) ∗
˙Coll(ℵ̌n, κ̇

+ω+1)Gκ∗Hκ∗Gκ,j(κ) -generic filter induced by Gκ,j(κ). Then by Theorem
4.11, κ∗ is not e-approachable in M [Gκ∗Hκ∗Hκ+1] and so ρ is not j(d)-approachable
in the same model. Moreover, in M [Gκ ∗Hκ ∗Hκ+1], cf(ρ) = ℵn.

We will show that the non-j(d)-approachability of ρ is preserved when going to
M [Gκ ∗Hκ ∗Gκ,j(κ)]. Let Gκ+1,j(κ) be the j(P)κ+1,j(κ)-generic induced by Gκ,j(κ).
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j(P)κ+1,j(κ) is an Easton-support Magidor iteration of Prikry-type forcings of length
j(κ) and therefore has the Prikry property. By the same argument as before,
the direct extension ordering on j(P)κ+1,j(κ) is <ℵn-closed. So by Lemma 5.3,
j(P)κ+1,j(κ) preserves the non-j(d)-approachability of ρ.

Since (
∏

k∈ω
˙Coll( ˇj(κk), < ˇj(κk−1)))

Gj(κ) is <ℵn+1-closed, it also cannot make ρ
a d-approachable ordinal (since d-approachability can of course always be witnessed
by sets of minimal order-type which have size ℵn). So ρ is not j(d)-approachable
in M [Gj(κ) ∗Hj(κ)]. □

In the proof of the preceding claim we have shown that cf(ρ) = ℵn in M [Gj(κ) ∗
Hj(κ)]. So in the case n > 1, the goodness of ρ is clear because the GCH holds.
However, in the other case we have some work to do. Thus, assume n = 1.

Claim 4. ρ is good in M [Gj(κ) ∗Hj(κ)].

Proof. Let Hκ+1 := HL
κ+1 ∗HC

κ+1. Let b be the generic branch of HL
κ+1. By Lemma

4.12, b is an exact upper bound of (fα)α<κ∗ whenever (fα)α<κ∗ is a (κ∗, (κn)n∈ω)-
scale.

Let bj be defined by bj(k) := j(b(k)) and let j((fα)α<κ∗) =: (f j
α)α<j(κ∗). It is

clear that bj is an exact upper bound of (j(fα))α<κ∗ and thus of (f j
α)α<ρ (since

(j(fα))α<κ∗ is cofinal in (f j
α)α<ρ). Moreover, since each Ik concentrates on points of

cofinality κk−1 by Lemma 3.2, cf(bj(k)) = κk−1 for almost all k ∈ ω in M [Gκ ∗Hκ]
and therefore cf(bj(k)) = ℵ1 for almost all k ∈ ω in M [Gκ ∗Hκ ∗Hκ+1] (since all
κk−1 are collapsed to ℵ1). Hence (since cf(ρ) = ℵ1 in that model) ρ is a good point
of (f j

α)α<ρ in M [Gκ ∗Hκ ∗Hκ+1], so there exists an unbounded A ⊆ ρ and l ∈ ω
such that for every k ≥ l, (fα(l))α∈A is increasing. This of course remains the case
in any further forcing extension. Ergo ρ is a good point in M [Gj(κ) ∗Hj(κ)]. □

In summary, ρ ∈ j(C) ∩ cof(ℵn) and ρ is good but not j(d)-approachable. By
elementarity, in V [G], there exists γ ∈ C with cofinality ℵn such that γ is good but
not d-approachable. This finishes the proof.

□

6. Failure of Approachability without a Bad Scale

We close by sketching the consistency proof of a model where there is a good
scale and the approachability property fails at ℵω+1. We use a poset adding a scale
with club-many good points. This material can be found in a recent article of the
second author and Mildenberger (see [LM24, Section 2.3]).

Definition 6.1. Let λ⃗ = (λn)n∈ω be an increasing sequence of regular cardinals.
Let λ∗ := (supn λn)

+. Let G(λ⃗) be the poset such that conditions are (fβ)β≤α (for
α < λ∗) such that

(1) for every β ≤ α, fβ ∈
∏

n λn,
(2) for every β < γ ≤ α, fβ <∗ fγ ,
(3) for every β ≤ α, if cf(β) > ω, then β is good for (fγ)γ<β .

ordered by end-extension.

The poset G(λ⃗) is <λ∗-strategically closed (hence it is <λ∗-distributive) and
<ω1-directed closed. Ergo, if (λ∗)<λ∗

= λ∗ (which is the case under GCH), it
preserves all cofinalities.

We now show that a slight modification of the proof of Theorem 5.1 yields the
following:

Theorem 6.2. Let (κk)k∈ω be an increasing sequence of supercompact cardinals.
Let n ∈ ω, n ≥ 1. There is a forcing extension in which GCH holds, κ0 = ℵn+1,
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(supk κk)
+ = ℵω+1, there is a good scale on (ℵk)k≥n+1 and ℵω+1 ∩ cof(ℵn) /∈

I[ℵω+1].

Proof. We let Pκ be as in the proof of Theorem 5.1 and we define

P := Pκ ∗
∏
k∈ω

˙Coll(κ̌k, < κ̌k+1) ∗ Ġ((κ̌k)k∈ω)

Let G be P-generic, write G = Gκ ∗HC
κ ∗HG

κ . We will verify that V [G] works.
Since GCH holds in V [Gκ ∗ Hκ], it continues to hold in V [G] by the strategic

closure and size of Ġ((κk)k∈ω)
Gκ∗Hκ . Moreover, no cardinals are collapsed by the

latter forcing and there clearly is a good scale on (κk)k∈ω = (ℵn+k+1)k∈ω.
So the only thing that remains to be shown is that there are stationarily many

non-approachable points of cofinality ℵn. To this end, fix a (κk)k∈ω-normal coloring
on κ∗ in V and let C ∈ V [G] be club in κ∗. Let j:V → M be a κ∗-supercompact
embedding such that j(l)(κ) is a Pκ-name for

∏
k∈ω

˙Coll(κ̌k, < κ̌k+1) ∗ Ġ((κ̌k)k∈ω)
and define ρ := sup(j[κ∗]).

Claim 1. There is a filter Gκ,j(κ)∗HC
j(κ)∗H

G
j(κ) such that Gj := G∗Gκ,j(κ)∗HC

j(κ)∗
HG

j(κ) is j(P)-generic over V and the embedding j lifts in V [Gj ] to j:V [G] → M [Gj ].

Proof. By Claim 2 in the proof of Theorem 5.1 we know that we can find Gκ,j(κ) ∗
HC

j(κ) such that j lifts to

j:V [Gκ ∗HC
κ ] → M [G ∗Gκ,j(κ) ∗HC

j(κ)]

since in M [G], j(l)(κ) is a <κ-strategically closed poset which forces LIP(κ̌, κ̌+k)

for every k ≥ 1 (the product of the collapses forces LIP and Ġ is forced to preserve
it by its distributivity). So we only need to construct HG

j(κ). Define q′ :=
∪

j[HG
κ ].

Then q′ = (fα)α<ρ is almost a condition in Ġ((j(κk))k∈ω)
G∗Gκ,j(κ)∗HC

j(κ) save for
the fact that it is not of successor length. So we have to find a suitable fρ.

By Claim 4 in the proof of Theorem 5.1, ρ is a good point of (fα)α<ρ. Ergo
there exists an exact upper bound fρ of (fα)α<ρ such that cf(fρ(k)) = cf(ρ)
for almost all k ∈ ω. Then we can just let q := (q′)⌢fρ and see that indeed
q ∈ Ġ((j(κk))k∈ω)

G∗Gκ,j(κ)∗HC
j(κ) . Now we can just let HG

j(κ) be any generic filter
containing q. Since j[G] ⊆ G ∗ Gκ,j(κ) ∗ HC

j(κ) ∗ HG
j(κ) by construction, j lifts as

required. □
It follows that ρ ∈ j(C). So we are done after showing:

Claim 2. ρ is not j(d)-approachable in M [Gj ].

Proof. By Claim 3 in the proof of Theorem 5.1, ρ is not j(d)-approachable in
M [G ∗ Gκ,j(κ) ∗ HC

j(κ)] and has cofinality ℵn there. Since HG
j(κ) is generic for a

<j(κ∗)-strategically closed forcing, j(κ∗) = ℵω+1 in M [G ∗Gκ,j(κ) ∗HC
j(κ)] and the

approachability of ρ would always be witnessed by a set of order-type ℵn, ρ remains
non-j(d)-approachable in M [Gj ]. □

Moreover, cf(ρ) = ℵn in M [Gj ] as well by the strategic closure. By elementarity,
in V [G], there is γ ∈ C with cofinality ℵn such that γ is not d-approachable. This
finishes the proof.

□
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