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Chapter 1

Introduction to Descriptive Set
Theory

April 20, 2023

1.1 The Plan for the Course

What is descriptive set theory, and why study it?

1. Descriptive set theory is where topology meets mathematical logic. It
consists of the study of the complexity of sets of real numbers.

2. DST harmonizes with other parts of logic. For example, the Borel hi-
erarchy of descriptive set theory resembles the arithmetic hierarchy of
computability theory. As an example, the study of Borel equivalence
relations tackles notions of definability (in a somewhat loose sense)
that are of interest in model theory.

3. DST provides connections to the study of basic structures in gen-
eral mathematics. This includes graphs, groups, and applications in
functional analysis.

4. DST is integrally involved with the project of large cardinals and
inner models theory. For example, the constency of a model in which
all sets of reals are Lebesgue measurable (the canonical example is
called the Solovay model) is equiconsistent with the existence of an
inaccessible cardinal.

The goals for this course are roughly as follows:
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4 CHAPTER 1. INTRODUCTION TO DESCRIPTIVE SET THEORY

1. Introduce the “bread and butter” notions of descriptive set theory.
This includes the basic properties of Polish spaces, Borel sets, and
examples of dichotomoy theorems, which typically state that certain
objects “are either very simple or very complicated”.

2. There are some canonical results that we should definitely get to.
This includes Suslin’s characterization of Borel sets, the Gale-Stewart
Theorem (this has to do with the chess example in the course ad-
vertisement), and the Mostowski Absoluteness Theorem. (Time per-
mitting, we can cover the Schoenfield Absoluteness Theorem, which
implies that the Riemann Hypothesis cannot be proved independent
by forcing.)

3. Ideally, I want to provide enough of a background to make further
study possible. For example, if you know about forcing, then I want
it to be relatively doable to study the above-mentioned information
about Solovay’s model.

The main reference for this course is Kechris’ textbook Classical Descrip-
tive Set Theory, available electronically through the university’s library.
Those in want of another reference besides Kechris and these notes can
look at Marker’s notes, available at http://homepages.math.uic.edu/

~marker/math512/dst.pdf.
Homework sets will be given every week and will consist of one to four

questions, sometimes consisting of multiple parts. At the end of the course,
a final exam will be given for those students who need a grade. The exam
can be a take-home exam if it is generally allowed. When assigning grades, I
will account for different levels of preparation. Please consult me via email,
and we can also arrange a meeting.

1.2 Polish Spaces

1.2.1 A Motivating Example: Cantor-Bendixson
Analysis

Definition 1.1. A set P ⊂ R is perfect if it is closed and has no isolated
points, i.e. for all x ∈ P and all open sets U 3 x, U ∩ (P \ {x}) 6= ∅.

Proposition 1.2. If P ⊂ R is perfect and non-empty then |P | = 2ℵ0.

http://homepages.math.uic.edu/~marker/math512/dst.pdf
http://homepages.math.uic.edu/~marker/math512/dst.pdf
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Proof. We already know that |P | ≤ |R| = 2ℵ0 . Let {0, 1}N denote set
of functions f with domain N and range in {0, 1}. It is well-known from
Cantor’s famous diagonalization argument that |{0, 1}N| = 2ℵ0 , so it will be
enough to define an injection F : {0, 1}N → P .

To define F , we will define a system of closed intervals Is where s is a
finite sequence of 0’s and 1’s. Specifically, Is will be defined by induction
on |s| with the following requirements:

• Is ∩ P 6= ∅,

• Is_i ⊂ Is for i ∈ {0, 1},

• Is_0 ∩ Is_1 = ∅,

• diam(Is_i) < 1/|s| for i ∈ {0, 1} (i.e. the difference between the largest
and smallest points in Is is 1/|s|).

We describe how we define Is_i given i ∈ {0, 1} (we define I∅ similarly).
First choose x 6= y such that x, y ∈ Is ∩ P , which is possible because P is
perfect, then choose open intervals U0 and U1 around x and y respectively
such that their closures are disjoint, and then we let Is_i be the closure of
Ui for i ∈ {0, 1}.

Finally, if f ∈ {0, 1}N, observe that if (xn)n∈N is any sequence such that
xn ∈ If�n for all n ∈ N, then (xn)n∈N is a Cauchy sequence. Therefore it
converges to some x, and x ∈

⋂
n∈N If�n 6= ∅ because

⋂
n∈N If�n is closed.

Moreover,
⋂
n∈N If�n cannot contain more than one element because of the

fact that limn→∞ diam(If�n) = 0. Therefore we let F (f) be the unique
element of R in

⋂
n∈N If�n. We see that F is injective because if f 6= g

for f, g ∈ {0, 1}N, then there is some n ∈ N such that f(n) 6= g(n) and
therefore If�n ∩ Ig�n = ∅.

The next proof will require us to make use of ordinal induction.

Definition 1.3. An ordinal is a set α which is transitive, i.e. γ ∈ β ∈
α =⇒ γ ∈ α, and well-ordered by ∈. A successor ordinal takes the form
α ∪ {α} where α is an ordinal, and it is commonly written α + 1. A limit
ordinal is any ordinal which is not a successor ordinal.

Example 1.4. Some examples of ordinals include the natural numbers, the
smallest infinite ordinal ω (which is the same as ℵ0), as well as (when we
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assume formalization of ordinal arithmetic) ω + 1, ω + 2, ω + ω, ωω
ω
, and

so on.

Definition 1.5. The ordinal ω (sometimes but rarely written ω0) is the
smallest infinite ordinal, and ω1 is the smallest uncountable ordinal.

Proposition 1.6. The real numbers R have a countable basis in the stan-
dard topology, i.e. there are open sets (Un)n∈N such that any open U ⊆ R is
a union of some Un’s.

Proof. A set U ⊆ R is open if for any x ∈ R, there are a, b ∈ R such that
x ∈ (a, b) ⊆ U . Just consider all sets of the form (q − 1/n, q + 1/n) where
q ∈ Q and n ∈ N is positive.

Theorem 1.7 (Cantor-Bendixson). If C ⊆ R is closed, then C = P t X
(i.e. we have a disjoint union) where P is perfect and X is countable.

Proof. First we give a definition: If A ⊂ R, then the Cantor-Bendixson
derivative Γ(A) is A without its isolated points, in other words

Γ(A) = A \ {x ∈ A : ∃U open, U ∩ (A \ {x}) = ∅}.

We define a sequence (Aα)α∈ω1) as follows:

• A0 = A;

• if Aα is defined, then we let Aα+1 = Γ(Aα);

• if Aβ is defined for all β ∈ α, then we let Aα =
⋂
β∈αAβ.

First observe by induction that all of the Aα’s are closed (recall that
intersections of closed sets are closed).

We claim that there is some δ ∈ ω1 such that Γ(Aδ) = Aδ. Suppose
otherwise. Then for each α ∈ ω1, there is some x ∈ Aα+1\Aα, and moreover
there is some open set Uα from the countable bases from Proposition 1.6
such that x ∈ Uα and Uα ∩ (Aα \ {x}) = ∅. But this implies that the Uα’s
are distinct and therefore that {Uα : α ∈ ω1} is uncountable list of elements
in a supposedly countable basis, which is a contradiction.

Since Γ(Aδ) = Aδ, it follows by definition that Aδ is perfect. Fur-
thermore, A \ Aδ is countable because each Aα \ Aα+1 is countable by an
argument similar to the one in the paragraph above. Specifically, Γ(A) \A
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is always countable: For each element of x ∈ Γ(A), there is a member U of
the countable basis given by Proposition 1.6 such that x ∈ U is the only
element in A ∩ U . Hence A \ Aδ is countable because it is the countable
unions of countably many sets.

Remark 1.8. In fact, the map constructed in Theorem 1.7 is continuous
with respect to a topology on {0, 1}N (better known as Cantor space and
more commonly denoted 2N) that we will define later.

Corollary 1.9. All closed subsets of R are finite, countable, or have the
same cardinality of R.

In other words, the continuum hypothesis holds for closed subsets of R,
even though it is consistent with ZFC that the continuum hypothesis fails
in general.

Here are some takeaways:

• The result also a dichotomy: there are no inbetween cardinalities for
closed subsets of R.

• This is a result required us to use a notion of a hierarchy that more or
less deals with a notion of complexity. This is a fundamental theme
in descriptive set theory.

• Two properties of R stand out in the proof: the fact that has a com-
plete metric, which allows us to define the embedding in Proposi-
tion 1.2, and the fact that it has a countable basis, which allows us
to show that the process of taking Cantor-Bendixson derivatives in
Theorem 1.7 eventually stabilizes.

The last point leads us to the definition of a Polish space.

1.2.2 Examples of Polish Spaces
April 27, 2023

Now we are led to a generalization of what the real numbers are. In fact,
Cantor-Bendixon analysis can be applied to any Polish space.

Definition 1.10. A topological space X is a set with an associated topology
T . The topology τ is a collection of sets U ⊂ X that:

• ∅ ∈ τ ,
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• τ is closed under finite intersections,

• τ is closed under arbitrary unions.

Relative to τ , these sets are considered open.
We say that a collection B of subsets of X is a basis for a topology τ if

τ is the collection of unions of sets of B.

Example 1.11. The basis consisting of open intervals (a, b) for a, b ∈ R
generates the standard Euclidean topology on R.

Definition 1.12. Given a space X, a metric is a function d : X ×X → R
with the following properties:

1. ∀a, b ∈ X, d(a, b) = 0 if and only if a = b (positive definiteness).

2. ∀a, b ∈ X, d(a, b) = d(b, a) (symmetry).

3. ∀a, b, c ∈ X, d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality).

Moreover:

• A topological space X is metrizable if there is a metric d such that the
set of open balls of the form {z : d(y, z) < ε} for y ∈ X and ε ∈ R+

form a basis for its topology.

• Given a space X and a metric d, a sequence (an)n∈N is Cauchy if
limm,n→∞ d(am, an) = 0.

• A metric space is complete if all Cauchy sequences converge to a point
in the space, i.e. if (an)n∈N is Cauchy then there is some b ∈ X such
that limn→∞ d(an, b) = 0.

Example 1.13. The set R under the metrix d(x, y) := |x− y| is completely
metrizable, but this is not a complete metrix for the subspace Q.

Definition 1.14. X is a Polish space if:

• it is separable (i.e. it has a countable dense set),

• and completely metrizable (i.e. there is a complete metric d that gen-
erates its topology).
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Polish spaces are named for the fact that they were first studied by many
Polish mathematicians like Tarski and Sierpinski.

Proposition 1.15. If X is a metrizable topological space with a countable
dense set, then it has a countable basis.

Proof. Basically the same proof as Proposition 1.6.

So we do not lose anything by using the slightly stronger requirement
of separability.

Remark 1.16. The fact that a given Polish space is metrizable is often
indirectly important, and we often do not use the metric.

Example 1.17. We will list some basic examples of Polish spaces.

• R is a Polish space, and of course it is our motivating example, but
Q is not a Polish space (we have not proved this yet, because even
though the usual metric is not complete, it remains to argue that it
is impossible to find a complete metric).

• The space of irrationals R \ Q is a Polish space (will include the
argument, possibly as an exercise, later).

• Countable discrete spaces, i.e. spaces X with a metric d such that
d(x, y) = 1 if and only if x 6= y, are Polish spaces, but uncountable
discrete spaces are not Polish spaces (you can see why this is true
from what we have learned so far).

• The set of continuous R-valued functions with domain [0, 1] under the
norm ‖f − g‖ := supx∈[0,1] |f(x)− g(x)|).

Theorem 1.18 (Baire Category Theorem). If X is a completely metrizable
topological spece and (Dn)n∈N is a sequence of open dense sets, then

⋂
n∈NDn

is a dense set.

Proof. Let d be a complete metric on X. For z ∈ X and ε ∈ R+, we let
B(z, ε) denote the open ball {y ∈ X : d(x, y) < ε} and let B̄(z, ε) denote
the closed ball {y ∈ X : d(x, y) ≤ ε}. Let y ∈ X and let U 3 y be an
arbitrary open set. Our goal is to find an element of

⋂
n∈NDn in U .

Define zn ∈ X and rn ∈ R by induction as follows: First choose z0 ∈ D0

and r0 such that B(z0, r0) ⊂ U (this uses openness and density of D0).
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Given zn, choose zn+1 ∈ Dn+1∩B(zn, rn), and then let rn+1 be small enough
such that B̄(zn+1, rn+1) ⊂ B(zn, rn) and B(zn+1, rn+1) ⊂ Dn+1 (again using
openness and density).

Then
⋂
n∈NB(zn, rn) =

⋂
n∈N B̄(zn, rn) is closed and (zn)n∈N is a Cauchy

sequence necessarily converging to some z∗, so z∗ ∈
⋂
n∈N B̄(zn, rn) ⊆⋂

n∈NDn and z∗ ∈ U .

The Baire Category Theorem is often stated using the concept of meager
sets, and we will get to these later.

Corollary 1.19. Q under the standard topology is not a Polish space.

Proof. The “standard topology” is the subspace topology, under which a
set U ⊆ Q is open if there is some U ′ open in the standard topology for
R such that U = U ′ ∩ Q. We will show that Q does not have a complete
metric compatible with this topology by showing that it does not satisfy
the conclusion of the Baire category theorem. For all q ∈ Q, let Uq =
Q \ {q}. Then Uq is open in the subspace topology because {q} is closed in
R. Moreover, Uq is dense because if x ∈ Q and V is any open set containing
x, there is some rational other than q in V . However,

⋂
q∈Q Uq = ∅.

1.2.3 Universality Properties of Polish Spaces

Definition 1.20. The Hilbert cube H is the space [0, 1]N, in other words it
consists of sequences (xn)n∈N such that xn ∈ [0, 1] for all n ∈ N.

Theorem 1.21. Every Polish space is homeomorphic to a subspace of H.

Proof. We will prove something a bit more general: every separable metriz-
able space is homoemorphic to a substance of H.

Let X be a separable metrizable space. Let d be a metric on X duch
that d < 1 and let (xn)n∈N be a dense countable set. Let let f(x) :=
(d(x, xn))n∈N.

To see that f is injective: if d(x, y) = ε, then choose n such that
d(x, xn) < ε/2. Then d(y, xn) > ε/2, so f(x) 6= f(y).

We prove that f is continuous. If d(x, y) < ε then |d(x, xi)−d(y, xi)| < ε
(otherwise we get a contradiction using the triangle inequality) and there-
fore d(f(x), f(y)) ≤

∑
n∈N 1/2n+1ε = ε (this is basically a hint for the

exercises).
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Now we prove that f−1 is continuous. Consider f(x) and choose n ∈ N
such that d(x, xn) < ε/3 (some ε > 0). If d(f(x), f(y)) ≤ 1

3·2n+1 ε then
|xn − y| < ε/3. Hence if d(f(x), f(y)) ≤ 1

3·2n+1 ε then |x− y| < ε.

Definition 1.22. The space NN, in other words the countable product of
N with the discrete topology, is known as Baire space and is denoted N.

Remark 1.23. There is a difference between Baire space and a Baire space!

Definition 1.24. The space 2N is known as Cantor space and is denoted
C.

May 4, 2023

Theorem 1.25. For every compact Polish space X, there is a continuous
map from N onto X.

Proof. Define a system of closed balls (Cs)s∈N with the following require-
ments: Changes to the ver-

sion from the lec-
ture!(1) C∅ = X,

(2) diam(Cs) = 1/(|s|+ 1),

(3) Cs ⊂
⋃
k∈NCs_k,

(4) If s v t then Ct ⊆ Cs.

We let F (f) be the unique point in
⋂
n∈NCf�n.

First we argue that F is defined on all of N (the argument is the same as
in Proposition 1.2). The set

⋂
n∈NCf�n is nonempty because any sequence

of points from the Cf�n will be a Cauchy sequence and the sets are closed.
Moreover, this set is a singleton because of (2).

Next we argue that F is surjective. Observe that for all z ∈ X, there
is some f ∈ N (not necessarily unique) such that z ∈ Cf�n for all n ∈ N:
this f can be defined inductively using (3). Then z ∈

⋂
n∈NCf�n because

otherwise there would be an open U 3 z such that U ∩
(⋂

n∈NCf�n
)

= ∅,
which is a contradiction.

Finally, we argue that F is continuous. Let U ⊆ X be open. We
want to show that F−1(U) is open. Let f ∈ F−1(U), so there is some
z ∈ U such that F (f) = z. We want to find an open V ⊆ N such that
f ∈ V ⊆ F−1(U). Choose n large enough that Cf�n ⊆ U (using (2)). Then
V := {x ∈ N : (f � n) v x} is open in N and F”V ⊆ Cf�n ⊆ U by (4), i.e.
Nf�n ⊆ F−1(U).
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1.3 Trees

Definition 1.26. Let X be any set and let X<ω denote the set of finite
sequences of elements of X. A tree on X is a nonempty set T ⊆ X<ω such
that if s ∈ T and t v s (meaning that t is an initial segment of s) then
t ∈ T .

The body of T , a tree on X, is the set {y ∈ Xω : ∀n, x � n ∈ T} and is
denoted [T ]. (Here Xω denotes the set of countable sequences of elements
of X.

Example 1.27. For example, the tree of all finite binary sequences. Both 2N

(Cantor space) and NN are bodies of trees.

Theorem 1.28 (König’s Theorem). If T ⊆ X<ω is an infinite and finitely
branching (meaning that for all t ∈ T , {s w t : |s| = |t|+ 1} is finite), then
[T ] 6= ∅.

Proof. Inductively choose 〈tn〉n ∈ N such that tn v tn+1 for all n ∈ N and
such that {s ∈ T : s w tn} is infinite for all n ∈ N. Then (tn)n∈N ∈ [T ].

Definition 1.29. Let T ⊆ X<ω be a tree. If s ∈ T then we let Ts := {t ∈
T : s v t or t v s}, which is also a tree.

Proposition 1.30. The topology for Baire space a basis consisting of Ns :=
{x ∈ ωω : s ⊆ x} for all s ∈ ω<ω. The topology for Cantor space a basis
consisting of Ns := {x ∈ 2ω : s ⊆ x} for all s ∈ 2<ω.

Proposition 1.31. For Baire space and Cantor space, the Ns’s are closed.

Proof. For Baire space, N \Ns =
⋃
t6=s,|t|=|s|Nt. The idea for Cantor space

is analogous.

Definition 1.32. A topological space X is totally disconnected if it has a
basis consisting of clopen sets. It is 0-dimensional if it is Hausdorff and has
a basis consisting of clopen sets.

Proposition 1.33. The topologies of both Baire space and Cantor spaces
are induced by the metric d such that d(x, y) = 0 if x = y and d(x, y) = 1/2n

if n is minimal such that x(n) 6= y(n).

Example 1.34. Baire space and Cantor space are 0-dimensional.
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Definition 1.35. A tree T ⊂ X<ω is pruned if it has no terminal nodes,
i.e. for all t ∈ T , there is some s w t such that s 6= t.

Theorem 1.36. A set C 6= ∅ is closed in Baire space (or Cantor space) if
and only if C = [T ] for some pruned tree T ⊆ ω<ω (or 2<ω).

Proof. We will write the proof without disinguishing between Baire space
and Cantor space.

Let C be closed and nonempty. Set T := {x � n : x ∈ C, n ∈ ω}.
Clearly T is pruned and C ⊆ [T ]. On the other hand, if x ∈ [T ], then for all
n ∈ ω,∃yn ∈ C such that x � n = yn � n. It follows that (yn)n∈ω converges
to x, and so x ∈ C by closure.

Conversely, let T be a tree. Then [T ] is closed because if x /∈ [T ] then
∃n, s := x � n /∈ T , which means that x ∈ Ns and Ns ∩ [T ] = ∅.

Proposition 1.37. Baire space is non-compact.

Proof. Take the open cover (Nsn)n∈N where sn = 〈0, n〉.

Theorem 1.38. A nonempty set K ⊆ ωω is compact if and only if K = [T ]
for a pruned, finitely branching tree T .

Proof. Assume that K is compact. Then K is in particular closed, so
K = [T ] for some pruned T ⊆ ω<ω by the previous theorem. Suppose for
contradiction that T is not finitely branching. Then there is some s ∈ T
such that E = {n ∈ ω : s_〈n〉 ∈ T} is infinite. Then U = {Ns_〈n〉 : n ∈
E} ∪ {Nt : t ∈ T, s ⊥ t} (where s ⊥ t means that s 6v t and t 6v s) is an
open cover with no finite subcover. May 11, 2023

Now assume that T is pruned and finitely branching. Let (Ui)i∈I be an
open cover for K := [T ]. Suppose for contradiction that it has no finite
subcover. Let

S = {s ∈ T : [Ts] is not covered by finitely many Ui}.

Then ∅ ∈ S by assumption. Furthermore, S is finitely branching—because
if a node s ∈ S were infinitely branching, it would have to follow that s /∈ S.
By König’s Theorem, there is some x ∈ ωω such that x ∈ [S] ⊆ [T ]. Then
x ∈ Ui for some i ∈ I. By openness, Nx�n ⊆ Ui for some n ∈ ω, and so
[Tx�n] ⊆ Ui, contradicting that s � n ∈ S.

Corollary 1.39. Cantor space is compact.

So Cantor space and Baire space are meaningfully distinct!





Chapter 2

Borel Sets

2.1 σ-Algebras

Definition 2.1. A collection A ⊆ P (S) is a σ-algebra on S if:

• it is closed under complements,

• it is closed under countable unions (hence also countable intersec-
tions),

• both S and ∅ are in A.

Example 2.2. Lebesgue-measurable subsets of [0, 1].

Definition 2.3. Let X be a topological space.

• A set A ⊆ X is nowhere dense if whenever U ⊆ X is open and
nonempty, there is V ⊆ U also open nonempty such that A ∩ V = ∅.

• A set A is meager if it is contained in the countable union of nowhere
dense sets.

• A set is comeager if its complement is meager.

• A set B ⊆ X has the Baire property if there is an open set U ⊆ X
such that B4U = (B \ U) ∪ (U \B) is meager.

Remark 2.4. The Baire Category Theorem states that a completely metriz-
able space is not meager as a subset of itself.

15
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Example 2.5. Q is meager is a subspace of R.

Example 2.6. The Cantor set is the set constructed by starting with the
unit interval [0, 1], removing its middle third, then removing the middle
third of both [0, 1/3] and [2/3, 1], and so on. The explicit formula is

[0, 1] \
⋃
n∈N

3n−1⋃
k=0

(
3k + 1

3n+1
,
3k + 2

3n+1

)
.

The Cantor set has size 2ℵ0 because it is perfect (this is similar to earlier
proofs), but it is nowhere dense (we are leaving this proof out), so it is
meager.

Proposition 2.7. The subsets of a topological space X with the Baire prop-
erty form a σ-algebra

Proof. First we show that the Baire sets are closed under countable unions.
Let (Bn)n∈N be a sequence of Baire sets and let B =

⋃
n∈NBn. Let (Un)n∈N

be such that Bn4Un is meager for all n and let U =
⋃
n∈N Un. Then⋃

n∈N(Bn4Un) is meager, and so

B4U = (B \ U) ∪ (U \B) =
⋃
n∈N

(Bn \ U) ∪
⋃
n∈N

(Un \B) ⊆
⋃
n∈N

(Bn4Un)

shows that B4U is meager.
Now we show that the Baire sets are closed under complements, but

first we establish some claims.

Claim. Closed subsets are Baire.

Proof of Claim. The C be closed and let C◦ be its interior with B = C \C◦
being its boundary by definition. Then B◦ ⊆ C◦ which implies that B◦ = ∅.
Also B is closed, and closed plus empty interior implies nowhere density.
The claim then follows from C4(C◦) = B.

Claim. If A,B ⊆ X and A is Baire and A4B is meager then B is Baire.

Proof of Claim. Let U be such that A4U is meager. Then

B4U = B4(∅4U) = B4((A4A)4U) =

= (B4A)4(A4U) ⊆ (B4A) ∪ (A4U)
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where fourth equality works because 4 is associative. Because (B4A) ∪
(A4U) is meager because both sets being unioned are meager, therefore
B4U is meager.

Now we can finish the proof. Let B4U be meager where U is open.
Then (X \ B)4(X \ U) = B4U is meager. The set X \ U is closed and
therefore Baire by the first claim, and it follows that X \B is Baire by the
second claim.

Proposition 2.8. Given a topological space X, there is a smallest σ-algebra
containing the open sets.

Proof. Zorn’s lemma.

Definition 2.9. Given a topological space, the set of Borel sets is the
smallest σ-algebra containing all of the open sets.

Proposition 2.10. All Borel sets have the Baire property.

Remark 2.11. The Vitali set does not have the Baire property. In Solovay’s
model, all sets have the Baire property.

2.2 The Borel Hierarchy

Definition 2.12. Let X be a Polish space. We define the following by
induction on α < ω1.

• Σ0
1(X) is the collection of open sets in X,

• Π0
1(X) is the set of closed sets in X (i.e. the set of complements of

sets in Σ0
1),

• Σ0
α(X) is the collection of countable unions of sets in

⋃
β<α Π0

β,

• Π0
α(X) is the collection of countable intersections of sets in

⋃
β<α Σ0

β(i.e.

the set of complements of sets in Σ0
α),

• ∆0
α(X) = Σ0

α(X) ∩Π0
α(X).

Remark 2.13. We will often drop the notation for the Polish space X.
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Example 2.14. [0, 1) is ∆0
2 in R: it is expressible as both a countable union

of closed sets and a countable intersection of open sets. However, it is
neither Σ0

1 nor Π0
1 because it is neither closed nor open.

May 25, 2023

Proposition 2.15.
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X) is a σ-algebra and there-

fore is equal to the collection of Borel sets B(X).

Proof. It is immediate that
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X) is a σ-algebra,

so ⊇ B(X) follows immediately. By definition of the hierarchy, we can
argue by induction that we have Σ0

α(X) ⊆ B(X) for all α < ω1.

Example 2.16. Q is Σ0
2 as a subset of R because it is the union of points,

so it is the union of closed sets. It is not open or closed. It also is not Π0
2:

If we had Q =
⋂
n∈N Un for open Un’s, then it would follow that each Un

is dense because Q is. But complements of open dense sets are nowhere
dense, so this would imply that R \ Q is meager, which would imply that
R is meager, but this contradicts the Baire Category Theorem.

Example 2.17. Let A = {x ∈ N : x is a bijection}. Then A is Π0
2.

Let A0 = {x : ∀n∀m(n 6= m =⇒ x(n) 6= x(m))}. Then

A0 =
⋂
n∈N

⋂
m∈N,m 6=n

{x : x(n) 6= x(m)}

is closed since it is an intersection of closed sets (if x(n) = x(m) then take
a stem s below x of length max{m,n} and then Ns will be contained in the
complement). Then let A1 = {x : ∀n∃m,x(m) = n}. Then

A1 =
⋂
n∈N

⋃
m∈N

{x : x(m) = n}

is Π0
2, being the countable intersection of open sets, and A = A0 ∩ A1 is

Π0
2.

Proposition 2.18. If X is an infinite Polish space, then |B(X)| = 2ℵ0.

Proof. Since X is infinite metrizable, every infinite subset is Σ0
2(X), so

we have 2ℵ0 ≤ |B(X)|. To get the other direction, first see that |Σ0
1| ≤

2ℵ0 using that because there is a countable basis and every open set is a
union of elements in the basic. Then proceed by induction: elements of Σ0

α

correspond to countable functions on
⋃
β<α Σ0

β, so we get a bound from the

fact that (2ℵ0)ℵ0 = 2ℵ0 .
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Proposition 2.19. All Σ0
α(X)’s and Π0

α(X)’s and ∆0
α(X)’s are closed un-

der finite unions, finite intersections, and preimages of continuous functions
f : X → X.

Proof. The first two statements follow easily from de Morgan’s Laws, so we
will prove the third.

The statement for Σ0
1(X) is just the definition of continuity. Now sup-

pose B =
⋃
n∈NBn where Bn ∈ Π0

βn for some βn < α for all n ∈ N.
Then f−1(B) =

⋃
n∈N f

−1(Bn), so the statement follows by induction.
Now we get the same thing for the Σ0

α(X)’s because of the fact that
f−1(X) = f−1(B ∪ (X \ B)) = f−1(B)

∐
f−1(X \ B). The statement

for the ∆’s is immediate.

2.3 Universal and Complete Sets

Proposition 2.20. N is homeomorphic to its infinite product NN.

Proof. Let Γ : N×N→ N be the canonical pairing function. We define Φ :
N → NN be setting Φ(f)n(k) = f(Γ(n, k)) (where the subscript indicates
the coordinate).

To see that Φ is injective, suppose f 6= g for f, g ∈ N. Then there is some
m ∈ N such that f(m) 6= g(m), so if n, k are such that Γ(n, k) = m, then
Φ(f)n(k) 6= Φ(g)n(k). To see surjectivity, let Γ−1(m) = (γ0(m), γ1(m)).
Then if (hn)n∈N ∈ NN, let f(m) = hγ0(m)(γ1(m)), then Φ(f) = (hn)n∈N.

To see continuity: Let U ⊆ NN be open and suppose that Φ(f) ∈ I. Let
V be a basic open set such that Φ(f) ∈ V ⊆ U , so V =

∏
n∈N Vn where

Vn = Nsn for finitely many I ⊂ N and Vn = N for the rest. Choose m larger
than Γ(n, k) for all n ∈ I and k such that k ≤ |sn|. Then for all g such that
g � (m + 1) = f � (m + 1), we have sn v Φ(g)n � (m + 1). It follows that
Φ′′Nf�m ⊆ V .

The fact that Φ is an open function is similar. One can argue that
images of basic open sets are open.

Definition 2.21. Let X, Y be Polish spaces. If U ⊆ Y × X and a ∈ Y ,
then let Ua = {b ∈ X : (a, b) ∈ U}.

We say U ⊂ Y × X is universal-Σ0
α if U ∈ Σ0

α(Y × X) and if for all
A ∈ Σ0

α(X), there is some a ∈ A such that A = Ua. Universal Π0
α sets are

defined similarly.
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Proposition 2.22. C is homeomorphic to its infinite product CN.

Proof. The proof is essentially the same as in the previous proposition. This
time we take a pairing function Γ : N× {0, 1} → N and let Φ : C→ CN be
defined by setting Φ(f)n(k) = f(Γ(n, k)).

Lemma 2.23. If X is a separable metric space, then for all 1 ≤ α < ω1

there is a Σ0
α-universal set Uα ⊂ N×X and a Π0

α-universal set Vα ⊂ N×X.

Corollary 2.24. For each 1 ≤ α < ω1 there is a set A ⊆ N that is Σ0
α but

not Π0
α. (In other words, the Borel hierarchy is strict.)

Proof. Let U be the universal Σ0
α set and let

A = {x : (x, x) ∈ U}.

Since Σ0
α is closed under continuous preimages, A is Σ0

α. If it were also Π0
α,

then its complement would be Σ0
α. Then it would be the case that for some

f ∈ N,

{x : (x, x) /∈ U} = N \ A = Uf = {x ∈ N : (f, x) ∈ U},

which is a contradiction because f ∈ A if and only if f ∈ N \ A.
June 15, 2023

Proof of Lemma 2.23. Let (Bn)n∈N enumerate a countable basis for X. We
will give the proof for Σ and Π simultaneously by induction.

Case 1: α = 1. First we obtain a Σ0
1-universal set U1. Let

U1 =
⋃
n∈N

{(f, x) : x ∈ Bf(n)}.

The fact that U1 is open will follow from the fact that for all n ∈ N,
{(f, x) : x ∈ Bf(n)} is open. Suppose (f0, x0) is in this set. Let s ∈ N<N be
such that s has length n and s � (n+ 1) = f � (n+ 1). Then it follows that
Ns ×Bf(n) ⊆ {(f, x) : x ∈ Bf(n)}.

Now if A is open, let f be defined such that A =
⋃
n∈NBf(n) (there are

multiple options). Then we see that x ∈ A if and only if (f, x) ∈ U1, so U1

is in fact Σ0
1-universal.

Next observe that V1 := (C ×X) \ U1 is Π0
1-universal: it is closed, and

we can show universality by taking complements.
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Case 2: α = β + 1. Let Uβ be the universal Σ0
β set. Then we let

Uα =
⋃
n∈N

{(f, x) : (Φ(f)n, x) /∈ Uβ}

where Φ : N→ Nω is continuous and Φ(f)n is the nth coordinate of Φ(f).
First, to show that Uα is Σ0

α, it is enough by definition to show that
for all n ∈ N, {(f, x) : (Φ(f)n, x) /∈ Uβ} is Π0

β. This uses closure under
continuous preimages (exercise).

If A is Σ0
α, then A =

⋃
n∈NAn where each An is Π0

β. Choose fn such
that X \ An = {x : (fn, x) ∈ Uβ}. Then choose f such that Φ(f)n = fn for
all n ∈ N. Then A = {x : (f, x) ∈ Uα}.

Case 3: α is a limit ordinal. Let (βn)n<ω be a strictly increasing se-
quence of ordinals such that supn<ω βn = α. Let Uβn be the universal Σ0

βn

set. Then let
Uα =

⋃
n∈N

{(f, x) : (Φ(f)n, x) /∈ Uβn}.

The rest of the argument is analogous to the successor case.





Chapter 3

Games of Perfect Information

3.1 Examples of Games

Definition 3.1. Let A ⊆ N. The Banach-Mazur game on A, denoted
G∗∗(A), is the following game between two players:

• Player I and Player II alternately choose elements of ω<ω \ ∅ as in
s0, s1, s2, s3, . . . where the sn’s denote Player I’s moves for even n and
Player II’s moves for odd n.

• Player I wins the game if the concatenation s0
_s1

_s2
_s3

_ . . . ∈ A.
Otherwise Player II wins the game.

Definition 3.2. We will define concepts with respect to the Banach-Mazur
game for the sake of simplifying notation, but the generalizations will be
implicit.

• A strategy σ for either Player I or II in the game G∗∗(A) is a function
from partial plays of the game to nonempty finite sequences of natural
numbers.

• A strategy σ is compatible with a play ~s = 〈si : 0 ≤ i < n〉 if ~s is in
the domain of the strategy.

• Any strategy can be written as a tree consisting of finite sequences of
finite sequences of natural numbers. A winning strategy is a strategy
σ for either Player I or II such that if that player uses the strategy,

23
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then the player is guaranteed to win. In other words, a σ is winning
for e.g. Player I if every branch [σ] is a winning player for Player I,
i.e. the intersection of all Wi’s in σ is empty.

Theorem 3.3. Let A ⊆ N.

1. Player II has a winning strategy for the Banach-Mazur game if and
only if A is meager.

2. Player I has a winning strategy for the Banach-Mazur game if and
only if there is a basic open set Ns such that Ns \ A is meager.

Proof of (1). First suppose that A is meager. Recall that the closure of a
nowhere dense set is nowhere dense, so we are saying that A ⊆

⋃
n∈NCn

where Cn is closed and nowhere dense. We describe a strategy σ for Player
II as follows: If s0, . . . , s2n has been played and s∗ is the concatenation of
everything played so far, then the nowhere density of Cn implies that there
is some t such that Ns_t ∩Cn = ∅, so σ(〈s0, . . . , s2n〉) = t. If 〈sn : n ∈ N〉 is
a play where Player II plays according to σ, and s+ = s0

_s1
_s2

_ . . ., then
s+ /∈ Cn for all n ∈ N, consequently s+ /∈ A.

Now suppose that Player II has a winning strategy σ. For each partial
play p = 〈s0, . . . , s2n−1〉 where it is Player I’s turn, let p∗ = s0

_s1
_ . . ._s2n−1

and let

Dp = {x ∈ N : p∗ ⊆ x =⇒ ∃t ∈ ω<ω \ ∅, p∗_t_σ(p_〈t〉) ⊆ x}.

Claim. Dp is open dense.

Proof of Claim. For openness, suppose x ∈ Dp as witnessed by t. Let
u = p∗_t_σ(p_〈t〉). Then by definition Nu ⊆ Dp.

Now for density (and hence nonemptyness), consider some arbitrary
u ∈ ω<ω. If p∗ 6⊆ u then we vacuously have u ∈ Dp, so suppose p∗ ⊆ u. Let
t be such that p∗_u. Then let x be such that p∗_t_σ(p_〈t〉) ⊆ x (there
are many options). Then x ∈ Nu ∩Dp.

Let P be the set of all partial plays where it is Player I’s turn to play.
Then P is countable, so consider any x ∈

⋂
p∈P Dp. Then we can inductively

construct a sequence 〈sn : n ∈ N〉 which is a play of the Banach-Mazur game
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such that x = s0
_s1

_ . . . and Player II is using the winning strategy σ, so
we know that x /∈ A. Hence

⋂
p∈P Dp ⊆ N \ A, so A ⊆

⋃
p∈P (N \ Dp)

showing that A is meager.

Proof of (2). Suppose that Ns \A is meager. Then Player I uses the same
idea that Player II would use for the game G∗∗(Ns \ A). More specifically,
we would have Ns \A ⊆

⋃
n∈NCn for Cn nowhere dense and Player I would

avoid Cn at their nth move.
Now suppose that Player I has a winning strategy σ and σ(∅) = s.

Then Player II has a winning strategy for G∗∗(A \Ns) based on shifting the
turns and using Player I’s strategy. Therefore A \Ns is meager by the first
part.

Definition 3.4. Given A ⊆ C, the perfect set game, denoted G∗2(A), is the
following game between two players:

• Player I plays elements s2n ∈ 2<ω and Player II plays elements k2n+1 ∈
{0, 1}.

• Player II wins the game if the concatenation s0
_〈k1〉_s2_〈k3〉_ . . . ∈

A. Otherwise Player II wins the game.

Theorem 3.5. Let A ⊆ C.

1. Player II has a winning strategy in G∗2(A) if and only if A is countable.

2. Player I has a winning strategy in G∗2(A) if and only if A contains a
perfect subset.

Proof of (1). Suppose that A is countable with an enumeration 〈xn : n ∈
N〉. Then the strategy for Player II is to play, at their nth move, the digit
k2n+1 in such a way that s0

_ . . ._〈k2n+1〉 6⊆ xn.
Now suppose that Player II has a winning strategy σ. For a partial play

p = 〈s0, k1, . . . , s2n, k2n+1〉, let p∗ = s0 _ 〈k1〉_ . . ._s2n
_k2n+1 and let

Dp = {x ∈ C : p∗ ⊆ x =⇒ ∃t, (p∗_t_σ(p_〈t〉) ⊆ x}.

As in the argument for the Banach-Mazur game, we have A ⊆
⋃
p(C \Dp).

We are then finished if we can argue that each C \ Dp is a singleton,
which we do here. Specifically, we define a unique element xp inductively.
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Let |p∗| = m and xp � m = p∗. Then it must be the case that xp(m) =
1 − σ(p_∅) since we know xp /∈ Dp. For ` > m, we can define xp(`) =
1− σ(p_〈xp(m), . . . , xp(`− 1)〉).

Proof of (2). Suppose A is perfect and let T = {x � n : x ∈ A, n ∈ N}.
Then the winning strategy for Player I is to play up to splitting points, i.e.
if s0, k1, . . . , k2n−1 is the play so far then Player I chooses s2n such that if
u = s0

_〈k1〉_ . . ._〈k2n−1〉 then both u_〈0〉 ∈ T and u_〈1〉 ∈ T . Such an
s2n will exist precisely because A has no isolated points.

Now suppose that Player I has a winning strategy σ. Then we can build
a perfect tree (i.e. every node has a splitting node above it) using σ. The
branches of the tree will be elements of A, and the perfect-ness of the tree
witnesses that A is perfect as a subset of C.

3.2 Open Determinacy

Definition 3.6. Let A ⊆ N. Then game GA is played between Player I and
Player II, who alternate playing natural numbers, i.e. the play is a sequence
〈sn : n ∈ N〉 ⊆ A where Player I plays sn for n even and Player II plays
sn for n odd. Player I wins if the sequence is in A and otherwise Player II
wins.

Theorem 3.7 (Gale-Stewart). If A ⊆ N is open then GA is determined.

Proof. We will denote Player I’s moves by an for n ∈ N and we will denote
Player II’s moves by bn. Let us assume that Player I does not have a winning
strategy, and we will prove that Player II has a winning strategy. The
strategy is to always avoid losing positions.

We describe the winning strategy σ for Player I by induction on the
length of a play. Suppose that a0 is an opening move by Player I. Then
because Player I does not have a winning strategy, there exists b0 such
that Player I does not have a winning strategy from the position 〈a0, b0〉.
Therefore let σ(〈a0〉) = b0. Now suppose 〈a0, b0, . . . , bn−1, an〉 is a play
where bn−1 was chosen such that Player I does not have a winning strat-
egy from the position 〈a0, b0, . . . , bn−1〉. Then by the same reasoning as in
the base case, there must be some bn such that Player I does not have
a winning strategy from the position 〈a0, b0, . . . , bn−1, an, bn〉, so we let
σ(〈a0, b0, . . . , bn−1, an〉) = bn. This finishes the definition of σ.
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Now we argue that σ is a winning strategy. Suppose for contradiction
that x = a0, b0, . . . , an, bn, . . . is a play of the game according to σ but that
the sequence x is in A (i.e. Player I wins). Then there some s ∈ ω<ω such
that x ∈ Ns ⊆ A. But if |s| = 2n (without loss of generality) then this
means that a0, b0, . . . , an, bn is a losing position for Player II, which is a
contradiction of the construction.

Example 3.8. Consider chess. If we temporarily redifine “winning” for Black
as either winning or drawing, then chess′ is an open game because all games
are decided in finitely many steps. This shows that there as an at least
drawing strategy for one of the players in chess.

Fact 3.9 (Martin). Every Borel game is determined.

3.3 The Axiom of Determinacy

Definition 3.10. The axiom of determinacy is the assertion that for all
A ⊆ N, GA is determined.

Fact 3.11. AD is consistent from infinitely many Woodin cardinals.

Corollary 3.12. AD implies that all sets in N have the Baire property.

We will need a quick fact that we have not yet established.

Proposition 3.13. In N, no nonempty open set is meager.

Proof. Let U be an open set and suppose for contradiction that U ⊆⋃
n∈NXn where the Xn’s are nowhere dense. Define a sequence of stems
〈sn : n ∈ N〉 such that Nsn ⊆ U for all n ∈ N, such that n ≤ m implies
sn v sm, and such that Nsn ∩Xn = ∅ (using nowhere density). Let x be the
union of these stems, which is in the open set U . But x /∈

⋃
n∈NXn.

Proof of Corollary 3.12. First we need to argue that the Banach-Mazur
game can be coded as a game on real numbers. Let 〈uk : k ∈ N〉 be
an enumeration of finite sequences. Given A ⊆ ω<ω, let A∗ be the set of
all sequences a0, b0, . . . , an, bn, . . . of naturals such that either there is an n
such that ua0 ⊆ ub0 ⊆ . . . uan 6⊆ ubn or else the sequence of u’s is increasing
and unions to some element of A.
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We claim that Player I has a winning strategy in G∗∗(A) if and only if
Player I has a winning strategy in GA∗ . (Exercise.)

To finish the argument, we prove the following statement: If A ⊆ N and

NA =
⋃
{Ns : s ∈ N<N and Ns \ A is meager}

and G∗∗(A \NA) is determined, then A has the Baire property.
Let us now prove the statement. If Player I had a winning strategy

in G∗∗(A \ NA), then for some stem t, Nt \ (A \ NA) would be meager,
by what we already know. But then Nt \ A would be meager because
Nt\A ⊆ (Nt\(A\NA)). Then since Nt\A is meager, it follows by definition
of NA that Nt ⊆ NA, therefore Nt \ (A \ NA) = Nt (just computationally
speaking). So we just argued that Nt is meager. But nonempty open sets
cannot be meager, so this is a contradiction.

So we proved that Player I does not have a winning strategy, and there-
fore by determinacy it follows that Player II has a winning strategy in
G∗∗(A \NA). Then we know that A \NA is meager. Also NA \A is meager
because

NA \ A ⊆
⋃
{Ns \ A : s ∈ N<N and Ns \ A is meager}.

so it follows that A has the Baire property: specifically, A4NA = (A \
NA) ∪ (NA \ A) is meager.

Now we have demonstrated that the Banach-Mazur game is indeed de-
termined under AD.

Corollary 3.14. AD implies that all sets in N have the perfect set property

Proof. First we reformulate the perfect set game for ω<ω, i.e. where the
plays consist of finite sequences of naturals alternated with single natural
numbers. (Coding can be an exercise.)

The reformulation of the perfect set game works similarly to the Banach-
Mazur game, then the result is immediate.

Theorem 3.15. AD =⇒ ¬AC.

Proof. Assume AC, and we will show that there is an undetermined set.
Let 〈σα : α < 2ℵ0〉 and 〈τα : α < 2ℵ0〉 enumerate all strategies for all
subsets of N for Players I and II respectively. This is possible because, in
particular, there are 2ℵ0-many strategies for any particular game because
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each can be defined as a tree of heigh ℵ0 with branching of size 2ℵ0 , and we
have (2ℵ0)ℵ0 = 2ℵ0 .

Now we will inductively define sets X = {xα : α < 2ℵ0} and Y =
{yα : α < 2ℵ0} such that neither GX nor GY are determined. Suppose that
{xα : α < β} and {yα : α < β} are both defined. Since {yα : α < β} has
cardinality less than 2ℵ0 and {σα ∗ b : b ∈ N} has cardinality 2ℵ0 , we can
choose yα = σα ∗ b /∈ {xα : α < β}. Similarly, we let xα = τα ∗ b /∈ {yα : α <
β}.

The sets X and Y are disjoint by construction, and that for each α we
have some b such that σα ∗b /∈ X (so σα is not a winning strategy for Player
I) and some a such that τα ∗ a ∈ X. Therefore GX is undetermined.

Corollary 3.16. There is an undetermined game in Gödel’s constructive
universe L. (Specifically, NL∩ <L is Σ1

2.)

Theorem 3.17. AD implies that every countable subset of N has a choice
function.

Proof. Let 〈Xn〉n ∈ N be a sequence of subsets of N. Consider the game
where Player I is playing a0, a1, . . . and Player II is playing b0, b1, . . . and
Player II wins if and only if b = (b0, b1, . . .) ∈ Xa0 . Then Player I does
not have a winning strategy because Player II can just start building some
∈ Xa0 . Therefore by determinacy Player II has a winning strategy σ, and
the choice function with input n is just σ applied to a generic play starting
with n.

Fact 3.18. AD implies that ω1 and ω2 are measurable.





Chapter 4

Analytic Sets

4.1 The Basics

Remark 4.1. Henri Lebesgue claimed that if A ⊆ R × R is Borel, then its
projection, i.e. the image under the function (x, y) 7→ x, would be Borel.
This is not necessarily the case!

Definition 4.2. Let X be a Polish space. Then we say that A ⊆ X is
analytic if there is a Polish space Y , a continuous function f : Y → X,
and a Borel set B ⊆ Y such that A = f(B) = {f(y) : y ∈ B}. Let Σ1

1(X)
denote the analytic subsets of X.

Note that Borel sets are therefore analytic.

Fact 4.3. If X is Polish and B ⊆ X is Borel, then there is a topology on
X such that X is Polish and B is clopen.

Proposition 4.4. If X is a Polish space, then the following are equivalent:

(1) A is Σ1
1(X).

(2) Either A = ∅ or there is a continuous f : N→ X such that A = f(N).

(3) There is some closed B ⊆ N × X such that A = πX(B) where πX :
N ×X → X is the function (b, x) 7→ x.

(4) There is a Polish space Y and a Borel B such that if πX : Y ×X → X
is the projection then πX(B) = A.

31
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Proof. First we show (1) implies (2). If A is analytic, by definition there
is some Polish Y , continuous f : Y → X, and Borel B ⊆ Y such that
f(B) = A. Remember that we have a continuous surjection g : N → Z for
Polish spaces Z (Theorem 1.25), so we apply to get g : N → B. Therefore
f ◦ g gives us (2).

Now suppose (2) is true. Consider the graph G(f) = {(b, f(b)) : b ∈
N} ⊆ N ×X. Then it is enough to show that G(f) is closed, which works
for any Hausdorff space: If (b, x) /∈ G(f), then we are saying f(b) = y 6= x.
Let U0, U1 ⊆ X be disjoint open such that y ∈ U0 and x ∈ U1, and let V be
the preimage of U0 under f . Then V × U1 is disjoint from G(f).

(3) =⇒ (4) =⇒ (1) follows by definition.

Definition 4.5. If X is a Polish space and C is the complement of analytic
set, we say that C is coanalytic. We write Π1

1(X) for the collection of
coanalytic sets.

Note that Borel sets are also coanalytic.

Proposition 4.6. Both Σ1
1 and Π1

1 are closed under countable unions and
intersections.

Proof. By using complements, it is enough to get the result for Σ1
1.

Suppose that 〈Ai : i ∈ N〉 is a sequence in Σ1
1. Using item 4.1, let

Ci be such that Ci is closed in N × X is closed and πX(Ci) = Ai. Then⋃
i∈NAi = πX

(⋃
i∈NCi

)
, giving us unions (since

⋃
i∈NCi is Borel and we

can just use item 4.1).

For intersections, recall the homeomorphism Φ : N→ NN and consider

C = {(f, x) : ∀i, (Φ(f)ni, x) ∈ Ci}.

Observe that C is closed: If there are ni ∈ N such that (Φ(f)i, x) /∈ Ci,
then there is some open U 3 (Φ(f)i, x) such that U ∩ Ci = ∅. Since
(f, x) 7→ (Φ(f)i, x) is continuous, the inverse image of U avoids C. Moreover⋂

i∈N

Ai = {x : ∀i,∃gi, (gi, x) ∈ Ci} = π(C)

using bijectivity of Φ, which completes the proof.
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Example 4.7. We will show that, under a certain coding, well orderings are
Π1

1.
Let C be identified with 2N2

. Then a set D ⊆ 2N2
can represent a set of

binary relations where x ∈ D represents some R if R(i, j) holds if and only
if x(i, j) = 1.

First, we argue that the set LO of linear orders is Π0
1 (i.e. closed) because

it is defined by the following formulae

∀n∀m(x(n,m) = 0 ∨ x(m,n) = 0)

∀n∀m(n = m ∨ x(n,m) = 1 ∨ x(m,n) = 1)

∀n∀m∀k(x(n,m) = x(m, k) = 1 =⇒ x(n, k) = 1

where if we remove the quantifiers then we can see that the formulae rep-
resent closed sets, and then adding the quantifiers gives an intersection of
closed sets.

Now let WO represent the set of well orders. We have

WO = {x ∈ LO : ∀f : N→ N,∃n, x(f(n), f(n+ 1)) = 0},

which expresses that there are no infinite descending sequences.
We will show that the complement of WO is analytic. So we consider

C \ LO ∪ {x : ∃f : N→ N,∀n, x(f(n), f(n+ 1)) = 1}.

By Proposition 4.6 we can just consider the expression on the right. It is
then enough to see that

{(f, x) : ∀n, x(f(n), f(n+ 1)) = 1}

is closed in N ×X: since this projects onto

{x : ∃f : N→ N,∀n, x(f(n), f(n+ 1)) = 1},

the result follows by item 4.1.

Definition 4.8. Let {As : s ∈ ω<ω} be a family of sets. Then

A{As : s ∈ ω<ω} :=
⋃
f∈N

⋂
n∈N

Af�n.

This is called the Suslin operation.
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Proposition 4.9. If S = A{As : s ∈ ω<ω} for some family, then there
is some family {Bs : s ∈ ω<ω} such that s v t implies At ⊆ As and
S = A{Bs : s ∈ ω<ω}.

Proof. Observe that

A{As : s ∈ ω<ω} :=
⋃
f∈N

⋂
n∈N

(Af�0 ∩ . . . Af�n).

Theorem 4.10. If X is Polish, then A ⊆ X is analytic if and only if
A = A{Cs : s ∈ ω<ω} for some family of closed sets.

Proof. First we argue that A = A{Cs : s ∈ ω<ω} is analytic. Let Bn =
{(f, x) : x ∈ Cf�n} where Bn is Borel. Then we see that x ∈ A if and only
if ∃f ∈ N, (f, x) ∈

⋂
n∈NBn.

Let A ⊆ N be analytic. Then there is some continuous F : N→ X with
A = F (N). For every f ∈ N, we have⋂

n∈N

F (Nf�n) =
⋂
n∈N

F (Nf�n) = {F (f)}.

Hence A =
⋃
f∈N

⋂
n∈N F (Nf�n).

4.2 Properties of Analytic Sets

Definition 4.11. If X is Polish and A ∈ Σ1
1(X) ∩Π1

1(X), then we write
X ∈∆1

1(X).

Definition 4.12. If A1, A2 ⊆ X and A1∩A2 = ∅, then we say that A1 and
A2 are separated by a set B if A1 ⊆ B ⊆ X \ A2.

Theorem 4.13. Any two analytic sets are separated by a Borel set.

Proof. First we establish:

Claim. If A =
⋃
n∈ω An and B =

⋃
m∈ω Bm and each An and Bm are

separated by a Borel set, then A and B are separated by a Borel set.
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Proof of Claim. For each n,m ∈ ω we let Dn,m be such that An ⊆ Dn,m ⊆
X \ Bm. Then if D :=

⋃
n∈ω
⋂
m∈ωDn,m, we see that D is Borel and A ⊆

D ⊆ X \B.

Now let A and B be two disjoint analytic sets. By item 4.1, we have
continuous functions f : N → X and g : N → X such that A = f(N) and
B = g(N). For each s ∈ ω<ω, let As = f(Ns) and let Bs = f(Ns). The As’s
and Bs’s are analytic because the Ns are each isomorphic to N.

Suppose for contradiction that A and B are not separated. We will
inductively define 〈ni : i ∈ N〉 and 〈mi : i ∈ N〉 such that for every k ∈ N,
the sets A〈n0,...,nk〉 and B〈m0,...,mk〉 are not separated. Since A =

⋃
n∈NA〈n〉

and B =
⋃
m∈NB〈m〉, the claim implies that there exist n0 and m0 such that

A〈n0〉 and B〈m0〉 are not separated. Similarly, there are n1 and m1 such that
A〈n0,n1〉 and B〈m0,m1〉 are not separated, and so on.

Now let a = 〈ni : i ∈ N〉 and let b = 〈mi : i ∈ N〉. Since A and
B are disjoint, we have f(a) 6= f(b). Let Ga and Gb be disjoint open
neighborhoods of a and b respectively. Then by continuity, there is some k
such that Aa�k ⊆ Ga and Bb�k ⊆ Gb. But this then means that Aa�k and
Bb�k are separated by Borel set, which is a contradiction of the construction
in the above paragraph.

Theorem 4.14 (Suslin’s Separation Theorem). A set B is Borel if and
only if B is ∆1

1.

Proof. item 4.1 tells us that Borel sets are analytic, and since complements
of Borel sets are Borel, we know they are coanalytic. If B is analytic and
coanalytic, then we have shown that they are separated by a Borel set, but
that means that (without loss of generality) the separating set is B!

Definition 4.15. A function f : X → Y between topological spaces is
Borel measurable If for all Borel B ⊆ Y , f−1(B) is Borel in X.

Proposition 4.16. Suppose X and Y are topological spaces and that f :
X → Y .

(i) f is Borel measurable iff f−1(U) is Borel for all open U ⊆ Y .

(ii) If Y has a countable basis, then f is Borel measurable implies the
graph of f is Borel.
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Proof. For (i), suppose the weaker condition holds. Then the result follows
from f−1(Y \ A) = X \ f−1(A) and f−1(

⋃
n∈NAn) =

⋃
n∈N f

−1(An).
For (ii), let {Un : n ∈ N} be a countable basis for Y . Then the graph of

f equals ⋂
n∈N

({(x, y) : y /∈ Un} ∩ {(x, y) : x ∈ f−1(Un)}).

If all the f−1(Un)’s are Borel, then the graph is Borel.

Corollary 4.17. Suppose X and Y are Polish spaces and f : X → Y . The
following are equivalent:

(i) f is Borel measurable,

(ii) the graph of f is a Borel subset of X × Y ,

(iii) the graph of f is an analytic subset of X × Y .

Proof. The implication (i) to (ii) is from the proposition we just proved
and (ii) to (iii) is by definition.

Now suppose the graph of f is analytic and A is Borel in Y . Then

x ∈ f−1(A) ⇐⇒ ∃y(y ∈ A ∧ f(x) = y) ⇐⇒ ∀y(f(x) = y =⇒ y ∈ A).

Hence f−1(A) has a Σ1
1 and a Π1

1 definition, so f−1(A) is Borel.

Theorem 4.18. If A ⊆ X Polish and A ∈ Σ1
1(X), then either A is count-

able or A has a perfect subset.

Proof. Recall that every closed set F in N takes the form F = [T ] =
{b : ∀n, b � n ∈ T} where T is a tree in ω<ω. For each such tree T , let
Ts := T ∩Ns.

Let A be analytic and let f be a continuous function such that A = f(N).
For each tree T we define

T ′ = {s ∈ T : f([Ts]) is uncountable}.

For each α < ω1, we define Tα inductively: T 0 = T , Tα+1 = (Tα)′, and
Tα =

⋂
β<α T

β if α is a limit ordinal. There is some δ < ω1 such that

T δ+1 = T δ. If T δ = ∅, then

A =
⋃
β<δ

{f([T βs ]) : s ∈ T β \ T β+1}
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and therefore A is countable. Therefore if A is uncountable then T δ is
nonempty and for every s ∈ T δ, f([T δs ]) is uncountable.

We argue that there is a perfect subset of A if A is uncountable. Let
s ∈ T δ be arbitrary. Since f([T δs ]) has at least two elements, there are
s〈0〉 A s and s〈1〉 A s, both in Tα, such that f([T δs〈0〉 ]) and f([T δs〈1〉 ]) are

disjoint (this is using Hausdorff-ness and continuity). Continue in this way,
inducting on the length of all binary sequences to define st such that for all
t such that |t| = n, the f([T δst ])’s are pairwise disjoint. Let U := {s : ∃t ∈
2<ω, s w st} of T δ such that (1) U is perfect (as a tree), (2) every s ∈ U has
two immediate successors in U (hence U is compact), and (3) f is one-one
on [U ].

Now let P be the image of [U ] under the function f . Since [U ] is compact
and f is continuous, P is compact and therefore closed. Moreover, P has
no isolated points since U is perfect and f is continuous. Therefore P is
perfect (closed and no isolated points) as a subset of A.

4.3 Further Reading

Changing Topologies

Reference. Dave Marker’s descriptive set theory notes.

Theorem 4.19. If (X, τ) is a Polish space and B ⊆ X is Borel, then there
is a topology τ ′ ⊇ τ on X such that (X, τ ′) is Polish and B is Borel in the
topology τ ′.

Very General Idea of Proof. It is easy to see that if C ⊆ X is closed and X
is Polish, then C is Polish in the subspace topology. It is slightly harder to
show that the same is true for U ⊆ X open.

Then one verifies the statement that if F ⊆ X is closed where (X, τ) is
Polish, then there is τ ′ ⊇ τ such that F is clopen in τ ′ and (X, τ) and (X, τ ′)
have the same Borel set. This done by taking a natural Polish topology τ ′

on the disjoint union of F and X \ F and then arguing that sets Borel in
τ ′ are Borel in τ .

Then we show that Ω := {B ∈ B(X) : there is a Polish topology on X
such that B is clopen } is a σ-algebra.

Definition 4.20. If X and Y are topological spaces, then f : X → Y
is a Borel isomorphism if it is Borel measurable bijection with a Borel
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measurable inverse. If there exists such an f : X → Y , we say that X and
Y are Borel isomorphic.

Theorem 4.21. If X and Y are Polish spaces then they are Borel isomor-
phic.

Solovay’s model

Reference. See Kanamori’s The Higher Infinite or even the original Solo-
vay paper, “A model of set-theory in which every set of reals is Lebesgue
measurable”.

Definition 4.22 (Solovay’s Codes). Let 〈si : i ∈ ω〉 be an enumeration of
ω<ω. For each c ∈ ωω we let Ac be equal to:

•
⋃
{Nsi : c(i+ 1) = 1} if c(0) = 0,

• N \
⋃
{Nsi : c(i+ 1) = 1} if c(0) = 1,

•
⋂
n∈ω
⋃
{Nsi : c(2n3i+1) = 1} if c(0) > 1.

Remark 4.23. This is not really a full Borel code, but it will be enough for
Solovay since Gδ sets approximate Lebesgue measurable sets.

Theorem 4.24. Assume the consistency of inaccessible cardinal, there is a
model of set theory in which the following hold:

• All sets of reals are Lebesgue-measurable,

• All sets of reals have the perfect set property,

• All sets of reals are Baire measurable.

Also, the inaccessible is not necessary for the Baire property.

Very General Proof Idea. Solovay’s model takes the ordinal-definable sets,
or instead L(R), in V [Col(ω,<κ)] where κ is the inaccessible cardinal. The
inaccessibility of κ is used to show that countable sets appear in interme-
diate extensions.

Theorem 4.25 (Shelah). If it is consistenct that all sets of reals are Lebesgue
measurable, then it is consistent that there is an inaccessible cardinal.

Reference. See Raisonnier: “A mathematical proof of S. Shelah’s theorem
on the measure problem and related results”.
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Ramsey Sets

Reference. Can look at Jech, probably better to look at Kechris.

Definition 4.26. A set X ⊆ [ω]ω is called Ramsey if there is Y ⊆ ω such
that either [Y ]ω ⊆ X or [Y ]ω ∩X = ∅.

Theorem 4.27 (Galvin-Prikry, Silver). Every analytic subset of N is Ram-
sey.

Definition 4.28. Given a ∈ [ω]<ω and A ⊆ ω and max a < minA, we let
[a,A] = {X ⊆ ω : a ⊆ X,X \ a ⊆ A}. The Ellentuck topology on [ω]ω is
generated by sets of the form [a,A].

Definition 4.29. We say that X ⊆ [ω]ω is completely Ramsey if for all
a,A with [a,A] a basic open set, we have some B ⊆ A such that either
[a,B] ⊆ X or [a,B] ∩X = ∅.

Theorem 4.30. Let X ⊆ ωω. Then X is completely Ramsey if and only if
it has the Baire property in the Ellentuck topology.

Theorem 4.31 (Mathias). In Solovay’s model (i.e. the L(R) part), all sets
in [ω]ω are completely Ramsey.

Question. Is the inaccessible necessary?

Absoluteness Theorems

Theorem 4.32 (Mostowksi’s Absolutness Theorem). If P is a Σ1
1 property

then P is absolute for any model of ZFC that can define P .

Theorem 4.33 (Schönfeld’s Absoluteness Theorem). Π1
2 and Σ1

2 properties
are absolute with L.

Corollary 4.34. The following two statements cannot be proved indepen-
dent by forcing:

• The Riemann Hypothesis: The zeta function ζ(s) =
∑∞

n=1
1
ns has its

zeros precisely at the negative even integers and complex numbers with
real part 1

2
.

• P = NP : the assertion that every algorithm checkable in polynomial
time converges in polynomial time.
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Determinacy

Reference. See Shehzad Ahmed’s masters thesis: https://andrescaicedo.
files.wordpress.com/2008/03/mastersthesis_sharpsandanalyticdeterminacy_

shehzadahmed-1.pdf.

Theorem 4.35 (Martin). Every Borel game is determined.

VGPI. We already have open determinacy. Given a Borel game, we define
an open game which is winning if and only if the Borel game is winning.

Definition 4.36. 0# exists if and only if there is a nontrivial embedding
j : L→ L.

Corollary 4.37. “0# exists” implies that V 6= L.

Proof. A famous theorem of Kunen states that there is no nontrivial em-
bedding j : V → V .

Theorem 4.38. The consistency of “every analytic set is determined” is
equal to the consistency of “0# exists”.

VGPI. Assuming the existence of 0#, use iterations of the embedding j :
L→ L to define a winning strategy. (This is a precursor to the concept of
“iteration trees”.)

Borel equivalence relations

Reference. See Hjorth’s chapter in The Handbook of Set Theory.

Definition 4.39. Let X and Y be topological spaces and let E ⊂ X ×X
and F ⊂ Y × Y be equivalence relations. Then we say that E is Borel
reducible to F , denoted E ≤B F , if there is a Borel function f : X → Y
such that for all x1, x2 ∈ X, x1Ex2 ⇐⇒ f(x1)Ff(x2).

Example 4.40. Let E0 be the relation on C such that xE0y if and only if x
and y eventually agree, i.e. there is some N ∈ ω such that n ≥ N implies
x(n) = y(n). Then idC <B E0. If E1 is the relation of eventual agreement
on infinite sequences of real numbers, then E0 < E1.

Theorem 4.41 (Silver). Suppose E is a Π1
1 equivalence relation on N.

Then either E has at most ℵ0-many classes or else there is a perfect set
P ⊆ N consisting of E-inequivalent elements.

https://andrescaicedo.files.wordpress.com/2008/03/mastersthesis_sharpsandanalyticdeterminacy_shehzadahmed-1.pdf
https://andrescaicedo.files.wordpress.com/2008/03/mastersthesis_sharpsandanalyticdeterminacy_shehzadahmed-1.pdf
https://andrescaicedo.files.wordpress.com/2008/03/mastersthesis_sharpsandanalyticdeterminacy_shehzadahmed-1.pdf
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