Exercise Sheet 4 16. Mai 2024

Due on May 27 before the exercise session. 2 points per exercise.

Here we will prove Sierpinski's theorem, concluding with Exercise 4.

As in the proof of the Dushnik-Miller Theorem $\langle g_{\alpha} : \alpha < 2^{\aleph_0} \rangle$ enumerate all orderpreserving functions $\mathbb{R} \to \mathbb{R}$ other than the identity.

Exercise 1. Construct sets $\langle x_{\alpha} : \alpha < 2^{\aleph_0} \rangle$ and $\langle y_{\alpha} : \alpha < 2^{\aleph_0} \rangle$ by transfinite recursion as follows:

- (i) Show that there is some x_0 such that $g_0(x_0) \neq x_0$ and there is some y_0 such that $y_0 \neq x_0, y_0 \neq g_0(x_0), g_0(y_0) \neq x_0$, and $g_0(y_0) \neq y_0$.
- (ii) Suppose that for each $\beta < \alpha$ we have chosen points x_{β} and y_{β} such that the three sets

 $\{x_{\beta}: \beta < \alpha\}$ and $\{y_{\beta}: \beta < \alpha\}$ and $\{g_{\beta}(x_{\beta}): \beta < \alpha\} \cup \{g_{\beta}(y_{\beta}): \beta < \alpha\}$

are pairwise disjoint.

Show that there is an element x_{α} such that for all $\beta < \alpha$, $x_{\alpha} \neq x_{\beta}$, $x_{\alpha} \neq y_{\beta}$, $x_{\alpha} \neq g_{\beta}(x_{\beta})$, $x_{\alpha} \neq g_{\beta}(y_{\beta})$, and $g_{\alpha}(x_{\alpha}) \neq y_{\beta}$, and also such that for all $\beta \leq \alpha$, $g_{\alpha}(x_{\alpha}) \neq x_{\beta}$.

(iii) With the setup as in (ii), having chosen x_{α} , show that there is a y_{α} such that for all $\beta \leq \alpha$ (notice the non-strict inequality!), $y_{\alpha} \neq x_{\beta}$, $y_{\alpha} \neq g_{\beta}(x_{\beta})$, $g_{\alpha}(y_{\alpha}) \neq x_{\beta}$, $g_{\alpha}(y_{\alpha}) \neq y_{\beta}$, and for all $\beta < \alpha$, $y_{\alpha} \neq y_{\beta}$, $y_{\alpha} \neq g_{\beta}(y_{\beta})$.

Let $E = \langle x_{\alpha} : \alpha < 2^{\aleph_0} \rangle$ and $F = \langle y_{\alpha} : \alpha < 2^{\aleph_0} \rangle$.

Exercise 2. Argue that:

- (a) $E \cap F = \emptyset$ and $|E| = |F| = 2^{\aleph_0}$,
- (b) E and F are both dense subsets of \mathbb{R} ,
- (c) *E* and *F* are disjoint from $\{g_{\alpha}(x_{\alpha}): \alpha < 2^{\aleph_0}\} \cup \{g_{\alpha}(y_{\alpha}): \alpha < 2^{\aleph_0}\}.$

(Each of these should be fairly straightforward and analogous to the proof of the Dushnik-Miller Theorem. Specifically, each point can be justified with only a line or two.)

For any subset $T \subseteq F$, let $E_T = E \cup T$.

Exercise 3. Let $S, T \subseteq F$ and suppose that $S \setminus T$ is non-empty. Then there is no orderpreserving function $h: E_S \to E_T$. (Hint: Consider $g: \mathbb{R} \to \mathbb{R}$ extending h and think about why and how g is dealt with in the construction.)

Exercise 4. Show that there are 2^{\aleph_0} -many dense subsets of \mathbb{R} , each of cardinality 2^{\aleph_0} , which are pairwise non-order-isomorphic (i.e. no two of them are order-isomorphic to one another). (Hint: Use the previous exercise. The respective definitions of the sets are quite simple, so be advised not to look for anything technical.)

Hence we have a strong contrast with Cantor's theorem on dense countable linear orders without endpoints!