Exercise Sheet 2 April 25, 2024

Due on May 6 *before* the exercise session.

Exercise 1 (4 points, 1 for each part). Let $X \subseteq \mathbb{R}$ and let

 $\Gamma(X) = \{ z \in X : z \text{ is not an isolated point in } X \}.$

(Recall that z is an isolated point of X if there is an open set U such that $z \in U$ and $U \cap X = \{z\}$.) For an ordinal α , we inductively define $\Gamma^{\alpha}(X)$ as follows:

- (i) $\Gamma^0(X) = X;$
- (ii) $\Gamma^{\alpha+1}(X) = \Gamma(\Gamma^{\alpha}(X));$
- (iii) if α is a limit ordinal, $\Gamma^{\alpha}(X) = \bigcap_{\beta < \alpha} \Gamma^{\beta}(X)$

Show the following:

- 1. Show (by transfinite induction) that if C is closed then $\Gamma^{\alpha}(C)$ is closed for all ordinals α .
- 2. Show that there is some ordinal $\delta < \omega_1$ such that for all $\alpha > \delta$, $\Gamma^{\alpha}(C) = \Gamma^{\delta}(C)$. (Hint: Use the fact that the standard topology on \mathbb{R} has a countable basis.) Let $\Gamma^{\delta}(C)$ be denoted $\Gamma^{\infty}(C)$ and show that $\Gamma^{\infty}(C)$ has no isolated points.
- 3. Show that $\Gamma^{\infty}(C)$ has cardinality 2^{\aleph_0} if it is nonempty. (Show that there is an injection from $\{f | f : \mathbb{N} \to \{0, 1\}\}$ into $\Gamma^{\infty}(C)$. Note that if U is a neighborhood of $\Gamma^{\infty}(C)$ then there are $x \neq y$ both in U. This way one can build sequences in C whose limits map to distinct points in C.)
- 4. Conclude that if $C \subseteq \mathbb{R}$ is closed, then C is the union of an at most countable set and a perfect set. Hence C is either at most countable or has cardinality 2^{\aleph_0} .

Exercise 2 (2 points). Let S_{α} be as defined in the limit case of the proof of Theorem 1.22 of the course notes, i.e. $S_{\alpha} = \bigcup_{n \in \mathbb{N}} (n + f[S_n])$. (Let $S_0 = g_{\beta_0}^{-1}[\beta_0]$ for exactness.) Show that $(S_{\alpha}, <_{\mathbb{R}})$ is order-isomorphic to (α, \in) .

Exercise 3 (2 points). Prove that the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ has cardinality 2^{\aleph_0} and that the set of all functions $f : \mathbb{R} \to \mathbb{R}$ has cardinality $2^{2^{\aleph_0}}$.