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Abstract. We build on a 1990 paper of Bukovský and Copláková-Hartová.

First, we remove the hypothesis of CH from one of their minimality results.

Then, using a measurable cardinal, we show that there is a |ℵV
2 | = ℵ1-minimal

extension that is not a |ℵV
3 | = ℵ1-extension, answering the first of their ques-

tions.

1. Introduction

Forcing extensions often involve collapsing cardinals, so it is natural to study
the properties of various forcing collapses from a general perspective. Namba forc-
ing, which was discovered independently by Bukovský and Namba [17, 2], has two
notable properties that distinguish it from other forcings that collapse cardinals.
First, it allows one to avoid collapsing cardinals below the target: the classical
versions singularize ℵ2 while preserving ℵ1. There are limitations, however: Shelah
proved that the classical versions collapse ℵ3 [6, Theorem 4.73]. The other no-
table property of Namba forcing is that, like many other tree forcings, it is to some
extent minimal. Bukovský and Copláková-Hartová conducted a thorough investi-
gation into the minimality properties of Namba-like forcings [3] and their paper
became a go-to reference for further work on Namba forcing [7, 9].

Bukovský and Copláková-Hartová’s paper is partially known for a question about
collapsing ℵω+1 (see [4]), but the authors also raised questions about how minimal-
ity and control over collapsed cardinals interact. In their notation, a forcing is
|λ| = κ-minimal if it forces |λ| = κ and has no subforcings collapsing λ to have
cardinality κ. They showed that CH implies the |ℵV

2 | = ℵ1-minimality of classical
Namba forcing. We will remove the assumption of CH. They also asked whether
there is a |ℵV

2 | = ℵ1-minimal extension that is not a |ℵV
3 | = ℵ1-extension [3, Ques-

tion 1]. Assuming the consistency of a measurable cardinal, we will answer their
question positively here. Essentially, we are showing that there is more flexibility
for producing various |λ| = κ-extensions than was previously known.

The forcing used to obtain these results is a variant of classical Namba forcing
in the sense that it is a tree forcing with wide splitting, although in our case
the trees will have a height equal to ω1. An aspect of the main technical idea is
present in the recent result that classical Namba forcing consistently has the weak
ω1-approximation property [15]. The crux is a sweeping argument that is used to
pair the successors of splitting nodes with distinct forced values for a given forcing
name. The difference with the present results is that we will use a strengthening of
precipitousness due to Laver to define the splitting behavior of our forcing. This will
allow us to use the sweeping argument while ensuring that our forcing is countably
closed. We should expect something like this because of the above-mentioned result
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of Shelah, which in fact shows that any extension singularizing ℵ2 to have cofinality
ω while preserving ℵ1 will collapse ℵ3.

The use of large cardinals appears necessary. First, the assumption we em-
ploy to define the forcing, which we refer to as the Laver Ideal Property, implies
the consistency of a measurable cardinal [12]. An extension fitting Bukovský and
Copláková-Hartová’s minimality criteria would likely be a tree forcing, and joint
work with Mildenberger [16] shows that tree forcings with uncountable height ex-
hibit a number of (rather interesting) pathologies, particularly when it comes to
fusion arguments, unless some regularity of their splitting behavior is enforced.
Hence, it seems like we need the Laver Ideal Property as long as we expect to use
tree forcings. Of course, this does not prove that the large cardinals are necessary.
An argument to this effect would probably use an almost disjoint sequence that
arises from the failure of a large cardinal principle, and it would need to use the
notion of a strictly intermediate extension of an arbitrary extension.

1.1. Definitions and Notation. We assume that the reader is familiar with the
basics of set theory and forcing. It will also be helpful to have familiarity with tree
forcings, in particular fusion arguments (see [11, Chapters 15 and 28]). Here we
will clarify our notation.

Definition 1.

(1) A tree T is (for our purposes) a collection of functions f : ON → ON with
dom(f) ∈ ON such that if f ∈ T and α ∈ dom(f), then f ↾ α ∈ T .

(2) If T is a tree, we refer to an element t ∈ T as a node.
(3) For an ordinal α, the set T (α) is the set of t ∈ T with dom(t) = α.
(4) The height ht(T ) of a tree T is min{α : T (α) = ∅}.
(5) For t1, t2 ∈ N ∪ [N ] we write t1 ⊑ t2 if t2 ↾ dom(t1) = t1. (Hence the tree

order is the relation ⊑.) We write t1 ⊏ t2 if t1 ⊑ t2 and t1 ̸= t2.
(6) If t = s ∪ {(dom(s), β)}, we write t = s⌢⟨β⟩.
(7) T ↾α =

⋃
β<α T (β).

(8) T ↾ t = {s ∈ T : s ⊑ t ∨ t ⊑ s}.
(9) For t ∈ T (α) we let succT (t) = {c : c ∈ T (α+ 1) ∧ c ⊒ t} denote the set of

immediate successors of t, and osuccT (t) = {β : t⌢⟨β⟩ ∈ T (α+ 1)} denote
the ordinal successor set of t.

(10) We call t ∈ T a splitting node if | succT (t)| > 1.
(11) stem(T ) is the ⊑-minimal splitting node.

For the purposes of this paper, we will define tree forcings, but this definition
should not be considered in unqualified terms.

Definition 2. We say that P is a tree forcing if there are regular cardinals µ and
κ such that for all p ∈ P, p ⊆ µ<κ is a tree and for all p, q ∈ P, p ≤P q if and only
if p ⊆ q.

In general, tree forcings are understood to require the trees to be perfect, which
means that they have splitting nodes above every node. But there are a number of
ways in which this is made precise, so we will avoid the term “perfect” below.

Definition 3. Let P be a tree forcing and let κ, µ be regular cardinals such that p
is a subtree of µ<κ for all p ∈ P.

(1) Take p ∈ P. We let stem(p) be, as above, the ⊑-minimal splitting node of
p.
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(2) We let split(p) denote the set of splitting nodes of p. For α ∈ κ, splitα(p) is
the set of α-order splitting nodes of p, i.e. the set of t ∈ split(p) such that
ot{s ⊏ t : s ∈ split(p)} = α.

(3) Let p, q ∈ P, α < κ. We write q ≤α p if q ≤ p and splitα(p) = splitα(q).
(4) A sequence ⟨pα : α < δ⟩ such that δ ≤ κ and for α < γ < δ, pγ ≤α pα is

called a fusion sequence.

Fusion sequences are a fundamental tool for working with tree forcings. The
idea is that if ⟨pα : α < κ⟩ is a fusion sequence, then

⋂
α<κ pα, otherwise known as

the fusion limit, should be a condition. The first forcing that we use (Definition 4
below) is already in the literature, so we will use fusion limits without comment.
However, we will include a precise argument for fusion limits in the proof of the
main theorem (Proposition 12 below).

2. Results

2.1. Minimality without the Continuum Hypothesis. We will discuss the
version of Namba forcing that appears in Bukovský’s treatment [2] since this is the
one that appears in Jech’s textbook [11]. We define it here so that there is no risk
of ambiguity:

Definition 4. The conditions in classical Namba forcing, which we denote P =
PCNF, consists of conditions that p are subsets of ℵ<ω

2 such that:

(1) p is a tree in ℵ<ω
2 ;

(2) for all t ∈ p, | osucct(p)| ∈ {1,ℵ2};
(3) and for all t ∈ p there is some s ⊒ t such that s ̸= t and | osuccp(s)| = ℵ2.

If p, q ∈ P, then p ≤P q if and only if p ⊆ q.

Bukovský and Copláková-Hartová showed that CH implies that PCNF is |ℵV
2 | =

ℵ1-minimal [3, Corollary 1.3], and also proved a more general statement, but we
will show that the hypothesis of CH can be dropped if we just want the minimality
result for PCNF. Part of the issue here is that PCNF adds reals if and only if CH
holds: that CH suffices is shown in Jech’s textbook, and if CH fails, then one can
observe that the generic branch will code a new countable sequence of reals. Note
that Lemma 5 below was specifically proved by Bukovský [2, Theorems 2,3] with
the assumption of CH. The argument anticipates the main result, Theorem 17.

Lemma 5. Suppose G is PCNF-generic over V and suppose f ∈ V [G] is an un-

bounded function ω → θ where cfV (θ) ≥ ℵ2. Then V [f ] = V [G].

Proof. Suppose that ḟ is a PCNF-name for an unbounded function ω → θ and this
is forced by some p ∈ PCNF. We will define a fusion sequence ⟨pn : n < ω⟩ together
with an assignment {(t, nt) : t ∈

⋃
n<ω splitn(pn)} such that:

(1) for all t ∈
⋃

n<ω splitn(pn), nt ∈ ω,
(2) for all t ∈

⋃
n<ω splitn(pn), nt > |t| ≥ max{ns : s ⊏ t}.

(3) for each n < ω and t ∈ split(pn), there is a sequence ⟨γt
α : α ∈ osuccpn(t)⟩

such that pn+1 ↾ t⌢⟨α⟩ ⊩ “ḟ(nt) = γt
α” and such that α ̸= β implies

γt
α ̸= γt

β .

If we define such a sequence and p̄ =
⋂

n<ω pn, then p̄ ⊩ “V [Γ(PCNF)] = V [ḟ ]”
(where Γ(PCNF) is the canonical name for the generic), i.e. p̄ forces that the generic

can be recovered from the evaluation of ḟ .
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The recovery of the generic goes as follows: Assuming that we have such a p̄,
suppose G is PCNF-generic over V with p̄ ∈ G, and V ⊆ W ⊆ V [G] where W is a

model with g = ḟG ∈ W . Then we can argue that G ∈ W . Note that it is sufficient
to argue that b :=

⋂
G ∈ W . We work in W . By induction on k < ω, we define a

sequence ⟨sk : k < ω⟩ ⊂ p̄ such that |sk| ≥ k and such that for all k < ω, there is
qk ∈ G such that sk ⊑ stem(qk). Let s0 = ∅. Given sk, let s

∗
k+1 be the ⊑-minimal

splitting node of p̄ above sk. Then by Item (3) above, there is a unique αk+1 such

that p̄ ↾ (s∗k+1
⌢⟨αk+1⟩) ⊩ ḟ(ns∗k+1

) = g(ns∗k+1
). Then let sk+1 = s∗k+1

⌢⟨αk+1⟩.
It must be the case that sk+1 ⊆ q for some q ∈ G. This completes the definition
of ⟨sk : k < ω⟩ and the argument that the generic can be recovered from p̄ as
described.

Now we define ⟨pn : n < ω⟩. Let p0 = p and suppose we have defined pn. Define
pn+1 as follows: For each t ∈ splitn(pn), we will define a sequence of ordinals
⟨αt

ξ : ξ < ℵ2⟩ ⊆ osuccpn(t), a sequence of conditions ⟨qξ : ξ < ℵ2⟩, a sequence of

ordinals ⟨γξ : ξ < ℵ2⟩ ⊆ ℵ2, and a sequence of natural numbers ⟨nξ : ξ < ℵ2⟩ such
that for all ξ < ℵ2:

(i) qξ ≤ pn ↾ (t⌢⟨αξ⟩),
(ii) qξ ⊩ “ḟ(nξ) = γξ”,
(iii) ξ ̸= ζ implies γξ ̸= γζ .

Let n̄ = ns where s is the ⊑-maximal splitting node in pn strictly below t
assuming it exists, otherwise let n̄ = 0.

We define αt
ξ’s, the qtξ’s, and the γt

ξ’s by induction together with a sequence of

natural numbers ⟨mξ : ξ < ℵ2⟩. Suppose we have defined them for ξ < ζ < ℵ2.
We claim that there is some β ∈ osuccpn

(t) \ ⟨αt
ξ : ξ < ζ⟩, some r ≤ pn ↾ (t⌢⟨β⟩),

some ordinal δ, and some m > max{n̄, |t|} such that δ /∈ ⟨γt
ξ : ξ < ζ⟩ and such that

r ⊩ “ḟ(m) = δ”. Otherwise it is the case that⋃
{p ↾ (t⌢⟨α⟩) : α ∈ osuccpn(t) \ sup

ξ<ζ
αξ} ⊩

“ range(ḟ ↾ (max{n̄, |t|}, ω)) ⊆ ⟨γξ : ξ < ζ⟩”,

which contradicts the fact that p forces ḟ to be unbounded in θ where θ has a
cofinality strictly greater than ℵV

1 . Hence we can let αζ := β, γζ := δ, and nζ := m.
Now that the qξ’s, γξ’s, and nξ’s have been defined, let k < ω be such that

there is an unbounded X ⊆ ℵ2 and a k < ω such that nξ = k for all ξ ∈ X.
Then let nt = k and let qt =

⋃
ξ∈X qtξ. Finally, let pn+1 =

⋃
{qt : t ∈ splitn(pn)}.

Now that we have defined ⟨pn : n < ω⟩, let p̄ =
⋂

n<ω pn. As argued above,

p̄ ⊩ “V [Γ(PCNF)] = V [ḟ ]”. □

Theorem 6. ZFC proves that PCNF is |ℵV
2 | = ℵ1-minimal.

Proof. Let κ = ℵV
2 and λ = ℵV

1 . Suppose that G is PCNF-generic over V and that

V ⊆ W ⊆ V [G] where W |= “|κ| = ℵ1”. Consider the case that cfW (κ) = λ
as witnessed by some increasing and cofinal g : λ → κ in W . If f ′ : ω → κ is
the cofinal function added by PCNF, then in V [G] one can define a cofinal function
h : ω → λ by setting h(n) to be the least ξ such that f ′(n) < g(ξ). Then h is cofinal
because if ξ < λ and n is such that g(ξ) < f ′(n), then h(n) > ξ. But this implies
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that V [G] |= “|λ| = ω”, contradicting the fact that PCNF preserves ω1.
1 Therefore

it must be the case that cfW (κ) = ω as witnessed by some cofinal f ∈ W , so by
Lemma 5 we have that V [f ] ⊆ W ⊆ V [G] = V [f ], hence W = V [G]. □

2.2. Developing a Version of Higher Namba Forcing. We will use a notion
of Laver to define the forcing.

Definition 7 (Laver). (See [18, Chapter X, Definition 4.10].) Given regular cardi-
nals λ ≤ µ, we write LIP(µ, λ) if there is a µ-complete ideal I ⊂ P (µ) that extends
the bounded ideal on µ and there is a set D ⊆ I+ such that:

(1) D is λ-closed in the sense that if ⟨Ai : i < τ⟩ is a ⊆-descending sequence of
elements of D with τ < λ, then

⋂
i<τ Ai ∈ D,

(2) D is dense in I+, i.e. for all A ∈ I+, there is some B ⊆ A with B ∈ I+

such that B ∈ D.

Fact 8 (Laver). If λ < µ where λ is regular and µ is measurable, then Col(λ,< µ)
forces LIP(µ, λ).

Laver’s original proof of Fact 8 is unpublished, but a proof is provided in full by
Jech [10, Theorem 3*]. The argument is similar to the one found by Galvin, Jech,
and Magidor for obtaining a certain precipitous ideal on ℵ2 [8]. Some variations
appear in Shelah [18, Chapter X].

Now we will define a “tall” augmented version of Namba forcing.

Definition 9. Assume that κ ≤ λ < µ are regular cardinals. Assume LIP(µ, λ)
holds and is witnessed by an ideal I and a dense set D ⊆ I+. Let Pκ

TANF(D) consist
of subsets p ⊆ <κµ such that:

(1) p is a tree,
(2) if t is a splitting node in p then osuccp(t) ∈ D,
(3) for all t ∈ p, there is some s ⊐ t such that s is a splitting node in p,
(4) for all ⊑-increasing sequences of splitting nodes ⟨ti : i < j⟩ ⊂ p with j < κ,

if t∗ =
⋃

i<j ti, then

(a) t∗ ∈ p,
(b) and if each ti is a splitting node in p, then t∗ is a splitting node in p.

For p, q ∈ Pκ
TANF(D), let p ≤Pκ

TANF(D) q if and only if p ⊆ q.

In other words, the conditions in Pκ
TANF(D) are Miller-style perfect trees of height

κ and with club-wise vertical splitting and horizontal splitting sets in D.

Variants of this definition are found throughout the literature starting with work
of Kanamori [13]. Our presentation is chosen to correspond with analogous exam-
ples in the literature (e.g. [1, Definition 74]).

We will develop Pκ
TANF(D) in this section. Many of its properties generalize those

of classical Namba forcing, but Lemma 14 is a delicate point. For the remainder of
this section, letD witness LIP(µ, λ) with respect to an ideal I and let P = Pκ

TANF(D).

Proposition 10. P is κ-closed. In particular, if ⟨pi : i < τ⟩ is a ≤P-descending
sequence of conditions in P, then

⋂
i<τ pi ∈ P.

1Specifically, PCNF and many other variants of Namba forcing in which the trees have height
ω have the property that they preserve stationary subsets of ω1. A careful and detailed proof for

one variant appears in Krueger [14].



6 MAXWELL LEVINE

Proof. Let τ < κ and suppose ⟨pi : i < τ⟩ is a descending sequence of conditions in
P. Let p∗ :=

⋂
i<τ pi.

Claim 11. For all t ∈ p∗, there is some s ⊒ t such that osuccp∗(s) ∈ D.

Proof of Claim 11. First, we need to argue the subclaim that for all i < τ , if t ∈ p∗,
then there is some s ⊒ t such that s ∈ p∗ and s ∈ split(pi). Begin with t ∈ p∗. If
t ∈ split(pi), then we are done, so assume otherwise. Let s be ⊑-minimal such that
s ⊒ t and s ∈ split(pi).

We will argue that s ∈ p∗. Let α = dom(t) and let γ = dom(s). We will argue by
induction on β ∈ [α, γ] that s ↾ β ∈ p∗. For β = α this follows from t ∈ p∗. Suppose
β = β′ + 1 and we have established that s ↾ β′ ∈ p∗. Since β′ < γ, the minimal
choice of s implies that s ↾ β′ /∈ split pi, which implies that s ↾ β′ /∈ split pj for j ≥ i.
This means that for all j such that i ≤ j < τ , there is a unique sj ∈ succpj

(s ↾ β′).
Since the sequence of pj ’s is ⊆-decreasing, it must be the case that the sj ’s are all
the same and therefore that they are all equal to s ↾ β. Thus s ↾ β ∈ pj for j ≥ i.
Of course, s ↾ β ∈ pj for j < i since pi ⊆ pj for j < i. Thus s ↾ β ∈ p∗. Suppose β is
a limit and we have established that s ↾ β′ ∈ p∗ for β′ < β, i.e. that s ↾ β′ ∈ pi for
all i < τ . Then s ↾ β ∈ pi for all i < τ by Item (4a) of Definition 9, so s ↾ β ∈ p∗.
This finishes the proof of the subclaim.

Now we can finish proving the claim. Fix t ∈ p∗. We will build a ⊑-increasing
sequence ⟨ti : i < τ⟩ ⊆ p∗ with t0 = t such that for all i < τ , ti ∈

⋂
j<i split(pj). If

ti has been defined, apply the subclaim to find ti+1 ⊒ ti with ti+1 ∈ p∗ such that
ti+1 ∈ split(pi) and so ti+1 ∈ split(pj) for j ≤ i. If i is a limit and tj has been
defined for j < i, let ti =

⋃
j<i tj . Then ti ∈ p∗ by Item (4a) of Definition 9. Also,

for all j < i and ℓ ∈ (j, i), tℓ ∈ split(pj), so Item (4b) of Definition 9 implies that
ti ∈ split(pj). Having defined ⟨ti : i < τ⟩, let s =

⋃
i<τ ti. Then, as in the limit

case of the construction of ⟨ti : i < τ⟩, we have s ∈ p∗ and s ∈ split(pi) for all i < τ .
Let X =

⋂
i<τ osuccpi

(s). Then X ∈ D by the closure property of LIP(µ, λ) and
{s⌢⟨α⟩ : α ∈ X} ⊆ p∗, so we are done. □

We we are ready to argue that p∗ =
⋂

i<τ pi is a condition in P. The fact that
p∗ is a tree follows immediately from the fact that the pi’s are. If t is a splitting
node in p∗, then it is necessarily a splitting node for all of the pi’s, and so the
closure property of LIP(µ, λ) implies that osuccp∗(t) =

⋂
i<τ osuccpi(t) ∈ D. Item

(3) from Definition 9, which is about extending nodes to splitting nodes, is exactly
the statement of Claim 11. Item (4) of Definition 9, about closure of splitting nodes
and closure of nodes in general, is inherited by p∗ from the pi’s. □

Proposition 12. Suppose that ⟨pi : i < κ⟩ is a fusion sequence. Then
⋂

i<κ pi is
a condition in P.

Proof. Let p∗ =
⋂

i<κ pi. Item (1) of Definition 9 holds for p∗ automatically.
We obtain Item (2) if we argue that for all t ∈ splitα(p∗), it follows that

osuccp∗(t) = osuccpα+1
(t). First note that for all α < κ and all γ ∈ (α, κ),

splitα(pα) = splitα(pγ), and hence for all α < κ, splitα(pα) = splitα(p∗). Now
suppose that t ∈ splitα(pα+1) and β ∈ osuccpα+1(t). Then there is s ⊒ t⌢⟨β⟩ such
that s ∈ splitα+1(pα+1) = splitα+1(p∗), and therefore β ∈ osuccp∗(t).

Moreover, splitα(p∗) = splitα(pα) implies that splitα(p∗) is nonempty above
every t ∈

⋃
β<α splitβ(p∗) for all α < κ, giving Item (3). Item (4a) is automatic

and Item (4b) follows from the observation we used for Item (2). □
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Proposition 13. ⊩P “ cf(µ) = κ”.

Proof. We will argue that

ḃ = {⟨⟨i, (stem p)(i)⟩̌ : dom(stem p) ≥ i+ 1},

i.e. the name for the generic branch added by P, is a cofinal function from κ to µ.
Since Proposition 10 implies that ⊩P “ cf(µ) ≥ κ”, it will follow that ⊩P “ cf(µ) =
κ”.

Suppose p ∈ P and let β < µ be arbitrary. Since the Laver ideal I extends the
bounded ideal on µ, it follows that (osuccp(stem p) \ (β + 1)) ∈ I+, and therefore
there is some X ∈ D such that X ⊆ osuccp(stem p) \ (β + 1). Let q =

⋃
{p ↾

stem p⌢⟨α⟩ : α ∈ X}. Then q ∈ P, q ≤ p, and q ⊩ “ḃ(i) > β” where i =

dom(stem p). Hence we have argued that ḃ is forced to be cofinal in µ. □

The following is our main lemma. The crux is the sweeping argument in Claim 15.

Lemma 14. P is (cf(µ) = κ)-minimal.

Proof. Suppose that ḟ is a P-name forced by the empty condition to be a cofinal
function κ → µ.

We define the main idea of the proof presently. Let φ(q, i) denote the formula

i < κ ∧ q ∈ P ∧ ∃⟨aα : α ∈ osuccq(stem(q))⟩ s.t.

∀α ∈ osuccq(stem(q)), q ↾ (stem(q)⌢⟨α⟩) ⊩ ‘ḟ ↾ i = aα’∧
∀α, β ∈ osuccq(stem(q)), α ̸= β =⇒ aα ̸= aβ .

Claim 15. ∀j < κ,∀p ∈ P,∃i ∈ (j, κ),∃q ≤ p s.t. stem(p) = stem(q) ∧ φ(q, i).

Proof. (Note that by κ-closure, P forces “ḟ ↾ i ∈ V ” for all i < κ.)
First we establish a slightly weaker claim: for all splitting nodes t ∈ p and all

j < κ, there is a sequence ⟨(qα, iα, aα) : α ∈ osuccp(t)⟩ such that:

(i) ∀α ∈ osuccp(t), ∃iα ∈ (j, κ), ∃qα ≤ p ↾ (t⌢⟨α⟩), and qα ⊩ “ḟ ↾ iα = aα”,
(ii) α ̸= β =⇒ aα ̸= aβ .

We define this sequence by induction on α ∈ osuccp(t). Suppose we have
⟨(qβ , iβ , aβ) : β ∈ α ∩ osuccp(t)⟩ such that (i) and (ii) hold below α. Then we can

argue that there is a triple (r, i, a) such that r ≤ p ↾ (t⌢⟨α⟩) and r ⊩ “ḟ ↾ i = a”
and a /∈ {aβ : β ∈ α ∩ osuccp(t)}. If not, this means that

p ↾ (t⌢⟨α⟩) ⊩ “{ḟ ↾ i : i < κ} ⊆ {aβ : β ∈ α ∩ osuccp(t)}”.

But each aβ has cardinality less than κ and |α ∩ osuccp(t)| < µ, so∣∣∣⋃{aβ : β ∈ α ∩ osuccp(t)}
∣∣∣ < µ

Therefore p ↾ (t⌢⟨α⟩) forces that range(ḟ) is bounded in µ, which contradicts the

assumption that ḟ is forced to be unbounded in µ. Since the triple that we want
exists, we can let (qα, iα, aα) be such a triple.

Now that we have established the slightly weaker claim, apply the µ-completeness
of I and the fact that κ < µ to find some S′ ⊆ osuccp(stem p) such that S′ ∈ I+ and
such that there is some i with iα = i for all α ∈ S′. Then choose S ⊆ S′ such that
S ∈ D using the density property indicated by LIP(µ, λ) and let q =

⋃
α∈S qα. □
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Now that we have our claim, we can use it to construct a fusion sequence ⟨pξ :
ξ < κ⟩ and assignment {(t, it) : t ∈ T} where T :=

⋃
{splitξ(pξ) : ξ < κ} such that:

(1) for all t ∈ T , it < κ,
(2) for all t ∈ T , it > dom(t) ≥ sups⊏t is,
(3) for each ξ < κ and t ∈ splitξ(pξ), there is some i > sup{is : s ⊏ t, s ∈ T}

with i ≥ dom(t) such that φ(pξ+1 ↾ t, i) holds.

We define the fusion sequence by cases: Let p0 be arbitrary. If ξ < κ is a limit
then we let pξ =

⋂
ζ<ξ pj (using Proposition 10). Now suppose that ξ = ζ + 1 and

we have defined pζ . Let t ∈ splitζ(pζ). Apply Claim 15 to obtain qt ≤ pζ ↾ t with
stem q = t and some it > dom(t) ∪ sup{is : s ⊏ t, s ∈ T} such that φ(qt, it). Then
let pξ =

⋃
{qt : t ∈ splitζ(pζ)}. Finally, having defined the fusion sequence, we let

p =
⋂

ξ<κ pξ.

Now we argue that p ⊩ “Γ(P) ∈ V [ḟ ]”. Let g = ḟ [G] for some G that is P-
generic over V . We will argue that G is definable from g. Specifically, we will
define a sequence ⟨sξ : ξ < κ⟩ such that for all ξ < κ, dom(sξ) ≥ ξ and ∃qξ ∈ G
such that sξ ⊑ stem(qξ). Let s0 = ∅. Given sξ, let s∗ξ+1 be ⊑-minimal splitting

node of p above sk. Then by Item (3), there is a unique αξ+1 such that

pξ ↾ s∗ξ+1
⌢⟨αξ+1⟩ ⊩ “ḟ ↾ is∗ξ+1

= g ↾ is∗ξ+1
”.

Let sξ+1 = s∗ξ+1
⌢⟨αξ+1⟩. The Item (3) also implies that there is some qξ+1 ∈ G

such that stem(qξ+1) ⊒ sξ+1. If ξ is a limit, let sξ =
⋃

η<ξ sη. By the closure
property of Definition 9, sξ ∈ p.

This completes the proof of minimality. □

Proposition 16. If µ<κ = µ, then P does not add surjections from κ to θ for any
regular θ > µ.

Proof. Suppose that we have a P-name ḟ for a function such that (without loss of

generality) the empty condition forces ḟ : κ → θ. We will define a fusion sequence
⟨pi : i < κ⟩ as follows: Let p0 be arbitrary. If i is a limit then let pi =

⋂
j<i pj . If

i = k + 1, then for all t ∈ splitk(pk) and α ∈ osuccpk
(α), choose some qt,α ≤ pk ↾

(t⌢⟨α⟩) deciding ḟ(k). Then let pi =
⋃
{qt,α : t ∈ splitk(pk), α ∈ osuccpk

(t)}. Let
p =

⋂
i<κ pi.

If we let

B = {δ < θ : ∃i < λ,∃t ∈ spliti(p),∃α ∈ osuccp(t), qt,α ⊩ “ḟ(i) = δ”},

then because |B| ≤ |p| = µ<κ = µ < θ, it follows that p ⊩ “ range(ḟ) ⊆ sup(B) <
θ”. □

Now we are in a position to answer the question of Bukovský and Copláková-
Hartová that was mentioned in the introduction.

Theorem 17. Assuming consistency of a measurable cardinal, there is a model V
such that there is an |ℵV

2 | = ℵ1-minimal extension W ⊃ V that is not an |ℵV
3 | = ℵ1-

extension.

Proof. Let V ′ be a model in which µ is a measurable cardinal, and let V ⊃ V ′ be
obtained by forcing with the Lévy collapse Col(ℵ1, < µ) over V ′. Then CH and
LIP(ℵ2,ℵ1) hold in V (the latter by Fact 8). Suppose that LIP(ℵ2,ℵ1) is witnessed

by the dense set D2 in V . Then let W be an extension of V by Pℵ1

TANF(D2). Then
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W is an |ℵV
2 | = ℵ1-extension by Proposition 13 and it is a minimal such extension

by Lemma 14. If Pℵ1

TANF(D2) collapses ℵV
3 , then it would collapse it to an ordinal

of cardinality ℵV
1 , but it follows from Proposition 16 in combination with CH that

this is not possible. □

We also mention the immediate generalization of Theorem 17:

Theorem 18. Assume that LIP(ν++, ν+) and (ν+)
<ν+

= ν+ hold in V where ν
is regular. Let µ = ν++. Then there is a model V such that there is an |µ| = ν+-
minimal extension W ⊃ V that is not an |µ| = ν-extension.

2.3. Remaining Questions. As stated in the introduction, it would be clarifying
to know for sure whether there is an exact equiconsistency.

Question 1. Does the conclusion of Theorem 17 require consistency of a measur-
able cardinal?

There is also the question of the extent to which Theorem 17 can be stratified.

Question 2. Assuming LIP(µ, λ), is it consistent that ω < κ < λ < µ are regular
cardinals and Pκ

TANF preserves cardinals ν ≤ λ?

This question appears to rely heavily on the determinacy of the generalizations of
Namba-style games to uncountable length κ (see e.g. [18, Chapter XI] [7] , [5, Fact
5]). One could pose this question in terms of (κ, ν)-distributivity, but even some
tricks that allow one to merely obtain cardinal preservation from similar posets (see
[15, Theorem 3]) seem to depend on these types of games (see [5, Fact 1]).

Acknowledgments. I would like to thank the anonymous referee for bearing with
a rough initial version, providing a lot of useful feedback, and for underscoring a
problematic non-proof of Proposition 10 in their criticism. I would also like to
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of the American Mathematical Society, 357(5):1693–1715, 2005.

[8] Fred Galvin, Thomas Jech, and Menachem Magidor. An ideal game. The Journal of Symbolic
Logic, 43(2):284–292, 1978.
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