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Chapter 1

Transfinite Induction
Arguments for the Real and
Complex Numbers

April 17, 2024

1.1 The Basics of Linear Orders and

Transfinite Induction

1.1.1 Some Examples

Here we will establish some basic terminology.

Definition 1.1. A partial order is a relation≤ on a set X with the following
properties:

• ∀a ∈ X, a ≤ a (reflexivity),

• if a ≤ b and b ≤ a then a = b (antisymmetry),

• if a ≤ b and b ≤ c then a ≤ c (transitivity).

We refer to X is the underlying set of ≤.

Example 1.2. Examples of partial orders:

• Let X be the set of closed subsets of R under the usual Euclidean
topology. For A,B ∈ X, we let A ≤ B if and only if A ⊆ B. We
could just as easily let A ≤ B if and only if A ⊇ B.
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• Let X = {0, 1}<ω, the set of finite sequences of 0’s and 1’s. Let
s ≤ t if and only if t end-extends s, i.e. if dom s = {0, . . . , n} then
s = t � {0, . . . , n}.

Definition 1.3. A linear order or total order is a relation ≤ on a set X
that is a partial order and has the property that for all a, b ∈ X, either
a ≤ b or b ≤ a.

Example 1.4. Obvious examples: R, Q, Z, N under their natural orderings.

Example 1.5. Constructed examples:

• N + 1 ' ω + 1, i.e. let X be the underlying set where X = N ∪ {∞},
we let n <∞ for all n ∈ N and we let the ordering be as usual when
restricted to N.

• Let R be the underlying set and let ≤ be the usual ordering. Define
≺ as follows: If x ∈ Q and y ∈ R \ Q, let x ≺ y. If x, y ∈ Q or
x, y ∈ R \Q then let x ≺ y if and only if x ≤ y.

• Zω i.e. let the underlying set be X =
⋃
n∈N Z×{n}. Then if x, y ∈ X

and x, y ∈ Z × {n} for some n ∈ N, then let x ≺ y if and only if
x <Z y. If x ∈ Z× {m} and y ∈ Z× {n} for m 6= n, then let x ≺ y if
and only if m < n, otherwise let y ≺ x.

Definition 1.6. Two linear orderings L,K are isomorphic if there is a
bijection f : L→ K such that x <L y if and only if f(x) <K f(y).

Do we have Z ∼= Zω? What about Q ∼= Qω?
Remark: We will always be using the axiom of choice here!

Definition 1.7. A linear order L is dense if ∀x, y ∈ L,∃z ∈ L, x <L z <L y.
We say that x is an endpoint of L if either ∀y ∈ L, y ≤L x or ∀y ∈ L, x ≤L y.

Theorem 1.8. All countable dense linear orders without endpoints are iso-
morphic.

Proof. Let (A,≤) and (B,≤) be countable linear orders without endpoints.
Let A = 〈an : n ∈ N〉 and B = 〈bn : n ∈ N〉 be one-to-one enumerations. By
induction on n ∈ N, we will define one-to-one sequences 〈pn : n ∈ N〉 = A
and 〈qn : n ∈ N〉 = B such that the map f : qn 7→ pn is an isomorphism
between (A,≤) and (B,≤).
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Let p0 = a0 and q0 = b0. This takes care of the base case. Now suppose
that for some n ∈ N we have defined pm and qm for all m ≤ n. Then there
are two subcases to consider.

If n is even, let pn+1 be the element a` ∈ A\{p0, . . . , pn} with the smallest
index (i.e. the smallest value of `, chosen for specificity). We distinguish
three sub-subcases:

1. For all m ≤ n, pn+1 < pm.

2. For all m ≤ n, pn+1 > pm.

3. Not (1) or (2).

In case (1) choose qn+1 ∈ B such that qn+1 < qm for all m ≤ n. This is
possible since (B,≤) has no endpoints. Similarly, in case (2) we can choose
qn+1 ∈ B such that qn+1 > qm for all m ≤ n. In case (3) there are m0,m1 ≤
m such that pm0 is the ≤-maximal element of {pm : m ≤ n, pm < pn+1}
and pm1 is the ≤-minimal element of {pm : m ≤ n, pm > pn+1}. Choose
qn+1 ∈ B such that qm0 < qn+1 < qm1 . This is possible since (B,≤) is a
dense linear order.

If n is odd, we choose qn+1 to be the b` ∈ B \ {q0, . . . , qn} with the
smallest index. We choose pn+1 exactly as we chose qn+1 in the case of even
n, with the roles of A and B, a and b, and p and q reversed.

This finishes the definition of the sequences 〈pn : n ∈ N〉 and 〈qn : n ∈
N〉. We now that f : A → B is an isomorphism because we show at each
step that it is order-preserving, and we have assured that dom f = A and
ran f = B.

Where is the “without endpoints” hypothesis used? Where is “count-
able” used? Can we find a counterexample without “countable” in the
hypothesis?

1.1.2 Ordinal Numbers and Transfinite Induction

Definition 1.9. Let (L,≤) be a linear ordering. Then (L,≤) is a well-
ordering if every nonempty subset X ⊆ L has a ≤-least element.

Example 1.10. Examples and non-examples:

• Any finite linear ordering.
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• Not Q, not R.

• N, ω + 1.

In fact, all examples are essentially ordinals.

Definition 1.11. If L is well-ordered and x ∈ L, then {y ∈ L : y <L x} is
an initial segment of L.

Proposition 1.12. No well-ordered set can be isomorphic to an initial
segment of itself.

Proof. First observe that if (L,<) is well-ordered and f : L→ L is strictly
increasing (i.e. x < y implies f(x) < f(y)) then f(x) ≥ x for all x ∈ L.
If X = {x ∈ L : f(x) < x} is nonempty then it has a least element z. If
w = f(z), then f(w) = f(f(z)) < f(z) = w, which contradicts minimality
of z.

Now if (L,<) is isomorphic to an initial segment {x : x < u} via f , then
f(u) < u.

Proposition 1.13. If L1 and L2 are well-ordered, then exactly one of the
following three cases will hold:

1. L1
∼= L2,

2. L1 is isomorphic to an initial segment of L2,

3. L2 is isomorphic to an initial segment of L1.

Proof. Exercise using the previous proposition.

Definition 1.14. We say that α is an ordinal if it is a set such that:

1. It is transitive, meaning that if β ∈ γ ∈ α, then β ∈ α.

2. It is well-ordered by ∈, i.e. ∈ is a linear order and every subset of α
has a minimal element. (∈ and < are usually used interchangably in
the context of ordinals.)

A successor is an ordinal of the type α = β ∪ {β} := β + 1 and a limit
ordinal takes the form α =

⋃
β∈α β := supβ<α β.
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Example 1.15. Every natural number can be represented as an ordinal: 0 =
∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, etc. We write the set of
natural numbers as the limit ordinal ω = {∅, {∅}, {∅, {∅}}, {∅, {∅, {∅}}, . . .}.
ω + 1 := ω ∪ {ω} is an infinite successor.

Ordinals are a generalization of the natural numbers, and the most
important usage of ordinal numbers is in the definitions of transfinite in-
duction:

Fact 1.16. Suppose P is a property of ordinals α such that:

• P (0) holds,

• if P (β) holds for all β < α, then P (α) holds.

Then P holds for all ordinals α.

Fact 1.17 (Transfinite Recursion). Let x be a set G : V → V be a class
function. Then there exists a function F : On→ V such that:

• F (0) = 0,

• F (α + 1) = G(F (α)),

• F (β) = ∪{F (α)|α < β} for limit β.

Definition 1.18. A cardinal number is an ordinal that does not inject onto
a smaller ordinal, i.e. one that is larger than all ordinals preceding it. The
αth infinite cardinal is denoted either ωα or ℵα. We write ℵ0 = ω0 = ω.

The only infinite cardinals that we will refer to explicitly in this course
are ω, i.e. ℵ0, and ω1, i.e. ℵ1.

Proposition 1.19. Every vector space V has a basis.

April 24, 2024
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1.2 Simple Applications of Transfinite

Induction

Definition 1.20. The cofinality of a limit ordinal δ is the least ordinal γ
such that there exists an increasing and unbounded function f : γ → δ. We
denote this cf(δ) = γ. We call such a function cofinal in δ.

Proposition 1.21. For all ordinals δ, cf(δ) is a cardinal.

Theorem 1.22. For all α < ω1, there is a subset A ⊆ R such that (A,<R
) ∼= (α,∈).

Proof. Let f : R→ (0, 1)∩R be an order-preserving bijection. For example,
we can let f : x→ tan(πx− π/2).

By induction on α < ω1, we will construct a set Sα such that (Sα, <R
) = (α,∈).

If α = 0 then we can just let S0 = ∅ since (∅, <R) ∼= (∅,∈).
Suppose α = β + 1 and let Sβ ⊆ R be such that gβ : (Sβ, <R) ∼= (β,∈).

Then let Sβ+1 = f [Sβ] ∪ {1} := {f(x) : x ∈ Sβ} ∪ {1}. Then we can define
an order-isomorphism gα : Sα → α be letting gα = gβ ◦ f−1 on f [Sβ] and
gα(1) = β (the last element of α).

Now suppose α is a limit ordinal. We know that α is countable because
α < ω1. Therefore it has cofinality ω. Let 〈βn : n < ω〉 be cofinal in
α. Let Sn = g−1βn [βn \ βn−1]. Then let Sα =

⋃
n<ω(n + f [Sn]). Then

(Sα, <R) ∼= (α,∈).

Now we have a primordial example of a diagonalization argument.

Definition 1.23. We say that A ⊆ R is a Bernstein set if for all uncount-
able closed C, C ∩ A 6= ∅ but C 6⊆ A.

Obviously, an analogous theorem cannot hold for countable sets. Again,
we will always be using AC!

Fact 1.24 (Well-Ordering Theorem). The axiom of choice AC is equivalent
to the statement that every set can be well-ordered.

Theorem 1.25. Every well-ordered set is in bijection with an ordinal.

Theorem 1.26 (Cantor-Bendixson). If C ⊆ R is uncountable and closed,
then |C| = |R|.



1.3. SIERPINSKI’S THEOREM 9

Proof. Outlined in the homework.

Theorem 1.27 (Bernstein). A Bernstein set exists.

Proof. We will use transfinite recursion. First observe that there are 2ℵ0

There are 2ℵ0-many closed subsets of the real numbers R: To see this,
observe first that we can equivalently argue that there are 2ℵ0-many open
subsets of R. Let B be the set of open intervals of the form (q0, q1) where
q0, q1 ∈ Q, so we have B = 〈bn : n < ω〉. Then observe that of U ⊆ R, then
U =

⋃
{bn : bn ⊆ U}, so the set of open subsets of R are in bijection with

the set of countable sequences of elements of B.

Furthermore, we recall the Cantor-Bendixson Theorem that was just
mentioned about how all uncountable closed subsets of R have cardinality
equal to |R|.

Now let 〈Cα : α < 2ℵ0〉 be a well-ordering of the set of uncountable closed
subsets of R. Using transfinite recursion, we will define disjoint sequences
〈xα : α < 2ℵ0〉 and 〈yα : α < 2ℵ0〉 such that for all α < 2ℵ0 , xα, yα ∈ Cα.
Let x0, y0 ∈ C0 be arbitrary. Now suppose we have defined 〈xα : α < β〉
and 〈yα : α < β〉. Since β < 2ℵ0 , C ′β := Cβ \ (〈xα : α < β〉 ∪ 〈yα : α < β〉)
has cardinality 2ℵ0 , so we can choose xβ, yβ ∈ C ′β such that xβ 6= yβ. This
finishes the description of the recursion.

Then A := 〈aα : α < 2ℵ0〉 is a Bernstein set. By construction, for all
β < 2ℵ0 , we can aβ ∈ A ∩ Cβ and bβ ∈ (R \ A) ∩ Cβ.

1.3 Sierpinski’s Theorem

Theorem 1.28 (Dushnik-Miller). There exists a dense subset E ⊂ R such
that the only order-preserving map f : E → E is the identity.

Note that the statement is technically slightly stronger than it would be
if we only talked about order-isomorphisms!

Lemma 1.29. Let g : R→ R be order-preserving.

1. g has countably many discontinuities, i.e. there are countably many
z ∈ R such that it is not the case that glb{g(w) : w < z} = g(z) =
lub{g(w) : z < w}.
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2. g is determined by its values on a countable set H, i.e. if g′ is some
order-preserving functions R → R such that g′(z) = g(z) for all z ∈
H, then g′ = g.

3. There are 2ℵ0-many order-preserving functions R→ R.

Proof. 1. If D ⊆ R is a set of discontinuities, then there is an injection
F : D → Q: For z ∈ D, let F (z) be a rational number between glb{g(w) :
w < z} and lub{g(w) : z < w}. Therefore there are at most countably
many discontinuities.

2. Given g, let D be the (countable by 1.) set of discontinuities of g.
Then H = D ∪ Q. Suppose that g′ is order-preserving and agrees with g
on H. If z /∈ D, we want to argue that g′ is continuous at z. Otherwise,
because g′ and g are order-preserving, we would have

glb{g(w) : w < z} = glb{g′(w) : w < z} <
< lub{g′(w) : z < w} = lub{g(w) : z < w}

by density of Q, contradicting that z /∈ D. If z /∈ D, then g′(z) = g(z)
again using density of Q.

3. By 2. it is enough to “calculate” the value of |{f |f : Q → R}| to
find an upperbound. This is (2ℵ0)ℵ0 = 2ℵ0 . To get a lower bound consider
fr(x) = r · x where r is any real number.

Proposition 1.30. If g : R → R is order-preserving but not equal to the
identity, then there is an open interval (a, b) ⊆ R such that g(x) 6= x for all
x ∈ (a, b).

Proof. Otherwise we are saying that for all open intervals (a, b), there is
some x ∈ (a, b) such that g(x) = x. Hence the set D on which g(x) = x is
dense. Then we can use the order-preservingness of g and density of D to
argue that g is equal to the identity.

Proposition 1.31. Given an interval (a, b) ⊆ R, there is an order-preserving
function g : R → R such that g is the identity outside of (a, b) and such
that g(x) 6= x for all x ∈ (a, b).

Proof. Let g(x) = x outside of (a, b) and let

g(x) =
(x− a)2

(b− a)
+ a
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inside of (a, b). One can check that g is continuous, that the derivative of
g is positive inside of (a, b), and one can set the equation equal to x and
solve to show that g(x) 6= x for x ∈ (a, b).

May 8, 2024

Proposition 1.32. If E ⊆ R is dense in R and f : E → E is order-
preserving, then there is an order-preserving g : R → R extending f , i.e.
such that g � E = f .

Proof of Dushnik-Miller. Let 〈gα : α < 2ℵ0〉 enumerate the order-preserving
functions R→ R except for the identity map (we can do this by Lemma 1.29).
We will define E = 〈xα : α < 2ℵ0〉 by induction on α.

For the base case, let x0 be any point such that g0(x0) 6= x0.
Now for α ∈ (0, 2ℵ0), we will assume that inductive hypothesis that xβ 6=

xγ for all β < γ < α and that 〈xβ : β < α〉 is disjoint from 〈gβ(xβ) : β < α〉.
Suppose now that we have defined 〈xβ : β < α〉 for α < 2ℵ0 and that

the inductive hypothesis holds. Since gβ is not the identity map, Proposi-
tion 1.30 tells as that there are 2ℵ0-many real numbers x such that g(x) 6= x.
We can call this set Z. Then there are 2ℵ0 many real numbers x ∈ Z not
equal to any xβ for β < α, so we call this Z ′. Then there are 2ℵ0 many
x ∈ Z ′ such that gβ(x) 6= gβ(xβ) for some β < α, otherwise we violate
order-preservingness. So we call Z ′′ the set with this property. Now we can
just choose xα ∈ Z ′′.

Now we argue that E := 〈xα : α < 2ℵ0〉 satisfies the statement of
the theorem. By construction we know that there is no order-preserving
g : E → E other than the identity, because if g = gβ : E → E were order-
preserving, then gβ(xβ) /∈ E. It is dense because if (a, b) is an interval, we
can make up an order-preserving function g(a,b) that is the identity outside
of (a, b) (by Proposition 1.31), therefore if g(a,b) = gβ, then we guaranteed
that xβ ∈ (a, b) in the construction.

Theorem 1.33 (Sierpinski). There is a sequence 〈Lα : α < 2ℵ0〉 of linear
orders that are mutually non-isomorphic.

Proof. Outlined in homework, similar to Dushnik-Miller.

Remark 1.34. We can see that Cantor’s Isomorphisms Theorem—the one
stating that all countable dense linear orders without endpoints are isomorphic—
does not generalize directly, because under CH it is flase.
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1.4 Notions of Ramseyness

Definition 1.35. Let [X]k denote the set of k-sized subsets of a set X. We
say that f : [N]k → m is a coloring and that a set X ⊆ N is homogeneous
(with respect to f) if there is some i < m such that f({x0, . . . , xk−1}) = i
for all {x0, . . . , xk−1} ∈ [X]k.

Theorem 1.36 (Ramsey). If f : [N]k → m is a coloring, then there is a
set X ⊆ N that is homogeneous for f .

Example 1.37. Every sequence 〈rn : n ∈ N〉 of real numbers has a monotonic
subsequence. If {m,n} ∈ [N]2, let f({m,n}) be 0 if rm < rn, 1 if rm = rn,
and 2 if rm > rn. If X ⊆ N is homogeneous for f , then 〈rn : n ∈ N〉 is
monotonic.

Example 1.38. Every infinite undirected graph G has either an infinite com-
plete subgraph or an infinite disconnected subgraph: Let 〈vn : n ∈ N〉 enu-
merate the vertex set of G. For each edge {vm, vn} ∈ G with m 6= n, let
f({m,n}) = 0 if there is an edge between vm and vn and 1 otherwise. Let
X ⊆ N be homogeneous for f . If f({m,n}) = 0 for all {m,n} ∈ [N]2, then
X ⊆ G is a complete subgraph and otherwise X is totally disconnected.

Proof of Ramsey’s Theorem. We will prove the theorem by induction on k
for f : [X]k → m and X any countable set. If k = 1, then the statement
follows from the Pigeonhole Principle: If f : X → m, then there is some
i < m and some infinite Y ⊆ X such that f(n) = i for all n ∈ Y .

Now suppose that the theorem is true for k and we want to prove that
it is true for k + 1.

Start with f : [N]k → m. To find a homogenous set for f , we will define
an increasing sequence

0 = a0 < a1 < a2 < . . .

in N and a ⊆-descending sequence of infinite subsets

N ⊇ X0 ⊇ X1 ⊇ X2 ⊇ . . .

using the notation: For a ∈ N, define fa : [N \ {a}]k−1 → m by

fa({x0, . . . , xk−2) = f({x0, . . . , xk−2} ∪ {a}).
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Now, given an and Xn, let Xn+1 ⊆ Xn \ {a0, . . . , an} be homogeneous for
fan and let an+1 = minXn+1.

Let cn be the homogeneous value of fan on [Xn+1]
k−1. By the Pigeonhole

Principle, there is some c < m such that {n ∈ N : cn = c} is infinite. Then
let X = {an : cn = c}. We will argue that X is homogeneous for f .

Suppose that {x0, . . . , xk−1} ∈ [X]k and that x0 < x1 < . . . < xk−1. Let
n be such that x0 = an. Then x1, . . . , xk−1 ∈ Xn by construction. Therefore

f({x0, . . . , xk−1}) = fan({x1, . . . , xk−1}) = cn = c

and so we are done.

Example 1.39. There is a function F : [2ℵ0 ]2 → ℵ0 that does not even have
a homogeneous set of size 3.

Theorem 1.40 (Erdős-Hajnal). There is a function f : R2 → ω such that
if f(x) = f(y) then ‖x−y‖ /∈ Q, i.e. such that no two points with the same
“color” are at a rational distance.

Proof. For this proof, we will call a function (or “coloring”) g on a subset of
R2 “good” if they satisfy the statement of the theorem, i.e. no two points in
X2 with the same color are at a rational distance. The plan is to inductively
construct f by defining it on large and larger subsets of R2. (For this proof
let x’s and y’s denote elements of R2 and let ‖x‖ = |(x1, x2)| denote the
norm

√
x21 + x22.)

Say that X ⊆ R2 is closed enough if x, y ∈ X, x 6= y, and ‖x− z‖, ‖y −
z‖ ∈ Q, then z ∈ X.

Claim. If X ⊆ R2 is infinite and W ⊇ X is closed enough, then there is a
closed enough X ′ ⊇ X such that X ′ ⊆ W and |X| = |X ′|.

Proof of Claim. Given x, y ∈ R2 such that x 6= y, let

F (x, y) =
⋃

q,q′∈Q

({z : ‖x− z‖ = q} ∩ {z : ‖y − z‖ = q′}).

For each x, y, F (x, y) is a countable union of intersections of distinct circles,
therefore F (x, y) is countable.

Define a sequence of sets 〈Xn : n ∈ N〉 as follows: Let X0 = X. Given
Xn, let Xn+1 = Xn ∪

⋃
{F (x, y) : x, y ∈ X, x 6= y} ⊆ W . Then X ′ :=⋃

n∈NXn is closed enough.
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Claim. If X is closed enough and of infinite uncountable cardinality θ, then
X =

⋃
α<θXα where:

1. X0 is countable,

2. each Xα is closed enough,

3. each Xα has cardinality |α| if α is infinite, hence |Xα| < θ,

4. |Xα+1| = |Xα| for all α < θ,

5. and α < β implies Xα ⊂ Xβ.

Proof of Claim. Argue by transfinite recursion. Let 〈rα : α < θ〉 = X. Let
X∗ ⊂ X be any countable set that has r0 as an element, then the claim
gives as a closed enough countable set X0 ⊆ X∗. If α = β+1, use the claim
to find Xα ⊃ Xβ closed enough with |Xα| = |Xβ| where the containment is
strict and rβ ∈ Xα. If α is a limit then let Xα =

⋃
β<αXβ. By construction

we have guaranteed that every r ∈ X is in Xα for some α.

We will argue by induction on |X| that a closed enough subset of X has
a good coloring. Since R is closed enough, the above claim shows that this
is sufficient.

LetX be closed enough and writeX =
⋃
α<θXα as above. We will define

a good coloring cα on Xα by induction in a way such that cα � Xβ = cβ for
β < α.

For the case X0, observe that we can define a good coloring c0 easily
using the fact that |X0| = ω, so the set of pairs of points in X0 is also
countable.

Suppose cβ is defined for β < α and α is a limit. Then let cα =
⋃
β<α cβ.

Now let β = α + 1 and suppose cα is defined. Since |Xα+1| = |Xα| < θ,
there is a good coloring d on Xα+1 and we can assume that d maps into
the evens, i.e. {2n : n ∈ ω}. Define cβ = cα+1 as follows: If z ∈ Xα,
let cα+1(z) = cα(z). If z ∈ Xα+1 \ Xα, observe that “closed enoughness”
of Xα implies that there is at most one y ∈ Xα such that ‖z − y‖ ∈ Q.
If z ∈ Xα+1 \ Xα and there is no y ∈ Xα such that ‖z − y‖ ∈ Q, then
let cα+1(z) = d(z). If z ∈ Xα+1 \ Xα and there is one y ∈ Xα then let
cα+1(z) ∈ {d(z), d(z) + 1} \ {cα(y)}.
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Then we can argue that cα+1 is good. Suppose ‖x − y‖ ∈ Q and for
distinct x, y ∈ Xα+1. If y, z ∈ Xα, then cα+1(y) = cα(y) 6= cα(z) = cα+1(z)
using goodness of cα. If y, z ∈ Xα+1 \ Xα, then cα+1(y) = d(y) 6= d(z) =
cα+1(z) using goodness of d. If (WLOG) y ∈ Xα and z ∈ Xα+1 \Xα, then
cα+1(z) 6= cα(y) = cα+1(y).

1.5 Wetzel’s Problem

Question 1.41 (Wetzel). Let {fα : α < θ} be a family of pairwise distinct
analytic functions on the complex numbers such that for each z ∈ C the set
of values {fα(z)} is at most countable. (Call this statement P .) Does it
follow that {fα : α < θ} is at most countable?

Theorem 1.42 (Erdős). If CH fails, then every family satisfying P is count-
able. If CH holds, there is an uncountable family satisfying P .

Fact 1.43. Let 〈Ck : k ∈ N〉 be a sequence of disks in the complex plane
of respective radius k. If f, g are analytic functions that agree on infinitely
many points in some Ck, then f = g.

Proof/Sketch/Review. Recall the Identity Theorem, stating that any two
analytic functions f, g agree on S ⊆ D where S has an accumulation point
in D, then f = g on D. Then if D is compact and V ⊂ D is infinite, then
D will contain an accumulation point. Up to scaling we can apply this to
the Ck’s.

Proof. First assume that CH fails, i.e. 2ℵ0 > ℵ1. We will prove the statement
contrapositively. Let 〈fα : α < ω1〉 be an uncountable sequence of distinct
analytic functions.

For α < β < ω1 let

S(α, β) = {z ∈ C : fα(z) = fβ(z)}.

Then ∀α < β < ω1, S(α, β) is countable: By Fact 1.43, we know that for
α < β, fα and fβ can only agree on finitely many points from each Ck, so
only countably many overall.

It follows that S :=
⋃
α<β<ω1

S(α, β) has cardinality ω1. Let z0 be an

element of C \ S, which exists because ω1 = |S| < |C| = 2ℵ0 . By definition,
for all α < β < ω1, fα(z) 6= fα(z).
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REAL AND COMPLEX NUMBERS

For the other direction we also want:

Fact 1.44. Let
∑∞

n=0 an(z − c)n and let r be equal to lim infn<ω |an|−1/n,
i.e. the radius of convergence. If ‖x− c‖ < r then the series converges.

Now assume that CH holds. Let D = {p + iq : p, q ∈ Q} and observe
that D is countable and dense in C. Let 〈zα : α < ω1〉 enumerate CH (using
that CH holds).

We will construct a family 〈fβ : β < ω1〉 of distinct analytic functions
such that fβ(zα) ∈ D if α < β. We can argue that this family satisfies P : If
we consider {fα(z) : z ∈ C}, we have it being equal to the union {fα(zβ) :
β > α}, which is countable since it is contained in D, and {fα(zβ) : β ≤ α},
which is just countable anyway. Hence, if we succeed in constructing such
a family then we are done.

We argue by transfinite induction. Let f0 be arbitrary. Then suppose
that fβ has been defined for β < γ. Re-enumerate {fβ : β < γ} as {gn :
n ∈ N} and {zα : α < γ} as {wn : n ∈ N}. We will construct fγ such that
for all n ∈ N, (A) fγ(wn) ∈ D and (B) fγ(wn) 6= gn(wn). Condition (A)
is just what we said we would do in the previous paragraph, and condition
(B) makes sure that fγ is different from the previous fβ’s.

Assume that γ is infinite for now. We will choose {εn : n ∈ N} such that

fγ(z) =
∞∑
n=0

εn(z − w1) · · · (z − wn).

Observe that the values of εm for m ≥ n do not affect the value of fγ(wn).
We define εn by induction to ensure that fγ(wn) ∈ D. Moreover, since D
is dense, we can define the εn’s to converge quickly enough so that fγ(z)
converges and is an analytic function by Fact 1.44.

The case where γ is finite, and we just construct a polynomial. Now the
proof is complete.



Chapter 2

Elementary Submodels and
Topology

2.1 Setting Up
May 29, 2024

2.1.1 Some Motivation

Set-Theoretic Topology: The study of abstract topological
spaces with a focus on notions like weakened separation axioms,
metrizability, and variations of compactness, questions about
which are often independent of ZFC.

Here we will start with some material that is amenable to ZFC proof,
albeit with more technical involvement than was dealt with in the previous
chapter.

Definition 2.1. Let (X, τ) be a topological space.

• (X, τ) is first-countable if every element z ∈ X has a countable neigh-
borhood basis, i.e. a sequence of open sets 〈Un : n ∈ N〉 such that if
V is any open set containing z, then z ∈ Un ⊆ V for some n ∈ N.

• (X, τ) is second-countable if X as a whole has a countable basis.

• (X, τ) is separable if it has a countable dense set.

Example 2.2. R is separable. Second-countable spaces are first-countable.
The Sorgenfrey line is first-countable but not second-countable: Given a

17
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basis B we can choose some Ux ∈ B with inf Ux = x for all x ∈ R, and then
all of these must be distinct.

Proposition 2.3. A separable Hausdorff space has cardinality ≤ 22ℵ0 .

Proof. Let X be a separable Hausdorff space and let Q be a countable dense
subset of X. Define a function f : X → P (P (Q)) by setting f(z) := {B ⊆
Q : z ∈ B̄}.

We see that f is injective: Since X is Hausdorff, if y 6= z are elements
of X, take open sets U and V separating them, meaning U ∩ V = ∅ and
y ∈ U and z ∈ V . Then (Q \ V ) ∈ f(y) \ f(z) and (Q \ U) ∈ f(z) \ f(y).

And we have |P (P (Q))| = 22ℵ0 .

Example 2.4. Consider the space of ultrafilters U on N with the topology
generated by sets of the form BX = {U ∈ U : X ∈ U} for each X ⊆ N.
This space is compact and has cardinality 22ℵ0 . (But this takes work to
prove.)

Theorem 2.5 (Arhangel’skii’s Theorem). Every compact, first-countable
Hausdorff topological space has cardinality at most 2ℵ0.

2.1.2 Reviewing Some Basic Model Theory

We will start by defining models of the form H(κ) for a (regular) cardinal
κ.

Recall some definitions from model theory, which we will summarize in
very loose terms for the sake of haste:

1. A language is a set of symbols including constant, function, and rela-
tion symbols. In set theory we will only use the language L = {=,∈}
(typically the notation for equality is suppressed).

2. Symbols from the language are built up into terms, which are build
up with variables to create formulas using ¬,∧,∨ and adding quan-
tifiers ∃,∀. Variables are free if they are not included in the scope of
quantifiers. A formula with no free variables is called a sentence and
sentences have truth values.

3. Given a language L, an L-structure is a set in which we can interpret
truth values of sentences.
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4. A theory is a set of sentences. It is satisfiable if it has a model M .

5. To structures are elementary equivalent, denoted M ≡ N , if they
satisfy the same sentences. If M ⊆ N , then we say M is an elementary
submodel of N , denoted M ≺ N , if for all ā ∈ M and formulas ϕ,
M |= ϕ(ā) if and only if N |= ϕ(ā).

6. We say that a ∈ M is definable with a parameter b̄ if there is a
formula ϕ(v, b̄) such that M |= ϕ(a, b̄) and a is the only element with
this property.

Theorem 2.6 (Tarski-Vaught Test). Let M ⊆ N be L-structures. Suppose
it is the case that if ā ∈M and there is b ∈ N such that N |= ϕ(b, ā), then
there is c ∈M such that M |= ϕ(c, ā). Then it follows that M ≺ N .

Theorem 2.7 (Downward Löwenheim-Skolem). Let K be a structure and
let A ⊂ K. Then there is M ≺ K such that A ⊂M and |M | = |A|+ ℵ0.

Sketch. We will give the idea for countable A. The idea is to use the
Tarski-Vaught test to close everything off. Define a sequence 〈Xn : n ∈ N〉
as folows: Let A = X0. Then given Xn let Xn+1 include witnesses for all
formulas ∃vϕ(v, ā) where ā is taken from Xn.

2.1.3 Elementary Submodels for the Present
Context

Definition 2.8.

• A set x is transitive if a ∈ b ∈ x implies a ∈ x.

• Let x be a set. The transitive closure of x, denoted tc(x), is the
smallest transitive set containing x.

• Let θ be a cardinal. Then H(θ) denotes the set of sets x such that
| tc(x)| < θ.

Example 2.9.

• {ℵ2,ℵ3} /∈ H(ℵ1).

• We have ω ⊂ H(ω) but ω /∈ H(ω).
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• Interpret the set of rationals Q as pairs of natural numbers modded
out be an equivalence relation. Then Q ∈ H(ℵ1).

Proposition 2.10. Let θ be an infinite cardinal. Then the following are
true:

1. H(θ) is transitive, meaning that if b ∈ a ∈ H(θ) then b ∈ H(θ),

2. H(θ) is a set,

3. H(θ) ∩ON = θ.

Proof. Exercise.

Proposition 2.11. Suppose θ is a regular uncountable cardinal. Then H(θ)
satisfies the ZFC axioms besides powerset. More precisely:

1. Empty-set: There is a set X containing no elements.

2. Extensionality: If X and Y have the same elements then X = Y .

3. Pairing: For any a and b there exists a set {a, b}.

4. Schema of Separation: If P is a property with parameters ā, then for
any set X there exists a set Y := {u ∈ X : P (u, ā)}.

5. Union: For any set X there is Y =
⋃
X.

6. Infinity: There exists an infinite set.

7. Schema of Replacement: If a class F is a function, then for any set
X there exists a set Y = F (X) = {F (x) : x ∈ X}.

8. Regularity: Every nonempty set has an ∈-minimal element.

9. Axiom of Choice: Any set of sets has a choice function.

Proof. 1. | tc(x)| = 0 < θ.
2. We need to say that if x 6= y and x, y ∈ H(θ), then there is some

z ∈ x∆y such that z ∈ H(θ). Since there is definitely some z ∈ x∆y,
WLOG in x, we know | tc(z)| ≤ | tc(x)| < θ.

3. tc({a, b}) = {a, b} ∪ tc(a) ∪ tc(b).
4. If x ⊆ y then tc(x) ⊆ tc(y).
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5. tc(
⋃
x) =

⋃
y∈x tc(y).

6. ω is transitive.
7. Exercise.
8. If y ∈ x then tc(y) ⊆ tc(x).
9. Similar to previous items.

We still get a fragment of the powerset axiom for H(θ)’s though. June 5, 2024

Proposition 2.12. If x ∈ H(θ) and 2|x| < θ then for all y ⊆ x, y ∈ H(θ).

Proof. Exercise.

Proposition 2.13. Suppose θ is regular and X ∈ H(θ). Then |X| ∈ H(θ)
and there is an enumeration f : |X| → X such that f ∈ H(θ).

Proof. Since X ⊆ tc(X), | tc(X)| < θ implies that |X| < θ. Also, |X|
is transitive. If f : |X| → X is a function, then it can be argued that
| tc(f)| ≤ | tc(X)|.

Proposition 2.14. Let θ > ω be a regular cardinal and let M ≺ H(θ) be
countable with X ∈M . Then the following are true:

1. M \X 6= ∅,

2. If X is countable then X ⊂M ,

3. If X \M 6= ∅ then X is uncountable,

4. If X ⊆ ω1 is uncountable then X∩M is a cofinal subset of sup(M∩ω1),
i.e. for all β < sup(M ∩ ω1), there is some γ ∈ (β, sup(M ∩ ω1)) ∩
(X ∩M).

Proof. 1. (This more a point where one should pay attention rather than
a directly useful fact.) If M ≺ H(θ), then X ∈ M implies that X ∈ H(θ).
Since X /∈ X, H(θ) |= ∃y, y 6= X. By elementarity, there is some y ∈M \X.

2. First we can argue that X can be expressed as the image of a function.
By Proposition 2.13 there is some f ∈ H(θ) such that f : ω → X is an
enumeration. In other words, H(θ) |= “there is an enumeration of X”. By
elementarity, M |= “there is an enumeration of X”. Let g ∈ M witness
this, so M |= “g is an enumeration of X”, so H(θ) |= “g is an enumeration
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of X”. Since X ∈ H(θ), it is true that g is an enumeration of X and hence
that X = g[ω].

Observe that ω ⊂M : We have ∅ ∈M by definability of ∅ and if n ∈M ,
then n+ 1 := n∪ {n} is definable and therefore n+ 1 ∈M . Since M |= “f
is a function”, we have f(n) ∈M for all n ∈ ω, hence X ⊂M .

3. This is just the contrapositive of the previous point.
4. Since X is uncountable it is cofinal. Since X ∈ H(θ), H(θ) |= “X is

cofinal in ω1”. Suppose that γ < sup(M ∩ω1) and let β ∈ (γ, sup(M ∩ω1)).
Then M |= “there is an ordinal above β in X”, and this is sufficient.

Proposition 2.15. Let θ > ω be a regular cardinal and let M ≺ H(θ) be
countable. Then M ∩ ω1 is a countable ordinal.

Proof. Let α = sup(M ∩ω1). Then since M is countable, α < ω1. We argue
that α = M ∩ ω1: Suppose β < α. Then there is some γ ∈ (β, α) such that
γ ∈ M . Then γ is itself a countable set, so γ ⊂ M , hence β ∈ M since
β ∈ γ.

2.2 Applying the Technique

2.2.1 An Easy Start: the Sunflower Lemma

Definition 2.16. A family F is called a ∆-system if there is some d such
that for all a, b ∈ F , a ∩ b = d.

Theorem 2.17 (A case of the ∆-system lemma). Let F be an ℵ1-sized
family of finite sets. Then there is an ℵ1-sized subfamily F ′ ⊆ F such that
F ′ is a ∆-system.

Proof. By isomorphism we can assume without loss of generality that F ⊆
[ℵ1]<ω, i.e. F consists of finite sets of countable ordinals. We know F ∈
H(ℵ2), so we can find a countable M ≺ H(ℵ2) such that F ∈M by DLS.

Now we identify some key objects. There is some b ∈ F \M and we
let r = b ∩M . Since r is a finite sequence, M ≺ H(θ), and H(θ) satisfies
enough of ZFC, we have that r ∈M . Let β∗ be such that r ⊂ β∗.

Let δ = M ∩ ℵ1 (use Proposition 2.14).
Then for all α < δ, there is exists bα ∈M ∩ F such that (1) bα ∩ α = r

and (2) bα \α 6= ∅. This is the case because b always witnesses this for H(θ)
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and we have M ≺ H(θ). More precisely, if α ∈ (β∗, δ), then

H(θ) |= “∃bα, bα ∩ α = r ∧ bα \ α 6= ∅”

and so
H(θ) |= “∃bα, bα ∩ α = r ∧ bα \ α 6= ∅”.

The reason we have this is because x ∈ b∩α ⊆M∩b = r, and x ∈ r ⊂ b∩δ,
but anything in b ∩ δ is already in b ∩ α. Therefore

M |= ∀α ∈ (β∗, δ),∃bα, bα ∩ α = r ∧ bα \ α 6= ∅”.

So we have that

M |= “∃〈cα : β∗ ≤ α < ω1〉, s.t. ∀α < ω1, cα ∩ α = r, cα \ α 6= ∅”,

so inside of M we can construct a sequence 〈cα : α < ω1〉 (we are dropping
β∗ in what is sometimes called “abuse of notation”) such that (1) and (2)
hold for each cα. Moreover, we can construct a subsequence 〈αξ : ξ < ω1〉
such that if ξ < ξ′ then cαξ ⊂ αξ′ . Then if ξ < ζ < δ we have

cαξ ∩ cαζ = cαξ ∩ cαζ ∩ αζ = cαξ ∩ αζ ∩ r = r.

The first equality comes from the fact that cαξ ⊆ αζ . The second equality
comes from cαζ ∩ αζ = r. The third equality comes from r = cαξ ∩ αξ ⊆
cαξ ∩ αζ . Hence we are done by elementarity. Note: In the lecture

I did not have the
extra use of αζ in
the third term, but
I thought this way
was clearer.

2.2.2 Our Main Goal for the Unit: Arhangel’skii’s
Theorem

June 12, 2024
Here are some conceptual points that we should not forget about. A set is
anything that can be proved to be a set by ZFC. A class is an object of the
form {x : ϕ(x)}. (Think of statements about classes as statements about
formulas.) A proper class is a class that is not a set.

Proposition 2.18. If C is a class, then there is an ∈-minimal member of
C.

Proof. We can denote C to be the class of x such that ϕ(x) holds (for some
ϕ). Let S ∈ C, so S is in particular a set. Then S ∩ C is a set by the
separation schema. If S ∩ C = ∅ then we are done. If S ∩ C 6= ∅ then we
let X = T ∩ C where T = tc(S). If z ∈ X is ∈-minimal element (of which
there must be an instance) then z is an ∈-minimal element of C.
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Definition 2.19. The Von Neumann hierarchy is defined by induction on
α ∈ ON as follows:

• V0 = ∅,

• Vα+1 = P (Vα) (where the powerset is denoted),

• if α is a limit then Vα =
⋃
β<α Vβ.

Proposition 2.20. For all sets x there is some α such that x ∈ Vα.

Proof. Let C be the hypothetical class of x such that there is no α ∈ ON
such that x ∈ Vα. Then let x be an ∈-minimal element of C. Then for all
z ∈ x there is αz such that z ∈ Vαz , so there is some β = supz∈x αz, and we
see that x ∈ Vβ+1, a contradiction.

Proposition 2.21. If θ is regular and uncountable then H(θ) ⊆ Vθ, and
there is some α such that H(θ) ∈ Vα.

Proof. From the axiom schema of separation and the previous proposition.

We check some notions of elementary submodels next.

Proposition 2.22. Suppose N is an L-structure and 〈Mi : i < κ〉 is a
sequence such that:

1. Mi ≺ N for all i < κ,

2. for all i < j < κ, Mi ≺Mj.

Then if M =
⋃
i<κMi, we have M ≺ N .

Proof. Apply the Tarski-Vaught test: Suppose ā ∈ M and N |= ∃vϕ(v, ā).
Then there is some i such that ā ∈ Mi. Since Mi ≺ N , there is some
b ∈ Mi such that Mi |= ϕ(b, ā). We can argue by induction on formula
construction.

Proposition 2.23. Given a regular uncountable θ and countable a ∈ H(θ),
there is some 2ℵ0-sized M ≺ H(θ) such that a ⊂M and M is closed under
countable sequences.
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Proof. Define an elementary chain 〈Mi : i < ω1〉 of submodels of H(θ) with
the inductive hypothesis that |Mj| ≤ 2ℵ0 for all j < i.

We do this as follows: Let M0 be obtained by applying the Downward
Löwenheim-Skolem Theorem to a, so that we have |M0| = ℵ0. If i < ω1

is a limit, then let Mi :=
⋃
j<iMi. Then by Proposition 2.22, Mi ≺ H(θ).

If i = j + 1 is a successor, then let A = [Mj]
ω, i.e. the set of countable

sequences of elements of Mj. Note that |A| ≤ (2ℵ0)ℵ0 = 2ℵ0 . Then apply
Downward Löwenheim-Skolem to obtain Mi such that Mi ⊇ A. Then
|Mi| = |A|+ ℵ0 ≤ 2ℵ0 by the statement of the theorem.

By Proposition 2.22, M :=
⋃
i<ω1

Mi is an elementary submodel of H(θ).
We just need to show that it is closed under countable sequences. Suppose
that x ⊂ M is countable. Let x = 〈yn : n < ω〉. Then for all n < ω, there
is some in < ω1 such that yn ∈Min . Let i∗ = supn<ω(in + 1). Then i∗ < ω1.
Then for all n, yn ∈Mi∗ ⊆M , i.e. x ⊂M .

Proposition 2.24. Let (X, τ) be a first-countable topological space. If A ⊆
X and z ∈ Ā (i.e. z is in the closure of A) then there is a sequence (zn)n∈N
that converges to z. Moreover, if (X, τ) is Huasdorff then z is the unique
element with this property.

Proof. We mean that for all open U 3 z, there is some m such that n ≥ m
implies that zn ∈ U . Let 〈Un : n ∈ N〉 be a neighborhood basis. Let
zn ∈ A ∩

⋂
k≤n Un, which is still open. Then let U be an arbitary open set.

If Um is such that z ∈ Um ⊆ U then we have guaranteed that zn ∈ Um for
n ≥ m.

Now assume (X, τ) is also Hausdorff. If zA 6= zB and these are separated
by UA and UB and m is such that zn ∈ UA for all n ≥ m, then clearly m
witnesses that (zn)n∈N cannot converge to zB.

Finally, recall:

Proposition 2.25. If (X, τ) is compact then any closed subset of X is
compact.

Proof. Let C ⊆ X be closed. Any open supcover (Ui)i∈I of C can be
extended to an open cover (Ui)i∈I ∪ (X \C) of the whole space, and a finite
subcover of this yields a finite subcover of C.

Recall our version of Arhangel’skii’s Theorem: If (X, τ) is first-countable,
compact, and Hausdorff, then |X| ≤ 2ℵ0 .
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Remark 2.26. In fact, Arhangel’skii proved something more general.

Proof of Arhangel’skii’s Theorem. Let θ be large enough that (X, τ) ∈ H(θ)
and let M ≺ H(θ) be a 2ℵ0-sized elementary submodel with (X, τ) ∈M .

Observe that if A ⊂ X and A ∈M , then Ā ∈M (where Ā is the closure
of A with respect to τ) since this is definable with the parameters τ and A.

We claim that X ∩M is closed and therefore compact: Suppose that
z ∈ X ∩M . Then by Proposition 2.24 there is a sequence ~w := (wn)n∈N ⊂
X ∩M converging to z. Since M is closed under countable sequences, we
have ~w ∈ M . Then M |= “~w has a limit”, and moreover we have that this
is uniquely defined, hence z ∈M .

To finish the proof, we claim that X ∩M = X. For each z ∈ X ∩M
we have a neighborhood base Bz such that Bz ∈ M . (By elementarity, M
knows that such a base exists, so there must be one in M .) Since Bz is
countable, we have Bz ⊆ M . (This is technically distinct from Proposi-
tion 2.14 but follows by essentially the same proof, in particular because we
did not need the model to be only countable for that proof.)

Now suppose there is some y ∈ X \M . Then for each z ∈ M there
is Uz ∈ Bz and hence Uz ∈ M such that y /∈ Uz (since we choose any
Uz ⊂ X \ {y}). Then we have that {Uz : z ∈ X ∩M} is a cover of the
compact space X ∩M , hence it has a finite cover u = {Uz0 , . . . , Uzk}. Since
this is finite subset of M we have u ∈M . This means that

M |= “∀z ∈ X, ∃i, z ∈ Uzi”.

But H(θ) does not satisfy this formula because of y, which contradicts
elementarity.

2.2.3 A Compactness Theorem
June 19, 2024

Proposition 2.27. The space ω1 with the order topology is an example
of a topological space X such that X is not second countable but smaller
subspaces are.

For a discussion of possible wrong proofs, see https://math.stackexchange.
com/questions/1878367/how-to-show-that-omega-1-is-not-secound-countable.

Proof. First we show that (ω1, τ) is not second countable. Suppose for
contradiction that there is a countable base B. We must use the fact that

https://math.stackexchange.com/questions/1878367/how-to-show-that-omega-1-is-not-secound-countable
https://math.stackexchange.com/questions/1878367/how-to-show-that-omega-1-is-not-secound-countable
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B consists without loss of generality of countable sets—otherwise the most
obvious proof will be problematic. However, this is an involved proof. Once
we do that we can find some α ∈ ω1 outside of all sets in B, thus obtaining
a contradiction.

Next we show that all countable subspaces of (ω1, τ) are second count-
able. Suppose that Y ⊂ ω1 is countable. Then there is some α < ω1 such
that Y ⊆ α. Then the set {(β, γ)∩ Y : β < γ < ω1} is a countable base for
the subspace topology on Y .

Remark 2.28. There absolutely are countable topological spaces that are
not second countable.

In contrast, we have a sort of compactness theorem:

Theorem 2.29 (Hajnal-Juhász). If (X, τ) is a topological space such that
every subspace Y ⊆ X with |Y | ≤ ℵ1 is second countable, then X is second
countable.

First we need:

Definition 2.30. A set M has the ω-covering property if for each countable
A ⊆M , there is a countable B ∈M such that A ⊆ B.

(This is not an entirely standard usage of this definition.)

Proposition 2.31. Let θ be regular and uncountable. Then for all countable
Z ∈ H(θ), there is an ℵ1-sized M ≺ H(θ) with the ω-covering property such
that Z ⊂M .

Proof. Build a sequence 〈Mi : i < ω1〉 of countable elementary submodels
of H(θ) by induction on i < ω1 as follows:

1. Z ⊆M0,

2. if i is a limit then Mi =
⋃
j<iMj,

3. for all i < ω1, Mi ∈Mi+1.

As in arguments that we have seen, we can use Downwards Löwenheim
Skolem to define such a sequence. Then letM =

⋃
i<ω1

Mi. ThenM ≺ H(θ)
by Proposition 2.22.
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M has the ω-covering property as in other arguments we have seen:
Suppose A ⊆ M . If A = 〈an : n ∈ N〉, there is for all n ∈ N some in such
that an ∈ Mi. Let i∗ = supn∈N in, so A ⊆ Mi. Then Mi ∈ Mi+1 ⊂ M , so
the B from the definition is Mi.

Proof Theorem 2.29. Let (X, τ) be a topological space and assume that
every subspace Y ⊆ X of cardinality ≤ ℵ1 is second countable. Let θ be
“large enough” and let M ≺ H(θ) be an ℵ1-sized elementary submodel with
the ω-covering property such that (X, τ) ∈M .

Claim. The set τ ∩M is a base for the subspace topology on X ∩M .

Proof of Claim. Suppose that z ∈ X∩M and U is an open neighborhood of
z. By the assumption of the theorem, X ∩M \U has a countable base and
therefore a countable dense subset D. Since M has the ω-covering property
we can choose a countable D′ ∈M so that D ⊆ D′ ⊆ X. Since D′ ∪ {z} is
actually countable and is an element of M , and because M ≺ H(θ), it must
be the case that D′ ∪ {z} is second countable in the subspace topology. It
follows that there is some T ∈ τ ∩M such that z ∈ T and T ∩D′ ⊆ U .

Therefore we have

X ∩M \ U = D ⊆ D′ \ T ⊆ X \ T.

The first equality is true by density of D, the containment that follows
is true because we have T ∩ D′ ⊆ U (hence D ⊆ D′ \ T ), and the next
containment is true again because of the fact that T ∩ D′ ⊆ U (which
implies that the closure operation will not take any elements of T ). It then
follows directly from X ∩M \ U ⊆ X \ T that M ∩ T ⊆ U .

Now we can wrap up the proof. It follows from the claim and our as-
sumption that there is a countable subset B of τ ∩M which is a base for
X ∩M . We can produce this from any countable base by taking intersec-
tions. There is then some B′ ⊇ B such that B′ by the ω-covering property.
Then

M |= “B′ is a countable base for (X, τ)”

since for every open U ∈M∩X there is some V ∈ B′∩M such that U ⊆ V .
Therefore it follows from M ≺ H(θ) that

H(θ) |= “there is a countable base for (X, τ)”

and it follows that (X, τ) actually has a countable base.



Chapter 3

Martin’s Axiom

3.1 Basic Terminology and Facts

Definition 3.1.

1. P is a poset if it is a partially ordered set with a maximal element
1P. We will let P denote a poset always. Elements p ∈ P are called
conditions and if p, q are conditions such that q ≤ p, then we say that
q is stronger than p, meaning that it expresses more information.

2. If p, q ∈ P, we say that p and q are compatible and write p‖q if there
is some r ∈ P such that r ≤ p, q. Otherwise we say that p and q are
incompactible and write q ⊥ q.

3. P is non-atomic if for all p ∈ P, there exist q, r ≤ p such that q ⊥ r.
(We will always assume that P is non-atomic.)

4. F ⊂ P is a filter if: (1) for all p, q ∈ F , there is some r ∈ F with
r ≤ p, q; and (2) for all p ∈ F , if p ≤ q then q ∈ F .

5. A subset D ⊆ P is dense if for all p ∈ P,∃q ≤ p, q ∈ D.

6. If D is a collection of dense subsets of P, we say that a filter G is
D-generic if for all D ∈ D, G ∩D 6= ∅.

7. A subset A ⊂ P is an antichain if for all p, q ∈ A, p 6= q implies p ⊥ q.

8. A poset P has the countable chain condition if all antichains A ⊆ P
are at most countable.

29
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Definition 3.2. MA(κ) is the statement that if P has the countable chain
condition and D is a collection of dense subsets of P, then there is a D-
generic filter G. Martin’s Axiom, denoted MA (without reference to a car-
dinal) is the statement that MA(κ) holds for all κ < 2ℵ0 .

Proposition 3.3. MA(ℵ0) is true (and does not even need P to have the
countable chain condition).

Proof. Let 〈Dn : n ∈ N〉 enumerate the family of dense sets in question.
Define a ≤-decreasing sequence 〈pn : n ∈ N〉 so that pn ∈ Dn. Choose
p0 ∈ D0. Given pn and Dn+1, since Dn+1 is dense there is some pn+1 ≤ pn,
pn+1 ∈ Dn. Then G := {q ∈ P : ∃n ∈ N, pn ≤ q} works.

Corollary 3.4. CH implies MA.

Fact 3.5. The consistency of ZFC implies the consistency of ZFC ∧ ¬CH ∧
MA.

Proposition 3.6. MA(2ℵ0) is false.

Proof. Let P(N) be enumerated as 〈Aα : α < 2ℵ0〉. Let χAα be the charac-
teristic function of Aα, i.e., χA(n) = 1 if n ∈ A and χA(n) = 0 if n ∈ N \A.
We let P be the Cohen forcing, that is

P ={p : F → {0, 1} : F ⊆ N is finite}, q ≤ p :⇔ q ⊇ p.

We let for n ∈ N, En = {p ∈ P : n ∈ dom(p)}. For α < 2ℵ0 we let

Dα = {p ∈ P : ∃n ∈ dom(p), p(n) 6= χAα(n)}

We let D = {Dα : α < 2ℵ0} ∪ {En : n ∈ N}. It is easy to see that each
En and each Dα is dense in P. For a contradiction, we assume that G is
D-generic. Then

⋃
G : N → 2 Then

⋃
G 6= χAα , α < 2ℵ0 . But such a G

cannot exist.
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3.2 Simple But Nontrivial Applications

Theorem 3.7. MA implies that the intersection of fewer than 2ℵ0-many
dense open sets of reals is dense.

Proof. (Jech 16.23) Let κ < 2ℵ0 and let Uα, α < κ, be dense open sets of
reals. For a ⊆ R, we write cl(a) for its closure. Let I be a bounded open
interval. We’ll show that

⋂
α<κ Uα ∩ I 6= ∅. Let P be the following notion

of forcing: Conditions are nonempty open sets p such that cl(p) ⊆ I, with
q ≤ p if and only if q ⊆ p. Since every collection of disjoint open sets is at
most countable, P satisfies the countable chain condition. For each α < κ,
let Dα = {p ∈ P : cl(p) ⊆ Uα}; each Dα is dense in P . Let G be a D-generic
filter on P where D = {Dα : α < κ}. Since G is a filter and since cl(I)
is compact, the set

⋂
{cl(p) : p ∈ G} is nonempty, and is contained (as a

subset) in each Uα since G ∩Dα 6= ∅.

Remark: By adding the dense sets En = {p ∈ P : diam(p) < 1
n+1
},

n ∈ ω, we could ensure that
⋂
{cl(p) : p ∈ G} is a singleton.

Definition 3.8. Let f, g : N→ N. We say “g eventually dominates f” and
write f ≤∗ g, if there is k ∈ ω such that for any n ≥ k, g(n) ≥ f(n).

Definition 3.9. Hechler forcing is (forcing equivalent to) the following
forcing order:

P = {(s, f) : ∃n, s : {0, . . . , n− 1} → N, f : N→ N, s ⊆ f}.

We let (t, g) ≤ (s, f) if t ⊇ s, g ≥ f .

(t, f) ≤ (s, f) implies, for any n ∈ dom(t) r dom(s), t(n) ≥ f(n). Any
two conditions (s, f), (s, g) are compatible in Hechler forcing, we just use
the pointwise maximum of f(n), g(n) for n ∈ N as h and have (s, h) ≤
(s, f), (s, g). Since there are countably many different finite sequences s of
natural numbers, any antichain A is Hechler forcing is at most countable.

For compatible (s, f), (t, g) ∈ P, we have a largest/weakest compatibility
witness: We let dom(r) = {0, . . . ,max(dom(s), dom(t))} and we let r(n) be
s(n) on dom(s) and t(n) on dom(t) \ dom(s) and max(f(n), g(n)) for the
remaining finitely many arguments. We let h ⊇ r be defined as h(n) =
max(f(n), g(n)). Then (r, g) ≤ (s, f), (t, g) and any other compatibility
witness is ≤ (r′, g) for some variation of r′ of r on max(dom(s), dom(t)) \
(dom(s) ∪ dom(t)).
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Theorem 3.10 (16.24 Jech). Martin’s Axiom implies that every family G

of fewer than 2ℵ0 functions from ω to ω is eventually dominated by some
f : ω → ω.

Proof. Let G be given. We use Hechler forcing. Let D = {Dg : g ∈
G} ∪ {En : n ∈ N} with Dg = {(s, f) : ∀n ∈ N r dom(s), f(n) ≥ g(n)},
En = {(s, f) : n ∈ dom(s)}. Df is dense: Let (s, g) be given. We take (s, h)
such that ∀n ∈ N r dom(s), h(n) ≥ max(f(n), g(n)). Then (s, h) ≤ (s, g)
and (s, h) ∈ Df . En is dense: Given (s, f) we let t : n + 1 → N be defined
by s ⊆ t and for k ∈ dom(t) r dom(s), t(k) = f(k). Then (t, f) ≤ (s, f)
and (t, f) ∈ En. Now let G be D-generic. Then h =

⋃
{s : ∃f, (s, f) ∈ G}

eventually dominates any g ∈ G. To see this, given g ∈ G, pick p = (s, f) ∈
Dg ∩ G. Then for any n ∈ N r dom(s), for any (t, f ′) ∈ G ∩ En, we have
(t, f ′) is compatible with (s, f), which means that t(n) ≥ f(n) ≥ g(n).

This material was
improvised in an
earlier exercise ses-
sion, but the La-
TeX here is pasted
from the notes for
the large cardinals
course

3.2.1 Clubs and Stationary Sets

Definition 3.11. A function f whose domain is a subset of the ordinals is
regressive if f(α) < α for all α ∈ dom(f) \ {0}.

Remark 3.12. Obviously we have a regressive funtion f with domain ω:
Just let f(n) = n − 1. But can we get a non-constant regressive function
with domain ℵ1?

Definition 3.13. The cofinality of an ordinal δ is the least ordinal γ such
that there exists an unbounded function f : γ → δ. We denote this cf(δ) =
γ. We call such a function cofinal in δ.

Observation 3.14. If γ is any ordinal such that γ = cf(δ), then γ is in
fact a regular cardinal.

Definition 3.15. Let κ be an uncountable regular cardinal. A subset C ⊆ κ
is club in κ (or a club in κ) if:

1. C is unbounded in κ, i.e. ∀β < κ,∃α ∈ C, α > β;

2. C is closed, i.e. if 〈αξ : ξ < λ :⊂〉C with λ < κ, then supξ<λ αξ ∈ C.

The set {X ⊂ κ : X contains a club} is called the club filter on κ.
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Example 3.16. Consider (1) the set of limit ordinals in κ or perhaps (2)
κ \ α for any α < κ.

Remark 3.17. We can define clubs in limit ordinals that are not cardinals.

Proposition 3.18. The club filter is κ-complete. In other words, if 〈Cξ :
ξ < λ〉 are clubs in κ and λ < κ, then

⋂
ξ<λCξ is a club in κ. (In particular,

the club filter is a filter.)

Proof. Closure of
⋂
ξ<λCξ is straightforward from the definitions.

For unboundedness, we will first argue that the intersection of any two
clubs C and D in κ is unbounded. Fix δ < κ. Using the unboundedness of
C and D, define by induction sequences 〈αn : n < ω〉 ⊂ C and 〈βn : n <
ω〉 ⊂ D such that α0 ≥ δ and αn < βn < αn+1 for all n < ω. Then we can
see that supn<ω αn = supn<ω βn = γ. (This is known as “interleaving.”) By
closure of C, we know that γ = supn<ω αn ∈ C, and by closure of D, we
know that supn<ω βn = γ ∈ D, and thus γ ∈ C ∩D.

Now let us do the general argument. We will argue that
⋂
ξ<η Cξ is

unbounded in κ by induction on η < κ.

• The statement is of course trivial if we are taking only one club, so
that gives us the base case.

• Suppose that we are considering

⋂
ξ<η+1

Cξ =

(⋂
ξ<η

Cξ

)
∩ Cξ+1.

The first part is a club by our inductive hypothesis, and the intersec-
tion of everything is a club by the same argument we used for two
clubs.

• Now suppose we are considering
⋂
ξ<η Cξ where η is a limit ordinal.

By induction,
⋂
ξ<ζ Cξ is a club for all ζ < η. Therefore we can assume

without loss of generality that Cζ ⊆ Cξ for all ξ < ζ, i.e. the clubs
are “nested.” Now define a sequence 〈αξ : ξ < η〉 to be an increasing
sequence above some fixed δ < κ such that αξ ∈ Cξ for all ξ < η.
If β = supξ<η αξ, then β < κ by regularity. Because of nestedness,
αξ ∈ Cζ for all ζ ≤ ξ, and so β = supζ≤ξ<η αξ ∈ Cζ for all ζ < η.
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This finishes the proof.

Definition 3.19. Let κ be an uncountable regular cardinal and let 〈Xα :
α < κ〉 be a collection of subsets of κ. Then 4α<κXα := {α < κ : α ∈⋂
β<αXβ} is the diagonal intersection of this collection. A filter F on κ is

normal if for all 〈Xα : α < κ :⊂〉F , 4α<κXα ∈ F .

Remark 3.20. We do not necessarily have 4α<κXα ⊆ Xα for all α < κ:
Consider the example where Xα = κ \ α for all α < κ.

Proposition 3.21. If κ is an uncountable regular cardinal and 〈Cα : α < κ〉
is a collection of clubs in κ, then 4α<κCα is a club in κ. (In other words,
the club filter is normal.)

Proof. Notice that the diagonal intersection is the same if we replace each
Cα with

⋂
β≤αCβ. Hence, as in the last proof, we can assume without loss

of generality that Cβ ⊆ Cγ for γ ≤ β.
Closure: Consider 〈γξ : ξ < η :⊂〉 4α<κ Cα be a strictly increasing

sequence where η is a limit ordinal, and let supξ<η γξ = γ∗. By the definition
of the diagonal intersection, we need to show that γ∗ ∈

⋂
β<γ∗ Cβ.

The definition of diagonal intersections already tells us that γξ ∈
⋂
β<γξ

Cβ
for all ξ < η. Using nestedness, this means that γζ ∈ Cγξ for all ζ ∈ (ξ, η),
which implies that γ∗ = supζ<η γζ = supξ≤ζ<η γζ ∈ Cγξ for all ξ < η. Again
using nestedness, we conclude that γ∗ ∈ Cβ for all β < γ∗.

Unboundness: Given β < κ, we will inductively define a sequence 〈γn :
n < ω〉 as follows: Let γ0 be any ordinal in the interval (β, κ). Given γn,
choose γn+1 ∈ (γn, κ) to be an element of

⋂
α<γn

Cα, which we know is a
club. Then let γ∗ = supn<ω γn.

Of course, γ∗ is larger than β, so we just need to show that γ∗ ∈ 4α<κCα,
i.e. that γ∗ ∈ Cα for all α < γ∗. Given some particular α < γ∗, there is
some n such that α < γn. Then we see that γm ∈ Cα for all m > n. As in
our previous reasoning, γ∗ ∈ Cα.

Definition 3.22. Let κ be regular uncountable. We say that S ⊆ κ is
stationary if S ∩ C 6= ∅ for all clubs C ⊂ κ.

Example 3.23. Given a regular uncountable κ, all clubs in κ are stationary.
Also, {α < κ : cf(α) = ω} is stationary.

Observation 3.24. If S ⊂ κ is stationary, then S is unbounded in κ.
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Theorem 3.25 (Fodor’s Lemma). Let κ be regular uncountable and let
S ⊂ κ be stationary. If f is a regressive function with domain S, then there
is a stationary subset S ′ ⊆ S and some γ < κ such that for all α ∈ S ′,
f(α) = γ.

Proof. Suppose otherwise. Then for all γ < κ, there is some club Cγ such
that for all α ∈ Cγ∩S, f(α) 6= γ. (We are sort of jumping past a step here.)
Now take C := 4γ<κCγ, which we now know is a club. Let δ ∈ C ∩ S 6= ∅,
and let f(δ) = γ < δ. By the definition of diagonal intersections, δ ∈⋂
α<δ Cα, meaning that δ ∈ Cγ, but this contradicts the way we defined

Cγ.

Corollary 3.26. There is no non-constant regressive function with domain
ℵ1.

3.3 Normality and Metrizability Problems
July 3, 2024

3.3.1 Dealing with Trees

Definition 3.27. A tree is a partially ordered set T with an order <T such
that for every x ∈ T , {y ∈ T : y ≤ x} is well-ordered.

• The αth level of T is the set Tα = {x ∈ T : ot{y ∈ T : y < x} = α}.

• The height of T , denoted hgt(T ), is sup{α : ∃x ∈ T, ot{y ∈ T : y <
x} = α}.

We will assume that trees are normal, meaning that

1. All x ∈ T have immediate successors.

2. If x, y ∈ Tα for limit α and {z : z <T x} = {z : z <T y} then x = y.

Example 3.28. The set T of functions f : α → {0, 1} for α < ω1 is a tree
where g ≤T f if g = f � dom f . If dom f = α, then f is in the αth level of
T . T has height ω1.

Definition 3.29. A branch is a maximal linearly ordered subset of T
(specifically, maximal under inclusion). A cofinal branch b of T is a branch
of order-type height(T ), i.e. a function such that for all α < height(T ),
b � α ∈ T .
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Example 3.30. There is a tree with countable levels and countable height
but no cofinal branch.

Lemma 3.31 (König’s Lemma). If T is an ω-tree then it has an infinite
branch, i.e. there is a set b ⊆ T such that for every n, |Tn ∩ b| = 1.

Proof. Construct b = {bn : n < ω} by induction on n using the inductive
hypothesis that for all m < n, bm has infinitely many descendents. Assume
without loss of generality that T has a root b0, i.e. a unique element on
level 0. For every n > 0, bn has finitely many immediate descendants
{xi : i < k}. Let Pi = {y ∈ T : xi ≤ y}. At least one Pi must be infinite by
the pigeonhole principle, so let bn+1 = xi.

Theorem 3.32 (Aronszajn). There is a tree of height ω1 and with countable
levels.

Why can we not just use the full binary tree of height ω1? Why not
“cut off” excess branches?

Proof. We will construct a tree T by defining Tα by induction on α < ω1.
The αth level Tα will consist of sequences of rational numbers of order-type
α. In other words, elements of T will take the form 〈qβ : β < α〉 ⊂ Q where
if γ < β < α, then qγ < qβ. For t, s ∈ T , we will write t ≤T s if t is an
initial segment of s.

Since there are only countably many rational numbers, this tree will not
have an unbounded branch. (Having a cofinal branch would be equivalent to
having a sequence 〈qβ : β < ω1〉 such that for all α < ω1, 〈qβ : β < α〉 ∈ Tα.)

Our inductive hypothesis is the following: For all β < α, x ∈ Tβ, and
supx < q ∈ Q, there is a sequence y of rationals of order-type α such that
x ≤T y and sup y = q.

Zero Case: First let T0 = ∅.
Successor Case: If α = β + 1, then let Tα = {x_〈q〉 : x ∈ Tβ, q ∈

Q, supx ≤ q}. It is fairly immediate to see that if Tβ satisfies the inductive
hypothesis, then so will Tα.

Limit Case: Suppose α is a limit ordinal.

Claim. For every x ∈
⋃
β<α Tβ and every q ≥ supx, there is a sequence of

rationals yx,q of order-type α such that x ≤T yx,q, sup yx,q = q, and for all
β < α, yx,q � β ∈ Tβ.
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Assuming the claim is true, we can let Tα = {yx,q : x ∈
⋃
β<α Tβ, q ≥

sup yx,q} where the yx,q’s witness the claim, so Tα is countable.

Proof of Claim. Suppose q ∈ Q and x ∈
⋃
β<α Tα and that the order type

of x is γ < α. Since α is a limit, there is a sequence 〈αn : n < ω〉 such
that supn<ω αn = α and α0 > γ. Let qn be a sequence of rational numbers
so that limn<ω qn = q. Then for every n, let yn+1 witness the inductive
hypothesis for qn+1 and yn, i.e. yn+1 ⊃ yn and sup yn+1 = qn+1. Then⋃
n<ω yn witnesses the claim.

This finishes the construction.

3.3.2 Jones’ Space

Definition 3.33. Recall that a topological space X is normal if two closed
sets A,B can be separated by open sets U, V , i.e. A ⊆ U , B ⊆ V , and
U ∩ V = ∅.

We will give an example of a topological space whose properties are
more or less reasonable, but whose normality is independent of ZFC.

Definition 3.34 (Jones’ Space). Let T be an ω1-Aronszajn tree, meaning
a tree of height ω1 and countable levels and no cofinal branch. Assume for
convenience that there is only one element of T0 which we denote ∅.

If s, t ∈ T , let (s, t) := {u : s <T u <T t} and define (s, t], [s, t), and
[s, t] similarly.

Let (T, τ) be the topological space with T as an underlying set and basic
open sets of the form (s, t) for s, t ∈ T and [∅, t) for t ∈ T .

Proposition 3.35. Jones’ space has the following properties:

1. T0 is open.

2. If x ∈ Tα+1 then {x} is open.

3. If x ∈ T then {y : y <T x} is open.

4. A (maximal) branch b is closed.

5. T is first countable.
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6. T is a regular space, meaning that closed sets and points can be sepa-
rated.

Proof. We will focus on the slightly more substantial bits.
1. If t ∈ T1 then [∅, t).
2. If s is an immediate predecessor of t and s′ is an immediate successor

then {t} = (s, s′). Suppose t ∈ Tα where α is a limit. let s′ be an immediate
successor of t. Then {(u, s′) : u <T t} is a countable neighborhood base.

4. Let b be a branch and suppose t ∈ T \ b. If t ∈ Tα+1 for some α then
we can use 2. If t ∈ Tα for a limit α then there is some u <T t such that
u /∈ b. Then let t′ be an immediate successor of t and take (u, t′).

6. Let t ∈ T . If t ∈ Tα+1 for some α then this follows from 2.
7. Let C ⊂ T be closed and let t ∈ T \ C. Let t′ be an immediate

successor of t. There is some u <T t such that C ∩ (u, t′) = ∅ because C is
closed. Then

U =
⋃
{(s0, s1) : s0, s1 /∈ (u, t′),¬(s0 ≤T u ∧ t′ ≤T s1)}

is an open set containing C and disjoint from (u, t′).
July 10, 2024

Theorem 3.36 (Fleissner). Assuming MA ∧ ¬CH, T is normal.

Proof. Assume that T is the tree constructed in Theorem 3.32.
Fix disjoint nonempty closed sets H,K ⊂ T . We describe a poset P to

be equal to the set of functions f such that:

1. f is finite,

2. dom f ⊆ H ∪K,

3. ∀t ∈ dom f , f(t) is a basic open set containing t and none of its
successors,

4. ∀h ∈ H, k ∈ K, f(h) ∩ f(k) = ∅.

So P is equal to

{f : |f | < ℵ0, dom f ⊆ T,∀h ∈ H, k ∈ K, f(h) ∩ f(k) = ∅}.

Then f ≤P g if and only if dom g ⊆ dom f and for all t ∈ dom g, g(t) ⊆ f(t).
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Claim. For f, g ∈ P, f and g are compatible if and only if for some h ∈
H, k ∈ K, we have f(h) ∩ g(k) 6= ∅ or f(k) ∩ g(h) 6= ∅.

Proof. This follows from the fact that f and g are compatible if and only
if there is some j ∈ P such that j ⊆ f ∪ g.

Lemma 3.37. P has the countable chain condition.

Assuming the lemma for now, let us show that MA ∧ ¬CH implies the
statement of the theorem.

For all t ∈ T , let Dt = {f : t ∈ dom f}.

Claim. Dt is dense.

Proof. If f ∈ P and t ∈ dom f then we are done. If t /∈ f then consider the
cases knowing that we cannot have t ∈ H∩K: If t ∈ K, then choose a basic
open set U separating t from H. Choose U to avoid f(k) for k ∈ dom f∩K.
Then let f ′ = f ∪ {〈t, U〉}. So f ′ ∈ Dt and f ′ ≤ f . Use the analogous idea
if t /∈ K.

The set ~D = {Dt : t ∈ T} has cardinality ℵ1, therefore MA ∧ ¬CH
implies that there is some G that is ~D-generic. Then

UH =
⋃
{V : ∃f ∈ G, h ∈ H,V = f(h)}

and

UK =
⋃
{V : ∃f ∈ G, k ∈ K,V = f(k)}

are open sets separating H and K. They are open because they are unions
of basic open sets. If we have t ∈ UH ∩UK , and we have fH ∈ G witnessing
t ∈ UH and fK ∈ G witnessing t ∈ UK , then we would have some f ′ ≤ fH , fG
with f ′ ∈ G, but this contradicts the f(h) ∩ f(k) = ∅ condition from the
definition of P.

To get the countable chain condition, we will need:

Theorem 3.38 (Erdős). Suppose that F : [ω1]
2 → 2, i.e. F partitions the

set of pairs of countable ordinals into two sets. Then either (a) there is an
unbounded subset H1 ⊆ ω1 that F � [H1]

2 is constant with value 0 or else (b)
there is a subset H2 which is order-isomorphic to ω+ 1 such that F � [H2]

2

is constant with value 1. (This can be denoted ω1 → (ω1, ω)2.)
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Proof. Let {A,B} be a partition of [ω1]
2.

Case 1: There is an infinite ordinal α < ω1 such that there is no finite
Kα ⊆ α which is maximal such that [Kα ∪ {α}]2 ⊆ B.

Then build a sequence 〈Kn : n < ω〉 of finite subsets of α such [Kα ∪
{α}]2 ⊆ B. Let K = {α} ∪

⋃
n<ωK

n. Then K has an order-type equal to
ω + 1.

Case 2: For all infinite α < ω1, there is a finite Kα ⊆ α which is maximal
such that [Kα ∪ {α}]2 ⊆ B.

Define a function F : α → maxKα. Since Kα is finite, F is regressive
on (ω, ω1) and therefore by Fodor’s Lemma is constant on some stationary
S ⊆ ω1 with value γ. Since |[γ]<ω| = ω, there is a stationary set S ′ and
some K such that for all α ∈ S ′, Kα = K. (Also we will have maxK < α
for all α ∈ S ′.) We can then argue that [S ′]2 ⊆ A: Otherwise, suppose
that there is {α, β} ∈ [S ′] such that {α, β} ∈ B. Then this implies that
[K ∪ {α, β}]2 ⊆ B, contradicting maximality of K with respect to β.

Proof of Lemma 3.37. First some notation: If t ∈ T and f ∈ P, let f ∗(t)
be the ≤T -least element of T in f(t).

Suppose that W is an uncountable subset of P.
Since there are only countably many elements on N and countably many

finite sequences of rationals Q, it follows that there is an uncountable W ′ ⊆
W and natural numbers n,m such that (1) dom f = {h0, . . . , hn−1, k0, . . . , km−1}
(where the h’s are from H and the k’s are from K) and (2) for all f, g ∈ W ′,
i < n, j < m, we have f ∗(hi) = g∗(hi) and f ∗(kj) = g∗(kj).

Now we argue that it cannot happen simultaneously that f1(hi)∩f2(kj) 6=
∅, f1(hi) ∩ f3(kj) 6= ∅, and f2(hi) ∩ f3(kj) 6= ∅ for some f1, f2, f3. Suppose
for contradiction that this were the case. For each of these intersections,
f ∗(hi) and f ∗(kj) are comparable (with the relevant 1, 2, or 3 plugged in)
and therefore have a ≤T -maximum. For e.g. f ∗1 (hi) and f ∗2 (kj) we can call
this s1,2. So we have s1,2, s1,3, and s2,3. All of these lie on a linearly ordered
set below that meeting point of hi and kj. Then some two of them must be
the same: Many s1,2 = s2,3 = s. It follows then that e.g. s ∈ f2(hi)∩ f2(kj)
but this contradicts f2 ∈ P.

We are now in a position to finish the proof. At this point we have
W ′ = 〈fα : α < ω1〉 with the enumeration chosen for our convenience.
For α < β < ω1, define Ri,j({α, β}) = 1 if fα(hi) ∩ fβ(kj) 6= ∅ and 0
otherwise. Apply the theorem of Erdős (Theorem 3.38) to the partition
R1,1. Because of the preceding paragraph, there is no set of 3 elements
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homogeneous for 1, so there is some W ′′ homogeneous for 0. Than apply
Erdős’ theorem to the partition R1,2 and so on through all 2mn partitions to
get some W̄ of cardinality ω1 which is homogeneous “in the right way” for
each partition. We are saying that for all α, β ∈ W̄ and all i < n, j < m,
we have fα(hi) ∩ fβ(kj) = ∅. This means that all conditions in W̄ are
compatible, so it is not an antichain.

This finishes the proof of the theorem.
July 17, 2024

Theorem 3.39 (Devlin-Shelah). CH implies that Jones’ space is not nor-
mal.

Fact 3.40 (Devlin-Shelah). Suppose that 2ℵ0 < 2ℵ1. Suppose F : 2<ω1 → 2.
Then there is a g ∈ 2ω1 such that for any f ∈ 2ω1, {α ∈ ω1 : F (f � α) =
g(α)} is stationary in ω1.

Then this statement, which is known as “weak diamond”, implies their
result.

3.4 Further Reading

Here we will recap some of the subjects that were treated in this course, as
well as one fairly well-known subject that we did not cover. The goal is to
bring the discussion to the present day and to mention some open problems
as a way to show where the discussion is still active. Note that there are
some patterns in the types of results considered, even though they touch
on different branches of mathematics.

3.4.1 On ℵ1-Dense Sets of Reals

Remark 3.41. Theorem 1.33 tells us that if CH holds, then there are (many)
ℵ1-sized subsets of R that are not order-isomorphic.

Definition 3.42 (Baumgartner). A set A ⊆ R is ℵ1-dense if |A| = ℵ1 and
if for all x, y ∈ A, |{z ∈ A : x <R z <R y}| = ℵ1 [Bau73].

Theorem 3.43 (Baumgartner, 1971). The consistency of ZFC implies that
consistency of 2ℵ0 = ℵ2 together with the statement that all ℵ1-dense sets
are order-isomorphic.
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Theorem 3.44 (Abraham and Shelah, 1981). MA ∧ ¬CH does not imply
Baumgartner’s theorem [AS81].

Open Question 1 (Baumgartner). Is it consistent that 2ℵ0 > ℵ2 and all
ℵ2-dense sets of reals are order-isomorphic?

This is an especially famous open problem as far as set theory is con-
cerned.

3.4.2 On Wetzel’s Problem

Recall Theorem 1.42.

Definition 3.45. A family F of holomorphic functions is a Wetzel family
if for every z ∈ C, {f(z) : f ∈ F} has cardinality smaller than F.

Question 3.46 (Erdős). Does ZFC prove that there is a Wetzel family?

Technically, this is not the language that Erdős used to ask this question.
The definitions are used by Schilhan and Weinert in the paper mentioned
below.

Theorem 3.47 (Kumar-Shelah, 2017 ). Consistently no, where 2ℵ0 = ℵω1

[KS17].

Theorem 3.48 (Schilhan-Weinert, 2024). Consistently yes for all cardinals
[SW24].

Open Question 2 (Schilhan-Weinert). Does MA ∧ 2ℵ0 = ℵ2 imply the
existence of a Wetzel family?

This is interesting because it is like the question posed by Baumgartner
that was answered by Abraham and Shelah.

3.4.3 On Elementary Submodels

See [Cox24].
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3.4.4 The Normal Moore Space Problem

See [Nyi01].

Theorem 3.49 (Urysohn). Every second countable regular Hausdorff space
is metrizable.

Definition 3.50. We say that a topological space X is developable if there
is a countable collection of open covers 〈Un : n < ω〉 of X such that for any
closed set C and any point p /∈ C there exists n such that every neighbor-
hood U of p with U ∈ Un is disjoint from C.

Conjecture 3.51 (The Normal Moore Space Conjecture, circa the 1930’s).
Every developable regular Hausdorff space is metrizable.

Theorem 3.52. CH implies that the NMSC is false.

Theorem 3.53 (Fleissner). MA∧¬CH implies that the NMSC is false, and
this is because of Jones’ space!

Theorem 3.54 (Nyikos and Kunen, circa 1980). Assuming the consistency
of a strongly compact cardinal, NMSC is consistently true.

Theorem 3.55 (Fleissner). The consistency of NMSC implies the consis-
tency of large cardinals.

Open Question 3 (Tall). Is it consistent with 2ℵ0 = ℵ2 that every normal
Moore space is metrizable?

This was posed awhile ago and it seems to be open, but I could be
wrong.

3.4.5 The Whitehead Problem

See [Ekl76].

Definition 3.56. If π : B → A is a surjective homomorphism of abelian
groups, then π splits if there is a homomorphism ρ : A→ B such that π ◦ ρ
is the identity on A. An abelian group A is a Whitehead group if for all
surjective homomorphisms π : B → A, if ker π ∼= Z, then π splits.

Proposition 3.57. Free (abelian) groups are Whitehead groups.
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But are all Whitehead groups free?

Definition 3.58. We say that ♦ holds if there is a sequence 〈Xα : α < ω1〉
such that for all Y ⊆ ω1, {α < ω1 : Y ∩ α = Xα} is stationary in ω1.

Theorem 3.59 (Jensen). The consistency of ZFC implies the consistency
of ZFC plus ♦.

Theorem 3.60 (Shelah, 1970’s). If ♦ holds, then every Whitehead group of
cardinality ℵ1 is free. If MA ∧ ¬CH holds, then there is a Whitehead group
of cardinality ℵ1 that is not free.

See also [BLHŠ23].
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head’s problem and condensed mathematics. arXiv preprint
arXiv:2312.09122, 2023.

[Cox24] Sean Cox. Approximation theory and elementary submodels.
arXiv preprint arXiv:2405.19634, 2024.

[Dow88] Alan Dow. An introduction to applications of elementary sub-
models to topology. In Topology Proc, volume 13, pages 17–72,
1988.

[DS79] Keith J Devlin and Saharon Shelah. A note on the normal moore
space conjecture. Canadian Journal of Mathematics, 31(2):241–
251, 1979.

[Ekl76] Paul C Eklof. Whitehead’s problem is undecidable. The Ameri-
can Mathematical Monthly, 83(10):775–788, 1976.

[Fle75] William G Fleissner. When is jones’ space normal? Proceedings
of the American Mathematical Society, 50(1):375–378, 1975.

45



46 BIBLIOGRAPHY

[Jec03] Thomas Jech. Set theory: The third millennium edition, revised
and expanded. Springer, 2003.

[KS17] Ashutosh Kumar and Saharon Shelah. On a question about
families of entire functions. Fund. Math, 239(3):279–288, 2017.

[Mar96] Dave Marker. Model theory and exponentiation. Notices of the
AMS, 43(7):753–759, 1996.

[Nyi01] Peter J Nyikos. A history of the normal moore space problem. In
Handbook of the History of General Topology, pages 1179–1212.
Springer, 2001.

[Ros82] Joseph G Rosenstein. Linear orderings. Academic press, 1982.

[Sou19] Daniel Soukup. Lecture notes on “modern techniques in com-
binatorial set theory”. https://danieltsoukup.github.io/

academic/syllabus_modern_techniques.pdf, 2019.

[SW24] Jonathan Schilhan and Thilo Weinert. Wetzel families and
the continuum. Journal of the London Mathematical Society,
109(6):e12918, 2024.

https://danieltsoukup.github.io/academic/syllabus_modern_techniques.pdf
https://danieltsoukup.github.io/academic/syllabus_modern_techniques.pdf

	Contents
	Transfinite Induction Arguments for the Real and Complex Numbers
	The Basics of Linear Orders and Transfinite Induction
	Simple Applications of Transfinite Induction
	Sierpinski's Theorem
	Notions of Ramseyness
	Wetzel's Problem

	Elementary Submodels and Topology
	Setting Up
	Applying the Technique

	Martin's Axiom
	Basic Terminology and Facts
	Simple But Nontrivial Applications
	Normality and Metrizability Problems
	Further Reading

	Bibliography

