Exercise Sheet 9 4. Juli 2024

Due on July 8 before the exercise session.

Exercise 1 (Jech 16.16, 2 points per item). Assume $\mathsf{MA} \wedge 2^{\aleph_0} = \aleph_2$ and let $\{X_\alpha : \alpha < \aleph_1\}$ be a sequence of infinite subsets of ω such that $X_\beta \setminus X_\alpha$ is finite if $\alpha < \beta$. Show that there exists an infinite X such that $X \setminus X_\alpha$ is finite for all $\alpha < \aleph_1$.

This uses the following poset \mathbb{P} : The elements of the poset are pairs (s, F) where s is a finite subset of ω and F is a finite subset of \aleph_1 . We have $(s', F') \leq (s, F)$ if $s' \supseteq s$, $F' \supseteq F$, and $s' \setminus s \subseteq X_{\alpha}$ for all $\alpha \in F$.

- 1. Show that \mathbb{P} has the countable chain condition.
- 2. Show that the relevant sets are dense (they are in Jech if you want to look) and show that the application of Martin's Axiom gives the infinite set X.