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Abstract. We build on a 1990 paper of Bukovský and Copláková-Hartová.

First, we remove the hypothesis of CH from one of their minimality results.

Then, using a measurable cardinal, we show that there is a |ℵV2 | = ℵ1-minimal

extension that is not a |ℵV3 | = ℵ1-extension, answering the first of their ques-

tions.

1. Introduction

Forcing extensions often involve collapsing cardinals, so it is natural to study
the properties of possible forcing collapses from a general perspective. Namba
forcing, which was discovered independently by Bukovský and Namba [15, 2], has
two notable properties that distinguish it from other forcings that collapse cardinals.
First, it allows one to avoid collapsing cardinals below the target: the classical
versions singularize ℵ2 while preserving ℵ1. There are limitations, however: Shelah
proved that Namba forcing collapses ℵ3 [5, Theorem 4.73]. The other notable
property of Namba forcing is that, like many other tree forcings, it is to some extent
minimal. Bukovský and Copláková-Hartová conducted a thorough investigation
into the minimality properties of Namba-like forcings [1] and their paper became a
go-to reference for further work on Namba forcing [6, 8].

Bukovský and Copláková-Hartová’s paper is partially known for a question about
collapsing ℵω+1 (see [3]), but the authors also raised questions about how minimal-
ity and control over collapsed cardinals interact. In their notation, a forcing is
|λ| = κ minimal if it forces |λ| = κ and has no subforcings collapsing λ to have
cardinality κ. They showed that CH implies the |ℵV2 | = ℵ1-minimality of classical
Namba forcing. We will remove the assumption of CH. They also asked whether
there is a |ℵV2 | = ℵ1-minimal extension that is not a |ℵV3 | = ℵ1-extension [1, Ques-
tion 1]. Assuming the consistency of a measurable cardinal, we will answer their
question positively here. Essentially, we are showing that there is more flexibility
for producing various |λ| = κ-extensions than was previously known.

The forcing used to obtain these results is a variant of classical Namba forcing in
the sense that it is a tree forcing, although in our case the trees will have a height
equal to ω1. An aspect of the main technical idea is present in the recent result
that classical Namba forcing consistently has the weak ω1-approximation property
[13]. The crux is a sweeping argument that is used to pair the successors of splitting
nodes with distinct forced values for a given forcing name. The difference with the
present results is that we will use a version of local precipitousness due to Laver to
define the splitting behavior of our forcing. This will allow us to use the sweeping
argument while ensuring that our forcing is countably closed. We should expect
something like this because of the above-mentioned result of Shelah, which in fact
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shows that any extension singularizing ℵ2 to have cofinality ω while preserving ℵ1
will collapse ℵ3.

The use of large cardinals appears necessary. First, the assumption we em-
ploy to define the forcing, which we refer to as the Laver Ideal Property, implies
the consistency of a measurable cardinal [10]. An extension fitting Bukovský and
Copláková-Hartová’s minimality criteria would likely be a tree forcing, and joint
work with Mildenberger [14] shows that tree forcings with uncountable height ex-
hibit a number of (rather interesting) pathologies, particularly when it comes to
fusion arguments, unless some regularity of their splitting behavior is enforced.
Hence, it seems like we need the Laver Ideal Property as long as we expect to use
tree forcings. Of course, this does not prove that the large cardinals are necessary.
An argument to this effect would probably use an almost disjoint sequence that
arises from the failure of a large cardinal principle, and it would need to use the
notion of a strictly intermediate extension of an arbitrary extension.

1.1. Definitions and Notation. We assume that the reader is familiar with the
basics of set theory and tree forcings, in particular fusion arguments (see [9, Chap-
ters 15 and 28]). Here we will clarify our notation.

Definition 1. Let T be a tree.

(1) For an ordinal α, the set T (α) is the set of t ∈ T with dom(t) = α.
(2) The height ht(T ) of a tree T is min{α : T (α) = ∅}.
(3) We let [T ] = {f : ht(T )→ κ : ∀α < ht(T ), f � α ∈ T}. Elements of [T ] are

called cofinal branches.
(4) For t1, t2 ∈ N ∪ [N ] we write t1 v t2 if t2 � dom(t1) = t1. The tree order is

the relation v. If t = s ∪ {(dom(s), β)}, we write t = s_〈β〉.
(5) T �α =

⋃
β<α T (β).

(6) T � t = {s ∈ T : s v t ∨ t v s}.
(7) For t ∈ T (α) we let succT (t) = {c : c ∈ T (α+ 1) ∧ c w t} denote the set of

immediate successors of t, and osuccT (t) = {β : t_〈β〉 ∈ T (α+ 1)} denote
the ordinal successor set of t.

(8) We call t ∈ T a splitting node if | succT (t)| > 1.
(9) stem(T ) is the v-minimal splitting node.

Definition 2. Let P be a tree forcing, loosely defined, with µ, λ fixed as above.

(1) Take p ∈ P. We let split(p) denote the set of splitting nodes of p. For
α ∈ λ, splitα(p) is the set of α-order splitting nodes of p.

(2) Let p, q ∈ P, α < λ. We write q ≤α p if q ≤ p, splitα(p) = splitα(q), and
succp(t) = succq(t) for all t ∈ splitα(p).

(3) A sequence 〈pα : α < δ〉 such that δ ≤ λ and for α < γ < δ, pγ ≤α pα is
called a fusion sequence.

2. Results

2.1. Minimality without the Continuum Hypothesis. We will discuss the
version of Namba forcing that appears in Bukovský’s treatment [2] since this is the
one that appears in Jech’s textbook [9], which we define here so that there is no
risk of ambiguity:

Definition 3. The conditions in classical Namba forcing, which we denote P =
PCNF, consists of conditions that are subsets of <ωℵ2 such that:
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(1) t ∈ p and s v t (i.e. s an initial segment of t) imply s ∈ p;
(2) for all t ∈ p, |{α < ℵ2 : t_〈α〉 ∈ p}| ∈ {1,ℵ2};
(3) and for all t ∈ p there is some s w t such that s 6= t and |{α < ℵ2 : t_〈α〉 ∈

p}| = ℵ2.

If p, q ∈ P, then p ≤ q if and only if p ⊆ q.
Bukovský and Copláková-Hartová showed that CH implies that PCNF is |ℵV2 | =

ℵ1-minimal [1, Corollary 1.3], and also proved a more general statement, but we
will show that the hypothesis of CH can be dropped if we just want the minimality
result for PCNF. Note that Lemma 4 below was specifically proved by Bukovský
[2, Theorems 2,3] with the assumption of CH. The argument anticipates the main
result, Theorem 14.

Lemma 4. If G is PCNF-generic over V and suppose f ∈ V [G] is an unbounded

function ω → θ where cfV (θ) ≥ ℵ2. Then V [f ] = V [G].

Proof. Suppose that ḟ is a PCNF-name for an unbounded function ω → θ and this
is forced by some p ∈ PCNF. We will define a fusion sequence 〈pn : n < ω〉 together
with an assignment {(t, nt) : t ∈

⋃
n<ω splitn(pn)} such that:

(1) for all t ∈
⋃
n<ω splitn(pn), nt ∈ ω,

(2) for each n < ω, t @ t′ implies nt < nt′ ,
(3) for each n < ω and t ∈ split(pn), there is a sequence 〈γtα : α ∈ osuccpn(t)〉

such that pn � t_〈α〉  “ḟ(nt) = γtα” and such that α 6= β implies γtα 6= γtβ .

If we define such a sequence and p̄ =
⋂
n<ω pn, then p̄  “V [Γ(PCNF)] = V [ḟ ]”

(where Γ(PCNF) is the canonical name for the generic), i.e. p̄ forces that the generic

can be recovered from the evaluation of ḟ as in standard minimality arguments.
More precisely, we use the fact that the generic is defined by the cofinal branch
that it adds. The branch can be defined as the downwards closure of a sequence of
splitting nodes 〈tn : n < ω〉 that is defined by induction: Let t0 be the v-minimal
splitting node. If tn is defined then tn+1 is defined as the next splitting node above

tn+1
_〈α〉 where p � t_〈α〉 forces the correct value for ḟ � ntk .

Formally let pn−1 = p and suppose we have defined pn. Define pn+1 as follows:
For each t ∈ splitn(pn), suppose s @ t is such that s ∈ splitn−1(pn) if n > 0, and
if n = 0 set ns = 0. We will define a subset st = 〈αtξ : ξ < ℵ2〉 ⊆ osuccpn(t), a set

of extensions 〈qξ : ξ < ℵ2〉, a set of ordinals 〈γξ : ξ < ℵ2〉 ⊆ ℵ2, and a sequence of
natural numbers 〈nξ : ξ < ℵ2〉 such that:

(i) qξ ≤ pn � (t_〈αξ〉),
(ii) qξ  “ḟ(nξ) = γξ”,

(iii) ξ 6= ζ implies γξ 6= γζ .

We define αtξ’s, the qtξ’s, and the γtξ’s by induction together with a sequence of

natural numbers 〈mξ : ξ < ℵ2〉. Suppose we have defined them for ξ < ζ < ℵ2.
We claim that there is some β ∈ osuccpn(t) \ 〈αtξ : ξ < ζ〉, some r ≤ pn � (t_〈β〉),
some ordinal δ, and some m > ns such that γ /∈ 〈γtξ : ξ < ζ〉 and such that

r  “ḟ(m) = δ”. Otherwise it is the case that⋃
{p � (t_〈α〉) : α ∈ osuccpn(t) \ sup

ξ<ζ
αξ}  “ḟ � (ns, ω) ⊆ 〈γξ : ξ < ζ〉”,

which contradicts the fact that p forces ḟ to be unbounded in θ where θ has a
cofinality strictly greater than ℵV1 . Hence we can let αζ := β, γζ := δ, and nζ := m.
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Now that the qξ’s, γξ’s, and nξ’s have been defined, let k < ω be such that there
is an unbounded X ⊆ ℵ2 such that nξ = k for all ξ ∈ X. Then let nt = k and let
qt =

⋃
ξ∈X q

t
ξ. Finally, let pn+1 =

⋃
{qt : t ∈ splitn(pn)}. Now that we have defined

〈pn : n < ω〉, let p̄ =
⋂
n<ω pn. As argued above, p̄  “V [Γ(PCNF)] = V [ḟ ]”. �

Theorem 5. ZFC proves that PCNF is |ℵV2 | = ℵ1-minimal.

Proof. Let κ = ℵV2 and λ = ℵV1 . Suppose that G is PCNF-generic over V and that

V ⊆ W ⊆ V [G] where W |= “|κ| = ℵ1”. Consider the case that cfW (κ) = λ
as witnessed by some increasing and cofinal g : λ → κ in W . If f ′ : ω → κ is
the cofinal function added by PCNF, then in V [G] one can define a cofinal function
h : ω → λ be setting h(n) to be the least ξ such that f ′(n) < g(ξ). Then h is cofinal
because if ξ < λ and n is such that g(ξ) < f ′(n), then h(n) > ξ. But this implies
that V [G] |= “|λ| = ω”, contradicting the fact that PCNF preserves ω1.1 Therefore

it must be the case that cfW (κ) = ω as witnessed by some cofinal f ∈ W , so by
Lemma 4 we have that V [f ] ⊆W ⊆ V [G] = V [f ], hence W = V [G]. �

2.2. Developing a Version of Higher Namba Forcing. We will use a notion
of Laver to define the forcing.

Definition 6 (Laver). (See [16, Chapter X,Definition 4.10].) Given a regular car-
dinal µ, we write LIP(µ, λ) if there is a µ-complete ideal I ⊂ P (µ) such that there
is a set D ⊆ I+ such that:

(1) D is λ-closed subset in the sense that if 〈Ai : i < τ〉 is a ⊆-descending
sequence of elements of D with τ < λ, then

⋂
i<τ Ai ∈ D,

(2) D is dense in I+, i.e. for all A ∈ I+, there is some B ⊆ A with B ∈ I+
such that B ∈ D.

Fact 7 (Laver). If λ < µ where λ is regular and µ is measurable, then Col(λ,< µ)
forces LIP(µ, λ).

Laver’s proof of Fact 7 is unpublished, but the argument is similar to the one
found by Galvin, Jech, and Magidor for obtaining a certain precipitous ideal on ℵ2
[7]. Some additional details appear in Shelah [16, Chapter X].

Now we will define a “tall” augmented version of Namba forcing.

Definition 8. Assume that κ ≤ µ < λ are regular cardinals. Assume LIP(µ, λ)
holds and that D is the dense set witnessing this. Let PκTANF(D) be subsets p ⊆ <κµ
such that:

(1) p is a tree, i.e. if t ∈ p and s v t then s ∈ p,
(2) if t is a splitting node then osuccp(t) ∈ D,
(3) for all t ∈ p and γ < κ, there is some s A t such that dom s ⊇ γ and s is a

splitting node,
(4) for all v-increasing sequences of splitting nodes 〈ti : i < j〉 ⊂ p with j < κ,

t∗ :=
⋃
i<j ti ∈ p and t∗ is a splitting node.

For p, q ∈ PκTANF(D), let p ≤PκTANF(D) q if and only if p ⊆ q.
In other words, the conditions in PκTANF(D) are Miller-style perfect trees of height

λ and with club-wise vertical splitting and horizontal splitting sets in D.

1Specifically, PCNF and many other variants of Namba forcing in which the trees have height
ω have the property that they preserve stationary subsets of ω1. A careful and detailed proof for

one variant appears in Krueger [12].
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Variants of this definition are found throughout the literature starting with work
of Kanamori [11]. We will develop the forcing in this section. Many of its properties
generalize those of classical Namba forcing, but Lemma 11 is a delicate point. For
the remainder of this section, let D witness LIP(µ, λ) with respect to an ideal I and
let P = PκTANF(D).

Proposition 9. P is κ-closed.

Proof. Let τ < κ and suppose 〈pi : i < τ〉 is a descending sequence of conditions in
P. It is enough to argue that p :=

⋂
i<τ pi ∈ P. We will do so by induction on the

size of the intersection, so let as assume that
⋂
i<j pi ∈ P for all j < τ . Since ∅ ∈ pi

for all i < τ , it is enough to show that for any γ < κ, there is some t ∈ p with
dom t ⊇ γ, | succp(t)| = µ, and osuccp(t) ∈ I+. Using our inductive assumption,
we can find a sequence 〈ti : i < τ〉 such that ti ∈

⋂
j<i pj is a splitting node for all

i < τ . Then let t∗ =
⋃
i<τ ti. For all i < τ , t∗ is a union splitting nodes of pi, so it

is a splitting node of pi. Let Oi = osuccpi(t
∗). Then

⋂
i<λOi ∈ I+ by the closure

property of LIP(µ, λ), so we are done. (See [11].) �

Proposition 10. P “ cf(µ) = κ”.

Proof. By a density argument, the intersection of all conditions in a P-generic filter
is a κ-sequence consisting of ordinals in µ. Let ḟ be the name for the function
sending the ith point of the sequence to its corresponding ordinal. �

This is our main lemma. The crux is the sweeping argument in Claim 12.

Lemma 11. P is (cf(µ) = κ)-minimal.

Proof. Suppose that ḟ is a P-name forced by the empty condition to be a cofinal
function κ→ µ.

We define the main idea of the proof presently. Let ϕ(q, i) denote the formula

i < κ ∧ q ∈ P ∧ ∃〈aα : α ∈ osuccq(stem(q))〉 s.t.

∀α ∈ osuccq(stem(q)), q � (stem(q)_〈α〉)  ‘ḟ � i = aα’∧
∀α, β ∈ osuccq(stem(q)), α 6= β =⇒ aα 6= aβ .

Claim 12. ∀j < κ, p ∈ P,∃i ∈ (j, κ), q ≤ p s.t. stem(p) = stem(q) ∧ ϕ(q, i).

Proof. First we establish a slightly weaker claim: for all splitting nodes t ∈ p, there
is a sequence 〈(qα, iα, aα) : α ∈ osuccp(t)〉 such that:

(i) ∀α ∈ osuccp(t), ∀iα ∈ (j, κ), qα ≤ p � (t_〈α〉), and q � (t_〈α〉)  “ḟ � iα =
aα”,

(ii) α 6= β =⇒ aα 6= aβ .

We define this sequence by induction on α ∈ osuccp(t). Suppose we have
〈(qβ , iβ , aβ) : β ∈ α ∩ osuccp(t)〉 such that (i) and (ii) hold below α. Then we can

argue that there is a triple (r, i, a) such that r ≤ p � (t_〈α〉) and r  “ḟ � i = a”
and a /∈ {aβ : β ∈ α ∩ osuccp(t)}. If not, this means that

p � (t_〈α〉)  “
⋃
i<λ

ḟ � i ⊆ {aβ : β ∈ α ∩ osuccp(t)}”.

(Note that by λ-closure, P forces “ḟ � i ∈ V ” for all i < κ.) This is a contra-

diction because
⋃
β∈α∩osuccp(t) aβ has cardinality less than µ and ḟ is forced to be
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unbounded in µ. Since the triple that we want exists, we can let (qα, iα, aα) be
such a triple.

Now that we have established the slightly weaker claim, apply the µ-completeness
of I to find some S′ ⊆ osuccp(t) such that S′ ∈ I+ and there is some i such that
iα = i for all α ∈ S′. Then choose S ⊆ S′ such that S ∈ D using the density
property indicated by LIP(µ, λ) and let q =

⋃
α∈S qα. �

Now that we have our claim, we can use it to construct a fusion sequence 〈pξ :
ξ < λ〉 such that:

(i) ∀ξ < κ,∀ζ < ξ, t ∈ splitζ(pξ),∃k < κ, ϕ(pζ � t, k);
(ii) ∀ξ < κ, t ∈ splitξ(pξ),∀ζ < ξ, if kζ is such that ϕ(pζ �, kζ) holds, then kξ

can be chosen so that kξ > supζ<ξ kζ .

We define the sequence by cases: Let p0 be arbitary. If ξ < κ is a limit then
we let pξ =

⋂
ζ<ξ pj . Now suppose that ξ = ξ′ + 1. Then for all t ∈ splitξ′(pξ′),

apply Claim 12 to obtain some q ≤ pξ′ � t with stem q = t such that for some
kξ > supζ≤ξ′ kζ , ϕ(q, kξ) holds. Finally, having defined the fusion sequence, we let
p =

⋂
ξ<λ pξ.

Now we argue that p  “Γ(P) ∈ V [ḟ ]”. Let f = ḟ [G] for some G that is P-generic
over V . We will argue that G is definable from f . Specifically, we will define an
≤-increasing sequence 〈iξ : ξ < κ〉 ⊆ κ and a v-increasing sequence 〈tξ : ξ < κ〉 ⊂ p
of splitting nodes such that for all ξ < κ:

(a) tξ ∈ splitξ(pξ),
(b) there is some q ∈ G such that tξ ∈ q.

Then it will be the case that G = {q ∈ P :
⋃
ξ<λ tξ ⊆ q}, i.e. the tξ’s define the

generic branch.
Let us construct the sequence. We can let t0 = ∅. If ξ is a limit then we let

tξ =
⋃
ζ<ξ tζ , and we note that tξ is a splitting node of the correct order by the

definition of the poset. If ξ = ξ′+1 then we consider tξ′ , which by assumption is an
element of splitξ′ pξ′ such that ϕ(pξ′ � tξ′ , i) holds for some i. Choose t̃ ∈ succtξ′ pξ′

determining the correct values for ḟ [G] up to i. �

Proposition 13. P does not add surjections from κ to θ for any regular θ > µ.

Proof. Suppose that we have a P-name ḟ for a function such that (without loss of

generality) the empty condition forces ḟ : κ→ θ. We will define a fusion sequence
〈pi : i < κ〉 as follows: Let p0 be arbitrary. If i is a limit then let pi =

⋂
j<i pj . If

i = k + 1, then for all t ∈ splitk(pk) and α ∈ osuccpk(α), choose some qt,α ≤ pk �
(t_〈α〉) deciding ḟ(k). Then let pi =

⋃
{qt,α : t ∈ splitk(pk), α ∈ osuccpk(t)}.

If we let

B = {δ : ∃i < λ, t ∈ spliti(pi), α ∈ osuccpi(t), qt,α  “ḟ(i) = δ”},

then it follows that p  “ range(ḟ) ⊆ sup(B) < θ”. �

Now we are in a position to answer the question of Bukovský and Copláková-
Hartová that was mentioned in the introduction.

Theorem 14. Assuming consistency of a measurable cardinal, there is a model V
such that there is an |ℵV2 | = ℵ1-minimal extension W ⊃ V that is not an |ℵV3 | = ℵ1-
extension.
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Proof. Suppose that LIP(ℵ2,ℵ1) holds and is witnessed by the dense set D2 in V .

Then let W be an extension by Pℵ1TANF(D2). Then W is an |ℵV2 | = ℵ1-extension

by Proposition 10 and it is a minimal such extension by Lemma 11. If Pℵ1TANF(D2)
collapses ℵV3 , then it would collapse it to an ordinal of cardinality ℵV1 , but it follows
from Proposition 13 that this is not possible. �

2.3. Remaining Questions. As stated in the introduction, it would be clarifying
to know for sure whether there is an exact equiconsistency.

Question 1. Does the conclusion of Theorem 14 require consistency of a measur-
able cardinal?

There is also the question of the extent to which Theorem 14 can be stratified.

Question 2. Assuming LIP(λ, µ), is it consistent that ω < κ < λ < µ are regular
cardinals and PκTANF preserves cardinals ν ≤ λ?

This question appears to rely heavily on the determinacy of the generalizations of
Namba-style games to uncountable length κ (see e.g. [16, Chapter XI] [6] , [4, Fact
5]). One could pose this question in terms of (κ, ν)-distributivity, but even some
tricks that allow one to merely obtain cardinal preservation from similar posets (see
[13, Theorem 3]) seem to depend on these types of games (see [4, Fact 1]).
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