
Course Notes for Large Cardinals in Set
Theory

Maxwell Levine

Acknowledgments

These are the notes for a course that I taught at the University of Freiburg
in the summer semester of 2021. The sources are Thomas Jech’s set theory
textbook, Kenneth Kunen’s set theory textbook, and Dima Sinapova’s notes
for a course she taught at the University of Illinois at Chicago in 2013.

Contents

Contents 1

1 Background and Motivations 3
1.1 A Review of Some Basic Notions of Set Theory . . . . . . . 3
1.2 Regarding the Consistency of Inaccessible Cardinals . . . . . 5
1.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The Tree Property . . . . . . . . . . . . . . . . . . . . . . . 8

1



2 CONTENTS

2 Large Cardinals and Filters 11
2.1 Stationary Sets . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Measurable Embeddings . . . . . . . . . . . . . . . . . . . . 15

3 Kurepa Trees 23
3.1 A Very Quick Review of Forcing . . . . . . . . . . . . . . . . 23
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Chapter 1

Background and Motivations

1.1 A Review of Some Basic Notions of Set

Theory

Large cardinals are axioms of set theory that build upon the more commonly
used axioms.

Definition 1.1. The Zermelo-Fraenkel axioms are the following:

1. Extensionality: ∀x, y(z ∈ x ↔ z ∈ y) → x = y, i.e. sets are defined
by their elements.

2. Foundation: ∀x,∃z ∈ x, x ∩ z = ∅.

3. Union: Unions of sets are sets.

4. Pairing: If x and y are sets, then {x, y} is a set.

5. Power Set: Power sets of sets are sets.

6. Separation: If ϕ(v, w̄) is a formula with parameters w̄ and x is a set,
then y = {z ∈ x : ϕ(z, w̄)} is a set.

7. Replacement: If F is a class function, then for any set X, {F (x) : x ∈
X} is a set.

8. Choice: If X is a set, there is a function F : P(X)→ X such that for
all nonempty Y ⊂ X, F (Y ) ∈ Y .
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4 CHAPTER 1. BACKGROUND AND MOTIVATIONS

9. Infinity: The natural numbers are a set, i.e. there is an infinite set.

The abbreviation ZF will refer all of the axioms without the axiom of
choice, and ZFC will refer to all the axioms including choice.

When we speak of a model of set theory we are talking about a structure
in which the Zermelo-Fraenkel axioms are true. Various subtleties arise
when we consider various subtheories of ZF, but these are outside the scope
of the course.

Definition 1.2. α is an ordinal if it is a set such that:

1. It is transitive, meaning that if β ∈ γ ∈ α, then β ∈ α.

2. It is well-ordered by ∈, i.e. ∈ is a linear order and every subset of α
has a minimal element. (∈ and < are usually used interchangably in
the context of ordinals.)

A successor is an ordinal of the type α = β ∪ {β} := β + 1 and a limit
ordinal takes the form α =

⋃
β∈α β := supβ<α β.

Example 1.3. Every natural number can be represented as an ordinal: 0 =
∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, etc. We write the set of
natural numbers as the limit ordinal ω = {∅, {∅}, {∅, {∅}}, {∅, {∅, {∅}}, . . .}.
ω + 1 := ω ∪ {ω} is an infinite successor.

Theorem 1.4. Any well-ordered set can be put in bijection with an ordinal.

Ordinals are a generalization of the natural numbers, and the most
important usage of ordinal numbers is in the definitions of transfinite in-
duction:

Theorem 1.5. Suppose P is a property such that if P holds for all β < α,
then P holds for α. Then P holds for all ordinal numbers.

Definition 1.6. A cardinal number is an ordinal that does not inject onto
a smaller ordinal, i.e. one that is “bigger” than all ordinals preceding it.
The αth infinite cardinal is denoted either ωα or ℵα. We write ℵ0 = ω0 = ω.

Definition 1.7. A cardinal κ is regular if for any cardinal λ < κ and any
function f : λ→ κ, the range of f is bounded in κ. Otherwise κ is singular.
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Example 1.8.

• ω is regular because finite functions have finite images.

• For any cardinal, κ+ (the least cardinal greater than κ) is regular:
Recall that |κ×κ| = κ for all infinite cardinals κ. If f : κ→ κ+, then
f(α) < κ+ for all α < κ, i.e. |f(α)| < κ+. Therefore

⋃
α∈κ f(α) has

cardinality κ. Hence im f ⊆ β for some β < κ+.

• ℵω is singular because ω < ℵω and the map f : n 7→ ℵn is unbounded
in ℵω.

Definition 1.9. A cardinal κ is a strong limit if for every cardinal λ < κ,
we have 2λ < κ.

Example 1.10.

• ω is a strong limit.

• If ωα is the αth cardinal, then ωα+1 is not a strong limit because
|P (ωα)| > ωα.

• Let κ0 = ω, and for every n let κn+1 = |2κn|. Then κ∗ :=
⋃
n<ω κn is

a strong limit: if λ < κ∗, then λ ≤ κn for some n, so 2λ ≤ κn+1 < κ∗.

1.2 Regarding the Consistency of

Inaccessible Cardinals

Remark 1.11. The only example of an uncountable strong limit that we
have given is singular.

Definition 1.12. An uncountable cardinal κ is inaccessible if it is both
regular and a strong limit.

Oftentimes we define a structure using transfinite induction.
Set theorists conceive of all sets as being members of the Von Neumann

hiearchy:

Definition 1.13.

• V0 = ∅
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• Vα+1 = P(Vα)

• If α is a limit, Vα =
⋃
β<α Vβ.

• V =
⋃
α an ordinal Vα

Remark 1.14. V is a proper class, not a set.

Theorem 1.15. If κ is inaccessible, then Vκ satisfies the axioms of ZFC.

Fact 1.16. If α is a limit ordinal, then Vα satisfies all of the axioms of ZFC
other than replacement.

Example 1.17. Most of the axioms are uncontroversial here.

Proof of Theorem 1.15. The tricky part is verifying replacement, which states
that the image of every function with a set as a domain is a set. So we want
to show that if f is a function that takes values in Vκ and dom f ∈ Vκ, then
im f ∈ Vκ.

We claim that if α < κ, then |Vα| < κ. Prove this by induction on
α < κ. For every α, we assume as the inductive hypothesis that if β < α
then |Vβ| < κ. If α is a successor, then α = β + 1, so |Vα| = |P(Vβ)| < κ
since κ is a strong limit. If α is a limit, then |Vα| = |

⋃
β<α Vα| < κ because

β 7→ |Vβ| < κ and κ is regular.
It follows that if x ∈ Vκ then |x| < κ: If x ∈ Vκ then there is some α < κ

such that x ∈ Vα, so |x| ≤ |Vα| < κ.
Therefore, if f is a function and dom f ∈ Vκ, then since | dom f | < κ we

have | im f | < κ. im f ⊆ Vκ since f takes values in Vκ, so for every x ∈ im f
let αx be such that x ∈ Vαx . Let β =

⋃
x∈im f αx, so im f ⊆ Vβ. β < κ

because κ is regular, so im f ∈ Vβ+1 ⊆ Vκ.

Theorem (Gödel’s Second Incompleteness Theorem). ZFC cannot prove
its own consistency.

Theorem (Gödel’s Completeness Theorem). A theory has a model if and
only if it is consistent.

Corollary 1.18. ZFC cannot prove the existence of an inaccessible cardinal.

Corollary 1.19. Con(ZFC+“there exists an inaccessible cardinal”) implies
Con(ZFC+“there do not exist any inaccessible cardinals”).
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Proof. Let κ be the least inaccessible and consider Vκ, which contains no
inaccessible cardinals.

Remark 1.20. Vω =
⋃
n<ω Vn proves that the negation of the infinity axiom

is consistent.

1.3 Measures

The are some connections between the measures used in analysis and those
used for set theory.

Question (Lebesgue). Find a function m : P(R)→ R such that:

1. m(R) =∞ and m([0, 1]) <∞;

2. m(X) = m(X + r) for all r ∈ R;

3. if 〈Xn : n ∈ N〉 ⊂ P(R) is a sequence of pairwise disjoint sets, then
m
(⋃

n∈NXn

)
=
∑

n∈Nm(Xn).

Theorem (Vitali). Assuming AC, no.

Remark 1.21. With AC, this is still an interesting question.

Definition 1.22. An uncountable cardinal κ is measurable if there is a non-
principal κ-complete ultrafilter U on κ. In other words, there is U ⊂ P(κ)
such that the following hold:

1. For all α < κ, {α} /∈ U ;

2. If X ∈ U and X ⊆ Y , then Y ∈ U ;

3. If X ⊂ κ and X /∈ U , then κ \X ∈ U ;

4. If λ < κ and 〈Xξ : ξ < λ〉 ⊂ U , then
⋂
ξ<λXξ ∈ U .

We often call U a measure on κ.

Remark 1.23. If we did not require κ to be uncountable in this definition,
ω would be measurable.

Theorem 1.24. If κ is measurable, then κ is inaccessible.
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Proof. Let U be a measure on κ. First we show that κ is regular. We
make two assertions that we leave as exercises: (1) if X is bounded in
κ, i.e. if there is some β < κ such that X ⊂ β, then X /∈ U ; (2) if
κ =

⋃
ξ<λXξ for some λ < κ, then there is some ξ < λ such that Xξ ∈ U .

Now suppose that there is a function f : λ → κ for some λ < κ. For each
ξ, let Xξ = f(ξ) \

⋃
η<ξ f(η). Hence by (1) we know that Xξ /∈ U for all

ξ < λ. If f were unbounded in κ, then we would contradict (2).
Now we show that κ is inaccessible. Suppose for contradiction that there

is some λ < κ such that 2λ ≥ κ. Let 〈fα : α < κ〉 be a sequence of distinct
functions from λ to {0, 1}. For each ξ < λ, if {α < κ : fα(ξ) = 0} ∈ U then
define Xξ = {α < κ : fα(ξ) = 0} and define εξ = 0. Otherwise, it must be
the case that {α < κ : fα(ξ) = 1} ∈ U , and so we define Xξ to be this set
and define εξ = 1. Then we take X :=

⋂
ξ<λXξ, and we will have X ∈ U .

However, we then find that α ∈ X if and only if fα(ξ) = εξ for all ξ < λ.
By the distinctness of the functions 〈fα : α < κ〉, this implies that X is a
singleton, which is a contradiction.

When it comes to the so-called “measure problem,” large cardinals are
in fact provably necessary.

Theorem (Solovay, Shelah). The following statements are equiconsistent:

• ZF + “all sets of reals are Lebesgue-measurable”.

• ZFC + “there is an inaccessible cardinal”.

1.4 The Tree Property

Definition 1.25. A tree is a partially ordered set T with an order <T such
that for every x ∈ T , {y ∈ T : y ≤ x} is well-ordered.

• The αth level of T is the set Tα = {x ∈ T : ot{y ∈ T : y < x} = α}.

• The height of T is sup{α : ∃x ∈ T, ot{y ∈ T : y < x} = α}.

Example 1.26. The set T of functions f : α → {0, 1} for α < ω1 is a tree
where g ≤T f if g = f � dom f . If dom f = α, then f is in the αth level of
T . T has height ω1.



1.4. THE TREE PROPERTY 9

Definition 1.27. A κ-tree T is a tree of height κ and levels of size strictly
less than κ.

Example 1.28. The previous example is not an ω1-tree because the ωth level
has size 2ω. But the set of functions from ordinals n < ω would be an ω-tree.

Definition 1.29. If T is a tree with ordering ≤T and x ∈ T , y is a descen-
dent of x if x ≤T y. We say y is an immediate descendent of x if it is a
descendent of x and there are no z ∈ T with x <T z <T y.

Lemma 1.30 (König’s Lemma). If T is an ω-tree then it has an infinite
branch, i.e. there is a set b ⊆ T such that for every n, |Tn ∩ b| = 1.

Proof. Construct b = {bn : n < ω} by induction on n using the inductive
hypothesis that for all m < n, bm has infinitely many descendents. Assume
without loss of generality that T has a root b0, i.e. a unique element on
level 0. For every n > 0, bn has finitely many immediate descendants
{xi : i < k}. Let Pi = {y ∈ T : xi ≤ y}. At least one Pi must be infinite by
the pigeonhole principle, so let bn+1 = xi.

Definition 1.31. A cardinal κ satisfies the tree property if every κ-tree T
has an unbounded branch b such that for all α < κ, |b ∩ Tα| = 1.

Example 1.32. ω satisfies the tree property.

Theorem 1.33. ω1 does not satisfy the tree property.

Proof. We will construct a tree T by induction such that the αth level Tα will
consist of sequences of rational numbers of order-type α. In other words,
elements of T will take the form 〈qβ : β < α〉 ⊂ Q where if γ < β < α,
then qγ < qβ. Since there are only countably many rational numbers, this
tree will not have an unbounded branch. (Having a cofinal branch would
be equivalent to having a sequence 〈qβ : β < ω1〉 such that for all α < ω1,
〈qβ : β < α〉 ∈ Tα.)

Our inductive hypothesis is the following: For all β < α, x ∈ Tβ, and
supx < q ∈ Q, there is a sequence y of rationals of order-type α such that
x ⊆ y and sup y ≤ q.

Zero Case: First let T0 = ∅.
Successor Case: If α = β + 1, then let Tα = {x _ 〈q〉 : x ∈ Tβ, q ∈

Q, supx ≤ q}. It is fairly immediate to see that if Tβ satisfies the inductive
hypothesis, then so will Tα.
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Limit Case: Suppose α is a limit ordinal.

Claim. For every x ∈
⋃
β<α Tα and every q ≥ supx, there is a sequence of

rationals yx,q of order-type α such that x ⊆ yx,q, sup yx,q ≤ q, and for all
β < α, yx,q � β ∈ Tβ.

Assuming the claim is true, we can let Tα = {yx,q : x ∈
⋃
β<α Tβ, q ≥

sup yx,q} where the yx,q’s witness the claim, so Tα is countable.

Proof of Claim. Suppose q ∈ Q and x ∈
⋃
β<α Tα and that the order type

of x is γ < α. Since α is a limit, there is a sequence 〈αn : n < ω〉 such
that supn<ω αn = α and α0 > γ. Let qn be a sequence of rational numbers
so that limn<ω qn = q. Then for every n, let yn+1 witness the inductive
hypothesis for qn+1 and yn, i.e. yn+1 ⊃ yn and sup yn+1 ≤ qn+1. Then⋃
n<ω yn witnesses the claim.

This finishes the construction.

Theorem (Mitchell and Silver). The following are equiconsistent:

• ω2 has the tree property.

• There is a cardinal κ that is inaccessible and has the tree property.

Theorem 1.34. If κ is measurable, then it satisfies the tree property.

Proof. Exercise.

Remark 1.35. If κ is measurable, then there are many inaccessibles below
κ!



Chapter 2

Large Cardinals and Filters

In this section we will introduce Mahlo cardinals, further develop the the-
ory of measurable cardinals, and we will also introduce weakly compact
cardinals. Most importantly, we will discuss the concept of embedding
characterizations of large cardinals.

2.1 Stationary Sets

Here we will discuss an important concept that is intertwined with the study
of large cardinals.

Definition 2.1. A function f whose domain is a subset of the ordinals is
regressive if f(α) < α for all α ∈ dom(f) \ {0}.

Remark 2.2. Obviously we have a regressive funtion f with domain ω: Just
let f(n) = n − 1. But can we get a non-constant regressive function with
domain ℵ1?

Definition 2.3. The cofinality of an ordinal δ is the least ordinal γ such
that there exists an unbounded function f : γ → δ. We denote this cf(δ) =
γ. We call such a function cofinal in δ.

Observation 2.4. If γ is any ordinal such that γ = cf(δ), then γ is in fact
a regular cardinal.

Definition 2.5. Let κ be an uncountable regular cardinal. A subset C ⊆ κ
is club in κ (or a club in κ) if:

11
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1. C is unbounded in κ, i.e. ∀β < κ,∃α ∈ C, α > β;

2. C is closed, i.e. if 〈αξ : ξ < λ〉 ⊂ C with λ < κ, then supξ<λ αξ ∈ C.

The set {X ⊂ κ : X contains a club} is called the club filter on κ.

Example 2.6. Consider (1) the set of limit ordinals in κ or perhaps (2) κ\α
for any α < κ.

Remark 2.7. We can define clubs in limit ordinals that are not cardinals.

Proposition 2.8. The club filter is κ-complete. In other words, if 〈Cξ :
ξ < λ〉 are clubs in κ and λ < κ, then

⋂
ξ<λCξ is a club in κ. (In particular,

the club filter is a filter.)

Proof. Closure of
⋂
ξ<λCξ is straightforward from the definitions.

For unboundedness, we will first argue that the intersection of any two
clubs C and D in κ is unbounded. Fix δ < κ. Using the unboundedness of
C and D, define by induction sequences 〈αn : n < ω〉 ⊂ C and 〈βn : n <
ω〉 ⊂ D such that α0 ≥ δ and αn < βn < αn+1 for all n < ω. Then we can
see that supn<ω αn = supn<ω βn = γ. (This is known as “interleaving.”) By
closure of C, we know that γ = supn<ω αn ∈ C, and by closure of D, we
know that supn<ω βn = γ ∈ D, and thus γ ∈ C ∩D.

Now let us do the general argument. We will argue that
⋂
ξ<η Cξ is

unbounded in κ by induction on η < κ.

• The statement is of course trivial if we are taking only one club, so
that gives us the base case.

• Suppose that we are considering

⋂
ξ<η+1

Cξ =

(⋂
ξ<η

Cξ

)
∩ Cξ+1.

The first part is a club by our inductive hypothesis, and the intersec-
tion of everything is a club by the same argument we used for two
clubs.
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• Now suppose we are considering
⋂
ξ<η Cξ where η is a limit ordinal.

By induction,
⋂
ξ<ζ Cξ is a club for all ζ < η. Therefore we can assume

without loss of generality that Cζ ⊆ Cξ for all ξ < ζ, i.e. the clubs
are “nested.” Now define a sequence 〈αξ : ξ < η〉 to be an increasing
sequence above some fixed δ < κ such that αξ ∈ Cξ for all ξ < η.
If β = supξ<η αξ, then β < κ by regularity. Because of nestedness,
αξ ∈ Cζ for all ζ ≤ ξ, and so β = supζ≤ξ<η αξ ∈ Cζ for all ζ < η.

This finishes the proof.

Definition 2.9. Let κ be an uncountable regular cardinal and let 〈Xα : α <
κ〉 be a collection of subsets of κ. Then4α<κXα := {α < κ : α ∈

⋂
β<αXβ}

is the diagonal intersection of this collection. A filter F on κ is normal if
for all 〈Xα : α < κ〉 ⊂ F , 4α<κXα ∈ F .

Remark 2.10. We do not necessarily have 4α<κXα ⊆ Xα for all α < κ:
Consider the example where Xα = κ \ α for all α < κ.

Proposition 2.11. If κ is an uncountable regular cardinal and 〈Cα : α < κ〉
is a collection of clubs in κ, then 4α<κCα is a club in κ. (In other words,
the club filter is normal.)

Proof. Notice that the diagonal intersection is the same if we replace each
Cα with

⋂
β≤αCβ. Hence, as in the last proof, we can assume without loss

of generality that Cβ ⊆ Cγ for γ ≤ β.
Closure: Consider 〈γξ : ξ < η〉 ⊂ 4α<κCα be a strictly increasing

sequence where η is a limit ordinal, and let supξ<η γξ = γ∗. By the definition
of the diagonal intersection, we need to show that γ∗ ∈

⋂
β<γ∗ Cβ.

The definition of diagonal intersections already tells us that γξ ∈
⋂
β<γξ

Cβ
for all ξ < η. Using nestedness, this means that γζ ∈ Cγξ for all ζ ∈ (ξ, η),
which implies that γ∗ = supζ<η γζ = supξ≤ζ<η γζ ∈ Cγξ for all ξ < η. Again
using nestedness, we conclude that γ∗ ∈ Cβ for all β < γ∗.

Unboundness: Given β < κ, we will inductively define a sequence 〈γn :
n < ω〉 as follows: Let γ0 be any ordinal in the interval (β, κ). Given γn,
choose γn+1 ∈ (γn, κ) to be an element of

⋂
α<γn

Cα, which we know is a
club. Then let γ∗ = supn<ω γn.

Of course, γ∗ is larger than β, so we just need to show that γ∗ ∈ 4α<κCα,
i.e. that γ∗ ∈ Cα for all α < γ∗. Given some particular α < γ∗, there is
some n such that α < γn. Then we see that γm ∈ Cα for all m > n. As in
our previous reasoning, γ∗ ∈ Cα.
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Definition 2.12. Let κ be regular uncountable. We say that S ⊆ κ is
stationary if S ∩ C 6= ∅ for all clubs C ⊂ κ.

Example 2.13. Given a regular uncountable κ, all clubs in κ are stationary.
Also, {α < κ : cf(α) = ω} is stationary.

Observation 2.14. If S ⊂ κ is stationary, then S is unbounded in κ.

Theorem 2.15 (Fodor’s Lemma). Let κ be regular uncountable and let
S ⊂ κ be stationary. If f is a regressive function with domain S, then there
is a stationary subset S ′ ⊆ S and some γ < κ such that for all α ∈ S ′,
f(α) = γ.

Proof. Suppose otherwise. Then for all γ < κ, there is some club Cγ such
that for all α ∈ Cγ∩S, f(α) 6= γ. (We are sort of jumping past a step here.)
Now take C := 4γ<κCγ, which we now know is a club. Let δ ∈ C ∩ S 6= ∅,
and let f(δ) = γ < δ. By the definition of diagonal intersections, δ ∈⋂
α<δ Cα, meaning that δ ∈ Cγ, but this contradicts the way we defined

Cγ.

Corollary 2.16. There is no non-constant regressive function with domain
ℵ1.

Definition 2.17. A regular cardinal κ is Mahlo if

{δ < κ : δ is an inaccessible cardinal}

is stationary in κ.

Observation 2.18. The consistency of a Mahlo cardinal implies the con-
sistency of an inaccessible cardinal.

Exercise. The following are equivalent:

1. κ is Mahlo (as defined above).

2. κ is inaccessible and {δ < κ : δ is a regular cardinal} is stationary.
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2.2 Measurable Embeddings

Now we will further develop the theory of measurable cardinals.

Definition 2.19. We say that U is a normal measure on an uncountable
regular cardinal κ if it is a normal κ-complete nonprincipal ultrafilter. The
means:

• U is an ultrafilter;

• for all α < κ, {α} /∈ U ;

• for all λ < κ, 〈Xξ : ξ < λ〉 ⊂ U ,
⋂
ξ<λXξ ∈ U ;

• for all 〈Xξ : ξ < κ〉 ⊂ U , 4ξ<κXξ ∈ U .

Exercise. The following are equivalent for an uncountable regular cardinal
κ:

1. U is a non-principal κ-complete normal filter on κ;

2. U is a non-principal κ-complete filter on κ such that for all X ∈ U
and all regressive functions f with domain X, there is some γ < κ
and some X ′ ⊆ X such that for all α ∈ X ′, f(α) = γ.

Theorem 2.20. If κ is measurable, then there is a normal measure on κ.

Proof. Fix a κ-complete non-principal ultrafilter U on κ. We will define a
κ-complete non-principal ultrafilter D on κ which will also be normal.

We will define a relation <∗ on the set of functions f : κ→ κ as follows:
f <∗ g if and only if {α < κ : f(α) < g(α)} ∈ U . Furthermore, write
f =∗ g if and only if {α < κ : f(α) = g(α)} ∈ U . Using the fact that
U is an ultrafilter, we can see that <∗ is transitive and is a total ordering,
meaning that if f, g : κ→ κ, then either f <∗ g, g <∗ f , or f =∗ g.

Furthermore, we can see that <∗ is well-founded: Suppose for contra-
diction that f0 >

∗ f1 >
∗ . . . >∗ fn >

∗ . . .. Let Xn := {α < κ : fn(α) >
fn+1(α)}. So Xn ∈ U by definition of this ordering. Let X :=

⋂
n<ωXn, so

X ∈ U by κ-completeness. Then if α ∈ X, we have a descending sequence

f0(α) > f1(α) > . . . > fn(α) > . . . ,
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which is a contradiction.
Now we let f : κ → κ be the <∗-least function such that for all γ < κ,

{α < κ : f(α) > γ} ∈ U . The set of such functions is non-empty because it
contains the diagonal function d : α 7→ α, and it contains a <∗-least element
because this is a well ordering. We then define D to be the collection of
X ⊆ κ such that f−1(X) := {α < κ : f(α) ∈ X} ∈ U .

We must then show that D is a non-principal κ-complete normal filter.
Upwards closure is fairly immediate from the definition of D. Using the
fact that f−1(

⋂
ξ<λXξ) =

⋂
ξ<λ f−1(Xξ), we get κ-completeness as well. We

have guaranteed that f−1({γ}) /∈ U by the definition of f , hence we have
non-principality.

We are left to prove normality. Using the above exercise, we will consider
some X ∈ D and a regressive function h with domain X. Let g be defined
on f−1(X) so that g(α) = h(f(α)). We know that f−1(X) ∈ U , and that if
α ∈ f−1(X), then g(α) < f(α) by the regressive-ness of h. Hence g <∗ f ,
and so there is some Z ∈ U and γ < κ such that Z := {α < κ : g(α) ≤
γ} ∈ U . Applying κ-completeness, we find that there is some Z ′ ∈ U and
some δ such that {α < κ : g(α) = δ} = Z ′. Let X ′ = X ∩ {f(α) : α ∈ Z ′}.
Then h is constant on X ′ with value δ.

Exercise. Let κ be a measurable cardinal and let U be a normal measure
on κ. Prove the following:

1. If C ⊂ κ is a club, then C ∈ U .

2. If X ∈ U , then X is stationary in κ.

Let us now review ultrapowers.

Definition 2.21. Let U be an ultrafilter on some set S, and for a fixed
language L and all i ∈ S let Mi = (Mi, . . .) be an L-structure. For the
f, g ∈

∏
i∈SMi, we write f =U g if and only if {i ∈ S : f(i) = g(i)} ∈ U .

Let [f ]U (or just [f ] when the context is clear) denote the equivalence class
of f ∈

∏
i∈SMi under the equivalence relation =U .

The the ultraproduct of Mi, i ∈ SMi, i ∈ S, which is denoted
∏

i∈S Mi/U ,
is the structure with the following properties:

• Its underlying set is {[f ]U : f ∈
∏

i∈SMi}.
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• For any n-ary relation R in L, we have a relation RU in
∏

i∈S Mi/U
where

RU([f1]U , . . . , [fn]U) holds ⇐⇒ {i ∈ S : R(f1(i), . . . , fn(i)) holds} ∈ U.

• Functions and constants in
∏

i∈S Mi/U are defined analogously.

If Mi = M for all i ∈ S, then
∏

i∈S Mi/U is an ultrapower of M and is
denoted Ult(M, U).

Fact 2.22 ( Los’ Theorem). For any formula ϕ(v1, . . . , vn), we have

∏
i∈S

Mi/U |= ϕ([f1]U , . . . , [fn]U)⇔ {i ∈ S : Mi |= ϕ(f1(i), . . . , fn(i))} ∈ U.

Moreover, if Ult(M, U) is an ultrapower, x ∈M , and cx is the function
such that cx(i) = x for all i ∈ S, then the map x 7→ [cx]U is an elementary
map M→ Ult(M, U).

Now we want to apply the ultrapower concept to measurable cardinals
and V . A quick reminder about why we are not worried about using the
proper class V :

Proposition 2.23 (Reflection Principle). If ϕ(v1, . . . , vn) is a formula and
α is an ordinal, then there is some β ≥ α such that for any x1, . . . , xn ∈ Vβ,
we have

Vβ |= ϕ(x1, . . . , xn) ⇐⇒ V |= ϕ(x1, . . . , xn).

Using conjunctions, we can extend this to any finite number of formulas.

Definition 2.24. Consider an elementary embedding j : V →M ⊂ V . We
say that δ is a critical point of j if j(α) = α for all α < δ, but j(δ) > δ.

Remark 2.25. Suppose instead we defined a critical point to be the least
ordinal δ such that j(δ) 6= δ. Then we would still conclude (using elemen-
tarity) that j(δ) > δ.

Theorem 2.26 (Scott). The following are equivalent:
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1. κ is a measurable cardinal.

2. There is an elementary embedding j : V → M with critical point κ
where M is a transitive subclass of V .

Proof of 1 =⇒ 2. Given a measurable cardinal, let U be a measure on
κ. (Usually we will want U to be normal.) The elementary embedding
j = jU : V → M will be an ultrapower map using U . We need to consider
some details though.

Showing that the ultrapower is well-defined: For any f, g : κ → V , we
write f =∗ g if and only if {α < κ : f(α) = g(α)} ∈ U , and we write f ∈∗ g
if and only if {α < κ : f(α) ∈ g(α)} ∈ U .

We need equivalence classes to be sets. Recall that the rank of x ∈ V is
the least γ such that x ∈ Vγ. For every function f : κ → V , we will define
[f ] to be the set of g of minimal rank such that f =∗ g. Hence [f ] itself
will be a set and not a proper class. (This is known as “Scott’s Trick.”)

We then define Ult(V, U) to be the model consisting of [f ] for all f :
κ → V (hence class-many) with the relation ∈∗ (where we abuse notation
to write [f ] ∈∗ [g] where f ∈∗ g for any representative).

Showing that the ultrapower is well-founded: To show that Ult(V, U) is
well-founded, we use an argument analogous to the one in Theorem 2.20
above. It can be seen that ∈∗ is an extensional relation as well. It follows
that the Mostowski collapse π gives an isomorphism Ult(V, U) ∼= M where
M is a transitive class model. From now on, we abuse notation to use [f ]
to refer to π([f ]).

Defining the embedding: Given any x ∈ V , let cx : κ→ V be defined as
cx(α) = x for all α < κ. We let j = jU be defined by j(x) = [cx]U . (Again,
this is technically π([cx]U).) This gives us j : V →M .

Arguing that the critical point of the embedding is κ: To argue that
j(γ) = γ for all γ < κ, we use induction. Clearly j(0) = 0, and by
elementarity j(α + 1) = j(α) + 1 = α + 1. By elementarity, α < β implies
j(α) < j(β), so α ≤ j(α) for all ordinals. Hence if γ < κ is a limit then
we just need to show that j(γ) ≤ γ. If [f ] = γ < j(γ), then {α < κ :
f(α) < γ} ∈ U , so using κ-completeness there is some β < γ such that
{α < κ : f(α) = β} ∈ U , so [f ] = β, a contradiction. This shows that
j(γ) = γ.
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Then we need to argue that j(κ) > κ. Let d : κ → κ be given by
d(α) = α for all α < κ. We can argue that κ ≤ [d] because α ≤ [d] for all
α < κ. Moreover, {α < κ : d(α) = α < κ = cκ(α)} ∈ U , so [d] < j(κ).

Proof of 2 =⇒ 1. Let j : V →M be a non-trivial embedding. (So we are
so far only assuming that there is some x ∈ V such that j(x) 6= x.

Claim. There is some ordinal δ such that j(δ) 6= δ, hence j(δ) > δ.

Proof of Claim. Suppose for contradiction that j fixes all ordinals and that
x is of minimal rank such that j(x) 6= x. In other words, x ∈ Vα and
for all y ∈ Vβ for β < α, we have j(y) = y. Clearly x 6= ∅ because
j(∅) = ∅ by elementarity. Because of minimality, x ⊆ j(x) because y ∈ x
implies y = j(y) ∈ j(x). Hence there must be some z ∈ j(x) \ x. Because
rank(j(x)) = j(rank(x)) = rank(x), it follows that rank(z) < rank(x) and
j(z) = z. But then z = j(z) ∈ j(x), so z ∈ x by elementarity, which is our
contradiction. (Note that we used M ⊆ V for this proof.)

Now let κ = δ witness the claim. Define

D = {X ⊆ κ : κ ∈ j(X)}. (2.1)

For the remainder of the proof, we will demonstrate that D is a measure
on κ. Upwards closure of D follows immediately from its definition. We
know that there is no α < κ such that {α} ∈ D because j({α}) = {j(α)} =
{α} 63 κ. The fact that D is an ultrafilter is because j(κ) = j(X)∪j(κ\X).

Finally, for κ-completeness, observe that if ~X = 〈Xξ : ξ < λ〉 ⊂ D for some
λ < κ, then the fact that j(λ) = λ implies that j(

⋂
ξ<λXξ) =

⋂
ξ<λ j(Xξ),

and so if κ ∈ j(Xξ) for all ξ < λ, then κ ∈
⋂
ξ<λ j(Xξ).

Proposition 2.27. If U is a measure on κ and j = jU : V → M is the
associated measurable embedding, then the following are equivalent:

1. U is a normal measure;

2. κ = [d]U where d : α 7→ α.

Proof. Note that 2. is equivalent to saying that [d]U ≤ κ since we already
have the other direction. For 1. implies 2., observe that if [f ]U < [d]U , then
f is regressive on a set in U , so it is constant with some value γ < κ by
normality, and so we have shown that [d]U ≤ κ. For 2. implies 1., we see
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that 2. implies that [f ]U < [d]U implies that [f ]U = [α → γ]U for some
γ < κ, which translates to the statement that any regressive function is
equivalent to a constant function on a set in U .

Theorem 2.28. Suppose that j : V → M ⊆ V is a non-trivial elementary
embedding, that D is the measure derived from j using 2.1 above, and that
jD : V → Ult(V,D) is the elementary embedding derived from D. Then
there is a unique elementary embedding k : Ult(V,D) → M such that for
all x ∈ V , k(jD(x)) = j(x).

Proof. For all [f ]D ∈ Ult(V,D) (where f : κ → V ), define k([f ]D) =
(jf)(κ).

First, we show that k is well-defined. If [f ]D = [g]D, then X := {α <
κ : f(α) = g(α)} ∈ D, i.e. κ ∈ j(X) = {α < j(κ) : (jf)(α) = (jg)(α)}, i.e.
k([f ]D) = (jf)(κ) = (jg)(κ) = k([g]D).

Next, we show that k is elementary. If Ult(V,D) |= ϕ([f1]D, . . . , [fn]D),
then X := {α < κ : ϕ(f1(α), . . . , fn(α))} ∈ D, so κ ∈ j(X) = {α <
j(κ) : ϕ((jf1)(α), . . . , (jfn)(α))} in M , so M |= ϕ((jf1)(κ), . . . , (jfn)(κ))},
meaning that M |= ϕ(k([f1]D, . . . , k([fn]D)).

Finally, observe that

k(jD(x)) = k([α 7→ x]D) = [α 7→ j(x)](κ) = j(x).

Theorem 2.29. Let j : V →M be a measurable embedding defined from a
normal measure U . (We can prove the following with a non-normal mea-
sure, but this makes the notation more complicated.) Then the following
are true:

1. Mκ ⊂M , i.e. if ~a = 〈aξ : ξ < κ〉 is a sequence in V such that aξ ∈M
for all ξ < κ, then ~a ∈M .

2. U /∈M .

3. 2κ ≤ (2κ)M < j(κ) < (2κ)+.

Proof. Fix j : V →M , etc.
1. For each ξ < κ, let fξ : κ → V be such that aξ = [fξ]U . Then

define g : κ → V such that g(α) = 〈fξ : ξ < α〉. Now we need to show
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that [g]U = ~a, since by definition [g]U ∈ M . For each α, g(α) is an α-
sequence, and since [d]U = [α → α]U = κ, it follows that by  Los that [g]U
is a κ-sequence. For all α > ξ, the ξth term of g(α) is fξ(α), and of course
κ \ ξ ∈ U , so the ξth term of [g]U is [fξ]U .

2. Suppose for contradiction that U ∈ M . Let e : κκ � j(κ) be given
by e(f) = [f ]U . (Note that every ordinal below j(κ) is represented by
some f : κ → κ.) Since (κκ)V ∈ M (by 1.) and since U ∈ M by our
assumption, we have e ∈ M . Therefore M |= j(κ) ≤ 2κ, but this is a
contradiction because we are supposed to have M |= “j(κ) is inaccessible”
by elementarity.

3. We have (2κ)V ≤ (2κ)M by the fact that P (κ)V = P (κ)M (from 1.).
We have (2κ)M < j(κ) again by the inaccessibility of j(κ) in M . Finally,
j(κ) < ((2κ)+)V because all ordinals below j(κ) are represented by some
function f : κ→ κ.

Corollary 2.30. If j : V →M is a measurable embedding, then V 6= M .

Fact 2.31 (Kunen). There is no non-trivial embedding j : V → V .

Fact 2.32 (Scott). There is no non-trivial embedding j : L→ L defined in
L where L is Gödel’s “constructible universe.”





Chapter 3

Kurepa Trees

3.1 A Very Quick Review of Forcing

We will review some definitions and facts without proofs.

Definition 3.1.

1. P is a poset if it is a partially ordered set with underlying order ≤P
(we often omit the subscript) and with a maximal element 1P. We will
let P denote a poset always. Elements p ∈ P are called conditions and
if p, q are conditions such that q ≤ p, then we say that q is stronger
than p, meaning that it expresses more information.

2. If p, q ∈ P, we say that p and q are compatible and write p‖q if there
is some r ∈ P such that r ≤ p, q. Otherwise we say that p and q are
incompactible and write q ⊥ q.

3. P is non-atomic if for all p ∈ P, there exist q, r ≤ p such that q ⊥ r.
(We will always assume that P is non-atomic.)

4. F ⊂ P is a filter if: (1) for all p, q ∈ F , there is some r ∈ F with
r ≤ p, q; and (2) for all p ∈ F , if p ≤ q then q ∈ F .

5. A subset D ⊆ P is dense if for all p ∈ P,∃q ≤ p, q ∈ D.

6. A filter G ⊂ P is P-generic over V if for all dense subsets D ⊂ P,
G ∩D 6= ∅. If we say that G is “a P-generic” then we mean that it is
a P-generic filter.

23



24 CHAPTER 3. KUREPA TREES

7. A subset A ⊂ P is an antichain if for all p, q ∈ A, p 6= q implies p ⊥ q.

8. An antichain A ⊂ P is maximal if for all p ∈ P, there is some q ∈ A
such that q‖p.

Proposition 3.2. The following are equivalent for a poset P and a filter
G ⊂ P:

1. G is P-generic over V .

2. G ∩ D 6= ∅ for every open dense subset of P in V , meaning every
dense subset of P in V such that p ∈ D and q ≤ p implies q ∈ D.

3. If p ∈ G and D is dense below p (i.e. ∀q ≤ p,∃r ∈ D, r ≤ q), then
G ∩D 6= ∅.

4. G ∩ A 6= ∅ for every maximal antichain A ⊂ P with A ∈ V .

Using these definitions, we can define forcing extensions.

Definition 3.3. Fix a poset P

1. We induct on rank to define P-names ẋ as sets consisting of ordered
pairs (ẏ, p) where ẏ is a P-name and p ∈ P.

2. If ẋ is a P-name and G is P-generic over V , then ẋ[G] = {(ẏ[G], p) :
p ∈ G} (where this is again defined by induction on rank).

3. If G is P-generic over V , then the model V [G] consists of ẋ[G] for all
P-names ẋ ∈ V .

Fact 3.4. Given a filter P in V , we can always produce an extension V [G]
where G is P-generic over V . Moreover, V [G] |= ZFC.

The phrasing here is somewhat vague. The justification for this fact is
that given a finite set of statements ϕ1, . . . , ϕn, we can obtain a model M
of these statements that is both countable and transitive. Then we can
use what is occasionally known as Sikorsky’s Lemma to find a filter G that
is generic over this model. Since any proof will involve only finitely many
statements, it is more convenient to consider forcing extensions over the
Von Neumann universe V .
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Theorem 3.5. The forcing relation  has the following key properties:

1. If G is P-generic over V , then V [G] |= ϕ(ẋ1[G], . . . , ẋn[G]) if and only
if there is some p ∈ G such that p  ϕ(ẋ1, . . . , ẋn).

2. “p  ϕ(ẋ1, . . . , ẋn)” is definable in V .

3. If p  ϕ(ẋ1, . . . , ẋn) and q ≤ p, then q  ϕ(ẋ1, . . . , ẋn).

3.2 Product Forcing and the Lévy Collapse

Definition 3.6. Suppose that P and Q are posets. Then P × Q is the
following poset:

1. P×Q consists of ordered pairs (p, q) such that p ∈ P, q ∈ Q;

2. 1P×Q is (1P, 1Q);

3. if (p0, q0), (p1, q1) ∈ P×Q, then (p0, q0) ≤ (p1, q1) if and only if p0 ≤P p1

and q0 ≤Q q1.

Theorem 3.7. Suppose that P and Q are posets. Then the following are
true:

1. If K is P×Q-generic over V , G = {p ∈ P : ∃q ∈ Q, (p, q) ∈ K}, and
H = {q ∈ Q : ∃p ∈ G, (p, q) ∈ K}, then G is P-generic over V and
H is Q-generic over V [G].

2. If G is P-generic over V and that H is Q-generic over V [G], then
K = G×H = {(p, q) : p ∈ G, q ∈ H} is P×Q-generic over V .

Moreover, the same is true if we reverse the roles of P, G and Q, H.

Proof of 1. First we show that G is P-generic over V . Suppose that D ⊆ P
is dense and in V . We want to show that G∩D 6= ∅. Let D′ = {(p, q) : p ∈
D, q ∈ Q}. One can argue that D′ is dense in P×Q, and therefore there is
(p0, q0) ∈ D′ ∩ (G×H). In particular, p0 ∈ G ∩D.

We still need to show that H is Q-generic over V [G], so suppose that
D ⊆ Q is dense and D ∈ V [G]. This means that there is a P-name Ḋ such
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that ḊG = D and some p0 ∈ G such that p0  “D is dense in Q”. Let
q0 ∈ H be arbitrary and let

D′ = {(p, q) ∈ P×Q : (p, q) ≤ (p0, q0), p P q ∈ Ḋ}.
We can argue that D′ is dense in P×Q below (p0, q0): If (p, q) ≤ (p0, q0),

then p P “∃r ∈ Ḋ, r ≤ q”. Hence there are p′ ≤ p and q′ ≤ q such that
p′ P “q′ ∈ Ḋ”. Hence (p′, q′) ∈ D′.

Since D′ is dense below (p0, q0) ∈ G ×H, we find (p, q) ≤ (p0, q0) such
that (p, q) ∈ (G×H) ∩D′. This means that q ∈ H ∩D.

Proof of 2. It is fairly apparent that G×H as defined is a filter. We want
to show that it is generic. Let D ⊂ P×Q be dense. Define DQ = {q ∈ Q :
∃p ∈ G, (p, q) ∈ D}. Note that DQ ∈ V [G].

We will argue that DQ is dense. To do this, let q0 ∈ Q. let DP = {p ∈
P : ∃q ∈ Q, q ≤ q0, (p, q) ∈ D}. This is dense by the density of D. Hence
there is some p′ ∈ DP ∩G which is witnessed by q′ ∈ Q, so (p′, q′) ∈ D and
in particular q′ ≤ q0.

Now let q ∈ H ∩DQ using the genericity of H over V . By the definition
of DQ, there is some p ∈ G such that (p, q) ∈ D. In other words, (p, q) ∈
(G×H) ∩ (P×Q).

Example 3.8. Add(κ, 1) ∼= Add(κ, 1)× Add(κ, 1).

Definition 3.9. We say that a poset P has the countable chain condition if
every antichain A ⊂ P is at most countable. We say that a poset P has the
κ-chain condition (sometimes abbreviated as the κ-cc) if every antichain
A ⊂ P has size strictly less than κ. (Hence P has the countable chain
condition precisely when P has the ℵ1-chain condition.)

Definition 3.10.

• We say that a poset P is countably closed if every ≤P-decreasing
sequence 〈pn : n < ω〉 has a lower bound q ∈ P, meaning that q ≤ pn
for all n < ω.

• We say that a poset P is κ-closed if every regular cardinal λ < κ,
every ≤P-decreasing sequence 〈pi : i < λ〉 has a lower bound q ∈ P.

Definition 3.11. Let λ and κ be regular cardinals with λ < κ. Then
Col(λ, κ) is the poset of partial functions p from λ to κ ordered by reverse
inclusion. In other words:
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• p ∈ Col(λ, κ) if and only if dom p ⊂ λ, ∀α ∈ dom p, p(α) ∈ κ, and
|p| < λ.

• p ≤Col(λ,κ) q if and only if q ⊆ p.

Proposition 3.12. The poset Col(λ, κ) forces κ to have cardinality λ. Also,
Col(λ, κ) preserves cardinals up to and including λ, and if κ<λ = κ, then
Col(λ, κ) preserves κ+ and all cardinals above κ+.

Definition 3.13. Suppose that λ is regular and κ is inaccessible. Then
Col(λ,< κ) consists of conditions p such that:

1. dom p ⊂ κ× λ;

2. if (δ, α) ∈ dom p, then p(δ, α) ∈ δ;

3. |p| < λ.

And p ≤Col(λ,<κ) q if and only if q ⊆ p.

Proposition 3.14. Consider the Lévy Collapse Col(λ,< κ) where λ is
regular and κ is inaccessible. The following are true:

1. Col(λ,< κ) is λ-closed.

2. Col(λ,< κ) satisfies the κ-chain condition.

3. Col(λ,< κ) forces κ to be the successor of λ.

4. Let δ < κ be an ordinal. Let Pδ = {p ∈ Col(λ,< κ) : dom p ⊂ δ × λ}
and let Pδ = {p ∈ Col(λ,< κ) : dom p ⊂ (κ \ δ)× λ}. Then Col(λ,<
κ) ∼= Pδ × Pδ.

5. If G is Col(λ,< κ)-generic over V and F : γ → ON ∈ V [G] is a
function where γ < κ, then there is some δ < κ such that F ∈ V [Gδ]
(where Gδ is the induced Pδ-generic where Pδ is defined above).

Proof. 1. If 〈pξ : ξ < η〉 is a descending sequence of conditions in Col(λ,<
κ), then

⋃
ξ<η pξ is a condition in Col(λ,< κ) and is a lower bound.

2. Suppose X ⊆ Col(λ,< κ) has size κ. By the ∆-System Lemma, there
is some d of cardinality λ and a subset X ′ ⊂ X of cardinality κ such that for
all p, q ∈ X ′ with p 6= q, dom(p) ∩ dom(q) = d. If δ = sup{γ : (α, γ) ∈ d},
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then there no more than δλ-many conditions in Col(λ,< κ) with domain d,
and since δλ < κ this means that by the Pigeonhole Principle there is some
X ′′ ⊂ X ′ of cardinality κ and some p̄ : d → κ such that for all p ∈ X ′′,
p � d = p̄. It follows that for any p, q ∈ X ′′, we have some r ≤ p, q,
specifically r = p ∪ q. Therefore X cannot be an antichain.

3. In a forcing extension by Col(λ,< κ), we can define a surjection from
λ to δ for every δ < κ. By the κ-chain condition, Col(λ,< κ) does not
collapse κ.

4. The map is just p 7→ (p � (δ × λ), p � ((κ \ δ)× λ)).

5. Let Ḟ be a Col(λ,< κ)-name for F . For ξ < γ, letDξ = {p ∈ Col(λ,<
κ) : ∃ζ ∈ ON, p  Ḟ (ξ) = ζ}. These Dξ’s can be thinned out to maximal
antichains Aξ that must have cardinality less than κ. So δ = supξ<γ |Aξ|
will have cardinality less than κ by regularity. All conditions in

⋃
ξ<γ Aξ

will be contained in Pδ′ for some δ′ < κ (as defined in the statement of the
proposition).

3.3 Defining Kurepa Trees

Definition 3.15. We say that a ℵ1-tree T is a Kurepa tree if there are more
than κ-many cofinal branches of T . In other words,

|{b : ∀α < κ, |b ∩ Tα| = 1}| ≥ ℵ2.

The Kurepa hypothesis, denoted KH, it the assertion that a Kurepa tree
exists.

This definition can be generalized in the natural way to refer to a κ-
Kurepa tree—so a plain Kurepa tree is an ℵ1-Kurepa tree. We can also
define the generalized Kurepa hypothesis at κ: KHκ.

3.4 Obtaining a Model of ¬KH

Lemma 3.16 (Silver). Suppose that P is a countably closed poset and that
T is a tree of uncountable regular height λ and with countable levels. Then
P does not add any cofinal branches to T . In other words, if G is P-generic
over V and b ∈ V [G] is a totally <T -ordered set such that |b ∩ Tα| = 1 for
all α < λ, then b ∈ V .
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Proof. Suppose that p̄ ∈ P, ḃ is a P-name, and p̄  “ḃ is a branch in T”.
We want to show that there is some a ∈ V and some q ≤ p̄ such that
q  “ḃ = ǎ”. Assume for contradiction that this is not the case.

Claim. If q ≤ p̄, x ∈ T with q  x ∈ ḃ, and β < λ, then there are q0, q1 ≤ q,
α ∈ (β, λ), and x0, x1 ≥T x such that x0 6= x1 and qi  “ḃ ∩ Tα = {xi}” for
i ∈ {0, 1}.

Proof of Claim. Otherwise, we have the negation of this statement, which
implies that there is some q̄ ≤ p̄, β̄ < λ, and x̄ ∈ T with q  “x̄ ∈ ḃ” such
that for all α < λ, all q0, q1 ≤ q̄, and all x0, x1 ≥T x̄, if qi  “ḃ ∩ Tα = {xi}
for i ∈ {0, 1}, then x0 = x1. Let a = {x ∈ T : ∃q ≤ q̄, q  x ∈ ḃ}. We can
argue that q̄  “ḃ = ǎ” because there is always some q ≤ q̄ deciding ḃ∩ Tα,
and this value must be unique. But we were specifically assuming (in the
main proof, outside this claim) that there was no a ∈ V and q ≤ p̄ with
q  “ḃ = ǎ”. We therefore have the claim.

Now we will define a set {qs : s ∈ 2<ω} (meaning s is a finite binary
string) of conditions in P, a set {αn : n < ω} of ordinals below λ, and a set
{xs : s ∈ 2<ω of points in T with the following properties:

1. If s v t (meaning that there is some n < ω such that s = t � n), then
qt ≤P qs and xs ≤T xt.

2. For all s ∈ 2<ω and |s| = n, then qs  Tαn ∩ ḃ = {xs}.

3. If s, t ∈ 2<ω, |s| = |t| = n, and s 6= t, then xs 6= xt.

We define the qs’s by induction on |s|. We let q∅ be any condition below
p̄ such that for some α∅ and x∅, q∅  Tα∅ ∩ ḃ = {x∅}. If we have defined
qs, xs, and αn, then apply the claim to find q′s_0, q

′
s_1 ≤ qs, distinct x′s_0

and x′s_1, and some α∗ > αn such that qs_i  ḃ∩ Tα∗ = x′s_i. Then we can
choose qs_i ≤ q′s_i, xs_i ≥ x′s_i, and αn+1 greater than these α∗’s so that
xs_i ∈ Tαn+1 . Hence everything is “evened out” and we have defined the
qs’s, xs’s, and αn’s.

Now let γ = supn<ω αn and observe that γ < λ. For each f ∈ 2ω, use
the countable closure of P to find some qf such that qf ≤ qf�n for all n < ω
and there is some xf such that qf  ḃ∩Tγ = {xf}. Then if f 6= g, it follows
that xf 6= xg. But there are more than countably many f ∈ 2ω and only
countably many elements in Tγ, so we have found a contradiction.
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Proposition 3.17. Suppose that κ is inaccessible and P is a poset such
that |P| < κ. If G is P-generic over V , then V [G] |= “κ is inaccessible”.

Proof. It is immediate that P has the κ-chain condition and therefore pre-
serves regularity of κ. It remains to show that κ is a strong limit in the
extension.

If Ẋ is a P-name and P “Ẋ ⊂ δ”, then we say that Ẋ is a nice name
if there are maximal antichains Aα ⊂ P below p for α < δ such that all
elements of Ẋ take the form 〈α̌, p〉 for some p ∈ Aα. One can argue that if
P “Ẋ ⊂ δ”, then there is some Ẏ such that P “Ẏ = Ẋ” and Ẏ is a nice
name.

Observe that if δ < κ, then there are at most δ|P|-many nice P-names
for subsets of δ and |P|δ < κ. Therefore V [G] |= “2δ < κ”.

Theorem 3.18. Suppose κ is inaccessible and P := Col(ℵ1, < κ) is the
Lévy Collapse. If G is P-generic over V , then V [G] |= ¬KH.

Proof. Suppose that T is a ℵ1-tree in V [G]. Then T can be coded as a
subset of ℵ1. Therefore, by point (5) of Proposition 3.14 we find some
δ < κ for the factoring P ∼= Pδ × Pδ such that T ∈ V [Gδ] (where Gδ is
induced from G using this isomorphism).

A subtle but important point is that Pδ remains countably closed in
V [Gδ] since Pδ is countably closed. Therefore, by Silver’s Lemma, all cofinal
branches of T are already in V [Gδ]. By Proposition 3.17, V [Gδ] |= “2ℵ1 <
κ”. Hence Pδ adds a surjection from ℵ1 to the set of branches of T , so there
are at most ℵ1-many branches of T in V [G].



Chapter 4

Gödel’s Model L

Here we will discuss Gödel’s constructible universe.

4.1 The Definition of L and its Basic

Properties

We need to deal with definability in the model-theoretic sense. We will
do so somewhat informally. We know that X is definable in a structure
(M, . . .) if there is a formula ϕ(v, w̄) and a set of parameters b̄ such that X
is the set of a ∈ M satisfying ϕ(a, b̄). It takes a good amount of work to
justify notions of definability can be expressed in the language of set theory
because one must consider what it means to refer to a formula ϕ which is
not obviously expressible as a set. For our purposes here, we are assuming
the existence of some Gödel coding pϕq of formulae ϕ.

Definition 4.1. Let A be a set. Then Def(A) is the set of sets definable
over (A,∈) using elements from A as parameters.

Proof. This follows from the fact that all finite subsets of some A are de-
finable from parameters in A.

Definition 4.2.

• L0 = ∅;

• Lα+1 = Def(Lα);

31



32 CHAPTER 4. GÖDEL’S MODEL L

• if α is a limit, then Lα =
⋃
β<α Lβ.

Gödel’s Constructible Universe L is the class model consisting of x such
that for some ordinal, x ∈ Lα.

Proposition 4.3. If n < ω, then Ln = Vn.

Proposition 4.4. The following facts are true for all α ∈ ON:

1. ∀β < α, Lβ ⊆ Lα.

2. Lα ⊆ Vα;

3. Lα is transitive;

4. Lα ∩ON = α;

5. if α ≥ ω then |Lα| = |α|.

Proof. The first three boil down to transfinite induction, and the fourth
basically starts the induction at ω.

1. This is immediate from the definition.
2. Induct on α ∈ ON. This is clear if α = 0 or if α is a limit. If

α = β + 1, then Lα = Lβ+1 = Def(Lβ) ⊂ P(Lβ) ⊂ P(Vβ) = Vα+1.
3. Again, induct on α ∈ ON. Suppose that x ∈ Lα. If α = 0, then

the statement holds vacuously, so we can assume that α > 0. Now suppose
moreover that α is the least ordinal such that x ∈ Lα, which implies that
α is not a limit, and so α = β + 1. By the definition of Lα, we see that
x ⊂ Lβ ⊂ Lα.

4. By induction again. Note that 2. implies that Lα ∩ ON ⊆ α, so we
just need to show that α ⊆ Lα.

We have L0 ∩ON = ∅ ∩ON = ∅ = 0.
If α is a limit, then Lα ∩ ON = (

⋃
β<α Lβ) ∩ ON =

⋃
β<α(Lβ ∩ ON) =⋃

β<α β = α by induction. (There is some abuse of notation here because
ON is a proper class, but the reasoning works.)

Suppose that α = β+1. Then by induction β = {γ ∈ Lβ : γ is an ordinal}
and so β ∈ Lα, so α ⊂ Lα.

5. By the above proposition, Ln is finite for all n < ω. Therefore, Lω is
countable since the Ln’s are also getting larger.

Now we induct on α ≥ ω, where we have shown the base case of |Lω| =
|ω|. For the limit case α, we use that |Lα| = |

⋃
β<α Lα| =

⋃
β<α |β| = |α|.
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The most important part of the induction is the successor case. Suppose
α = β+1. There are |β|<ω = |β|-many possible formulas with parameters in
L, and there are only countably many formulas in the language of set theory.
Therefore, |Def(Lβ)| = |β|, meaning that |Lα| = |β| = |β + 1| = |α|.

Definition 4.5. The ∆0 formulae are the smallest collection of formulae
generated from the collection of atomic formulae using the following oper-
ations:

• If ϕ is ∆0, then ∃v ∈ u, ϕ(v, w̄) and ∀v ∈ u, ϕ(v, w̄) are ∆0.

• If ϕ is ∆0, then so is ¬ϕ. If ϕ and ψ are ∆0, then so are ϕ ∧ ψ and
ϕ ∨ ψ.

Example 4.6. Some ∆0 notions include: x ⊂ y; x is transitive; f is a
function; f is an injective function; x is an ordinal; etc.

Proposition 4.7. Suppose W ⊂ V are transitive models of set theory, ϕ(v̄)
is a ∆0 formula, and ā ∈ W . Then V |= ϕ(ā) if and only if W |= ϕ(ā).
(Sometimes we write this as ϕ(ā) ⇐⇒ ϕW (ā).)

Theorem 4.8. L |= ZF.

Proof. Remember that L is transitive, so ∆0 formulas will be absolute be-
tween V and L.

• Extensionality: This follows from L being transitive.

• Pairing: If a, b ∈ L, there is some α such that a, b ∈ L. Then {a, b}
is definable, so c ∈ Lα+1.

• Regularity: It is enough to show that if y ∈ L is nonempty, then there
is some x ∈ L ∩ y such that y ∩ x = ∅. Since x ∈ L by transitivity
and “x ∩ y = ∅” is ∆0 we are done.

• Union: If X ∈ Lα and Y =
⋃
X, then Y ⊂ Lα by transitivity. The

rest follows from definability and the fact that we are only concerned
with ∆0 notions.

• Infinity: We assert that ω is definable in a ∆0 way because it does
not have any limit ordinals. (This is in contrast to ℵ1, for example.)
This shows that ω ∈ L, specifically ω ∈ Lω+1.
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• Powerset: Consider x ∈ Lα and y := P(x)∩L. Let β be large enough
that y ⊂ Lβ. Then y ∈ Lβ+1 because “z ⊂ x” defines y. The main
observation is that L |= “y = P(x)”.

• Separation: Given a formula ϕ, and x, p̄ ∈ L, we want to show that
y := {z ∈ x : L |= f(z, p̄)} ∈ L. We apply the Reflection Principle
to the Lα-hierarchy to find some α with x, p̄ ∈ Lα and y = {z ∈ x :
Lα |= ϕ(z, p̄)}. Hence y ∈ Lα+1.

• Replacement: This is similar to proving separation for L. We apply
the replacement axiom in V and then use the Reflection Principle.

4.2 Important Conceptual Tools for L

Theorem 4.9. L |= AC. More specifically, there is a well ordering <L on
L such that for every limit ordinal δ and x ∈ Lδ, we have y <L x if and
only if y ∈ Lδ and Lδ |= y <L x.

In particular, L |= ZFC.

Sketch. We make sure that the ordering on Lα+1 \ Lα end-extends the or-
dering on Lα. If α is a limit, then the ordering on Lα is a union of the
orderings on Lβ for β < α. This means that most of the work is in finding
an order for the “new” elements in Lα+1 \ Lα for every α. Every element
is defined from a formula ϕ and a parameter set p̄. Hence one needs use
the ordering of Lα to define an ordering on L<ωα , and then combine this
with an ordering on formula ϕ that uses the inductive definition of formula
construction.

We need to recall some notions that will allows us to justify the existence
of a formula defining L.

Theorem 4.10. The function α 7→ Lα is defined by a ∆1 formula and is
therefore absolute.1

1This theorem is mostly a black box for this course. A truly rigorous treatment
is presented in Keith Devlin’s textbook Constructibility. Even though the book is ex-
tremely well-written, it contains mistakes in the part of the book that works towards
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Sketch. Verifying X = Lα is mostly a matter of showing that generating
Lα+1 from Lα can be rigorously defined in a Σ1 way. This means that there
is a function that outputs all of the definable sets, which requires defining
the notion of definability and formalizing it properly.

Corollary 4.11. There is a sentence σ such that if M is a transitive set,
then (M,∈) |= σ if and only if there is some α ∈ ON such that M = Lα.

Corollary 4.12. If W is any inner model of set theory, then L ⊆ W as a
class.

Corollary 4.13. There is no cardinal κ such that L |= “κ is measurable.”

Proof. Otherwise we could take a measurable embedding j : L → M . But
we showed that M ( L, contradicting minimality of L.

4.3 GCH and Relative Constructibility

Definition 4.14. Recall that if M is a set, then the Mostowski collapse
of M is the image of the function π : M → M̄ inductively defined by the
formula π(x) = {π(y) : y ∈ x ∩M}. Sometimes we write the Mostowksi
collapse as π(M).

Theorem 4.15 (The Condensation Lemma). For all sets M and limit
ordinals α, if M ≺ Lα, then there is some β ≤ α such that π(M) ∼= Lβ.

Sketch. This uses Corollary 4.11 above together with the Mostowski col-
lapse.

Proposition 4.16. If X ⊂ M is transitive and π : M → M̄ is the
Mostowski collapse of M , then π(z) = z for all z ∈ X.

Definition 4.17. The generalized continuum hypothesis, abbreviated GCH,
is the statement that for all cardinals κ, 2κ = κ+.

Theorem 4.18. L |= GCH.

this theorem. The mistakes are pointed out in a review by Lee Stanley. Adrian Mathias
corrected these mistakes in a paper called “Weak Systems of Gandy, Jensen and De-
vlin.” A helpful discussion can be found here: https://mathoverflow.net/questions/
77734/devlins-constructibility-as-a-resource. Other textbooks that lack these
mistakes seem to gloss over the difficult issues inherent in “defining definability.”

https://mathoverflow.net/questions/77734/devlins-constructibility-as-a-resource
https://mathoverflow.net/questions/77734/devlins-constructibility-as-a-resource
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Proof. First we need to make use of the fact that |Lα| = |α| for all infinite
ordinals α.

Claim. If κ is a cardinal, then |Lκ+| = κ+.

If κ is a cardinal in L, then it is a cardinal in V , so |Lκ+ | = κ+. Therefore
it is enough to show that P(κ) ∩ L ⊆ Lκ+ .

Fix some X ⊂ κ. Let M be the Skolem hull of {X} ∪ κ inside Lα
where α is limit ordinal large enough for Lα to contain X. Then let N be
the Mostowski collapse of M . By the Condensation Lemma, there is some
β ≤ α such that N = Lβ. Since |M | = κ, it follows that |N | = κ, and
so we in fact have β < κ+. Moreover, because κ ∩M = κ is transitive, it
follows that π(X) = X, and therefore that X ∈ M = Lβ, and finally that
X ∈ Lκ+ .

Definition 4.19. Let A be a set. Then let DefA(M) consists of all subsets
of M definable over the structure (M,∈,M ∩ A). This allows us to define
relative constructibility :

• L0[A] = ∅;

• Lα+1[A] = DefA(Lα[A]);

• Lα[A] =
⋃
β<α Lβ[A] if α is a limit ordinal.

Then the model L[A] consists of all sets contained in Lα[A] for some
ordinal α.

Theorem 4.20. Certain facts about L generalize to L[A] for all sets A, as
in the following:

• L[A] is transitive, plus everything from Proposition 4.4.

• L[A] |= ZF.

• L[A] |= “∃X, V = L[X]”.

• There is a well-ordering <L[A] of L[A] definable within L[A].

• L[A] is minimal in the sense that if M ⊃ ON is a transitive class
model and A ∩M ∈M , then L[A] ⊂M .
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Sketch. Point (1) is relatively straightforward. Note that when considering
the operation DefA(M), the extra predicate A ∩M does not increase the
size of the language. Point (2) is also relatively straightfoward.

Points (3) through (5) use the following:

Claim. If Ā = L[A] ∩ A, then for all ordinals α we have Lα[A] = Lα[Ā]
and Ā ∈ L[Ā].

Once we understand this claim, we can see how the necessary arguments
can be done “internally” in L[A].

We prove the claim by induction on α. The only substantial case is the
successor case. Observe that if U = Lα[A], then A ∩ U = A ∩ U ∩ L[A] =
Ā ∩ U , so DefA(U) = DefA∩U(U). It follows that Lα+1[A] = DefA(U) =
DefA∩U(U) = DefĀ(U) = Lα+1[Ā].

Theorem 4.21 (Relative Condensation Lemma). If M ≺ Lα[A] for a limit
ordinal α, then there is some β ≤ α such that π(M) ∼= Lβ[B] where B =
π′′[A ∩M ].

Theorem 4.22. If κ is a cardinal in L[A] such that A ⊆ κ, then L[A] |=
2λ = λ+ for all cardinals λ ≥ κ in L[A].

If V |= AC, then this can generalize to “all sets” since we can code any
set as a subset of an ordinal using Gödel’s pairing function.





Chapter 5

The Diamond Principle and its
Variants

Definition 5.1. We say that the diamond principle ♦ holds if there exists
a sequence 〈Sα : α < ℵ1〉 such that Sα ⊂ α for all α < ℵ1 and such that for
all X ⊂ ℵ1, the set

{α < ℵ1 : X ∩ α = Sα}

is stationary. Such a sequence is referred to as a ♦-sequence.

Exercise. ♦ implies CH.

Theorem 5.2. L |= ♦.

Proof. Work in L and define a ♦-sequence by induction on α < ℵ1. Actually,
we will define a sequence of pairs (Sα, Cα) here Sα ⊆ α and Cα is a club
in α for all α < ℵ1. Let S0 = C0 = ∅ and let Sα+1 = Cα+1 = α + 1 for all
α < ℵ1. If α is a limit, we define the pair as follows:

(Sα, Cα) is the <L-least pair such that Sα ⊆ α, Cα is a club in
α, and Sα∩ξ 6= Sξ for all ξ ∈ Cα, and if no such pair exists then
Sα = Cα = α.

We claim that 〈Sα : α < ℵ1〉 is a ♦-sequence. Otherwise, let (X,C) be
the <L-least pair such that X ⊆ ℵ1 and C ⊆ ℵ1 is a club such that for all
α ∈ C, X ∩ α 6= Sα.

39
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Since ~A = 〈(Sα, Cα) : α < ℵ1〉 is an ℵ1-sequence of pairs of subsets of

ℵ1, one can argue that ~A ∈ Lω2 , and it also satisfies the same definition
in Lℵ2 . Also, (X,C) ∈ Lω2 as well. Now take M ≺ Lℵ2 to be countable.

Since ~A and (X,C) are definable without parameters, ~A, (X,C) ∈ M (as
elements).

We claim that M ∩ ℵ1 is an ordinal in M . If α ∈ ℵ1 ∩M , then there
is a surjection f : ω � α and without loss of generality, f ∈ M . Also we
have ω ⊂M by elementarity. Therefore α = f ′′ω ⊂M .

Let δ = ℵ1 ∩M < ℵ1. Let N = π(M) be the Mostowski collapse of
N , so by the Condensation Lemma we have N = Lγ for some γ < ℵ1. In
particular, we have γ > δ. Note that since M ≺ Lω2 , ω1 ∈ M . We can
“compute” some values of π using the fact that δ ⊂M is transitive:

• π(ℵ1) = {π(α) : α ∈M ∩ ℵ1} = {α : α ∈M ∩ ℵ1} = δ.

• π(X) = {π(α) : α ∈ M ∩ X} = {π(α) : α ∈ X ∩ δ} = {α : α ∈
X ∩ δ} = X ∩ δ.

• Similarly, π(C) = C ∩ δ.

• Also similarly, π( ~A) = {(Sα, Cα) : α < δ}.

So Lγ satisfies that (X ∩ δ, C ∩ δ) is the <L-least pair (Z,D) such that
Z ⊂ δ, D ⊆ δ is a club, and Z∩ξ 6= Sξ for all ξ ∈ D. By absoluteness of <L

in this context, this statements holds in L. Therefore we have X ∩ δ = Sδ,
and since C ∩ δ is a club in δ, we have δ ∈ C. But this contradicts the
assumption that (X,C) was a counterexample to the definition of ♦, so we
are done.

Definition 5.3. We say that strong diamond, denoted ♦+ holds, if there
exists a ♦+-sequence, which is a sequence 〈Sα : α < ℵ1〉 such that the
following hold:

1. ∀α, Sα ⊆ P(α) and Sα is countable;

2. for every X ⊆ ℵ1, there is a club C ⊆ ℵ1 such that for all α ∈ C,
X ∩ α ∈ Sα and C ∩ α ∈ Sα.

We could be more explicit and write ♦+ as ♦+
ℵ1 . There are natural

generalizations ♦+
κ for κ > ℵ1 as well.
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Proposition 5.4. The principle ♦ is equivalent to the existence of a se-
quence 〈Sα : α < ℵ1〉 such that the following hold:

1. ∀α, Sα ⊆ P(α) and Sα is countable;

2. for every X ⊆ ℵ1, there is a stationary set S ⊆ ℵ1 such that for all
α ∈ S, X ∩ α ∈ Sα.

Corollary 5.5. ♦+ =⇒ ♦

Remark 5.6. Observe that it is necessary to use Sα ⊂ P(α) in the definition
of ♦+ rather than Sα ⊂ α. Consider what would happen if enumerate point
(2) of the definition for X, Y ⊂ ℵ1 such that X ∩ Y = ∅.

Theorem 5.7. L |= ♦+.

Proof. We work in L. First we need to define the ♦+-sequence.

Claim. The set {δ < ω1 : Lδ ≺ Lω1} is a club.

Proof of Claim. The fact that this set is closed is basic model theory. To
see that it is unbounded, consider some β < ω1 and let M = SkLω1 (β + 1)
be the Skolem hull of β + 1 generated inside inside Lω1 , which we can do
using <L. Then β + 1 ⊆ M and M is transitive by a homework exercise
(Exercise 2, Sheet 5), so therefore π(M) = M = Lδ for some δ < ω1 by the
Condensation Lemma, and in particular δ > β.

So given α < ω1, let q(α) > α be the minimal ordinal below ω1 such
that Lq(α) ≺ Lω1 . Then let Sα = P(α) ∩ Lq(α). We claim that 〈Sα : α < ω1〉
is a ♦+-sequence. The sets Sα are evidently countable, so our main work
is to show that we have the guessing properties we need. Therefore let us
fix some A ⊆ ω1 for the rest of the proof. Observe that A ∈ Lω2 since we
proved that P(κ)L ⊂ Lκ+ when proving L |= GCH.

Now we will define the club CA that will witness guessing. For γ < ω1

we let MA,γ = SkLω2 ({A} ∪ γ). Observe that MA,γ is countable and that
MA,γ ∩ ω1 ∈ ω1 by an argument similar to Exercise 2 of Sheet 5 (M will
contain a surjection to any ordinal in MA,γ ∩ ω1). Hence we define CA =
C = {α < ω1 : MA,α ∩ ω1 = α}. This is a club: closure is fairly clear,
and unboundedness follows from an interleaving argument where we take
MA,αn ∩ ω1 < αn+1, then αn < MA,αn+1 ∩ ω1 < αn+2, etc.
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Claim. For all α ∈ CA, A ∩ α ∈ Sα.

Proof of Claim. Let α ∈ CA and let N be the Mostowski collapse of M =
MA,α. By the Condensation Lemma, N = π(MA,α) = Lδ for some δ < ω1.
Since MA,α∩ω1 = α, we have πM(ω1) = α, so Lδ = N |= “α is uncountable”.
But since α ∈ Lq(α) ≺ Lω1 , we also have Lq(α) |= “α is countable”, so it
follows that q(α) > δ. Since we knew that A ∩ α = πM(A ∩ α) ∈ Lδ, it
follows that A ∩ α ∈ P (α) ∩ Lq(α) = Sα.

Claim. For all α ∈ CA = C, C ∩ α ∈ Sα.

Proof of Claim. Let δ be as in the above claim. Because Lω2 is a model of
ZFC−Powerset, and therefore the same is true of Lq(α), we can do model the-
ory within the structure Lq(α) in terms of definability and so on. Moreover,
Lq(α) contains the sets Lδ, α, and A ∩ α, so we can define

Ĉ = {β < α : SkLδ({A ∩ α} ∪ β) ∩ α = β} ∈ Lq(α).

We would like to show that

{β < α : SkLω2 ({A} ∪ β)∩ ω1 = β} = {β < α : SkLδ({A∩ α} ∪ β)∩ α = β}
(5.1)

because this is the same as showing that Ĉ = C ∩ α.
To prove one direction, suppose β < α and that SkLω2 ({A}∪β)∩ω1 6= β.

Then there is some γ < ω1 such that γ ≥ β and γ ∈ SkLω2 ({A}∪β). Then γ
is definable in the model Lω2 using parameters in {A} ∪ β. Because β < α,
it follows that γ < α as well using the fact that α ∈ C is a closure point in
this sense. Since M = MA,α ≺ Lω2 , we see that γ is definable in M using the
parameters {A}∪β. Also, πM fixes γ and the parameters in A while giving
πM(A) = A ∩ α, so γ is definable in Lδ using parameters in {A ∩ α} ∪ β.
Therefore SkLδ({A ∩ α} ∪ β) ∩ α 6= β because γ ∈ SkLδ({A ∩ α} ∪ β) ∩ α.

The other direction for proving Equation 5.1 is analogous.

This completes the proof that ♦+ holds in L.

Definition 5.8. We say that F ⊂ P(ℵ1) is a Kurepa family if and only if
|F| ≥ ℵ2 and for all α < ℵ1, {X ∩ α : X ∈ F} is countable.

Proposition 5.9. A Kurepa tree exists if and only if a Kurepa family exists.
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Proof. Let (T,<T ) be a Kurepa tree—so it is a tree of height ℵ1 with
countable levels and at least ℵ2-many cofinal branches. We can assume
without loss of generality that T ⊂ ℵ1 and that α <T β implies that α < β.
(Such a construction can be done by inducting on the levels of T .) We then
let F be the set of cofinal branches of T .

Now suppose that F is a Kurepa family. For each X ∈ F, let fX : α 7→
X ∩ α. Then let Tα = {fX � α : X ∈ F}. Then let T =

⋃
α<ℵ1 Tα.

Theorem 5.10. If ♦+ holds, then there is a Kurepa tree.

Proof. Let 〈Sα : α < ℵ1〉 be a ♦+-sequence. We will construct a Kurepa
family that satisfies the following condition:

∀A ∈ [ℵ1]ℵ1 ,∃X ∈ [A]ℵ1 s.t. X ∈ F (5.2)

Claim. This condition implies that |F| ≥ ℵ2.

Proof of Claim. Suppose for contradiction that |F| ≤ ℵ1 and is enumerated
as {Bξ : ξ < ℵ1}. Then define a sequence A = {αξ : ξ < ω1} such that for
all ξ there is some β ∈ Bξ such that αξ < β < αξ+1. Then A witnesses the
failure of 5.2.(We could actually show that |F| = 2ℵ1 .)

Our plan is define F by defining Fβ ⊂ P(β) for β < ℵ1 and letting F

consist of all X ⊂ ℵ1 such that X ∩ β ∈ Fβ for all β < ℵ1. We succeed as
long as the Fβ’s are clearly countable and 5.2 holds.

We introduce some terms to define the Kurepa family. If C ⊂ ℵ1 and
ξ, η ∈ C are such that ξ < η but C∩(ξ, η) = ∅, then we say that ξ and η are
adjacent. If A ⊂ ℵ1 and C ⊂ ℵ1, we define t(A,C) to consist of all ordinals
of the form min{A ∩ [ξ, η)} if ξ and η are adjacent in C and A ∩ [ξ, η) is
nonempty. Observe that t(A,C) ⊂ A and that if C is a club and A ⊂ ℵ1 is
unbounded, then t(A,C) is unbounded in ℵ1.

Finally, for β < ℵ1 we define:

Fβ =

{
a ∪ t(A,C) : a ∈ [β]<ω and A,C ∈ {∅} ∪

⋃
α≤β

Sα

}
.

It is clear that Fβ is countable for all β < ℵ1, so it remains to show
that 5.2 holds. Suppose that A ⊂ ℵ1 if unbounded. Let C witness ♦+

with respect to A, and let X = t(A,C). We claim that X suffices, so we
fix β < ℵ1 and hope to show that X ∩ β ∈ Fβ. If C ∩ β is finite, then
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X ∩ β ∈ [β]<ω and we are basically done. If C ∩ β is infinite, let α be the
largest limit ordinal in C ∩ β + 1. Then X ∩ β = a ∪ t(A ∩ α,C ∩ α) for
some a ∈ [β]<ω.



Chapter 6

Mitchell Forcing

Here we will develop the theory needed to show that the consistency of a
weakly compact cardinal implies the consistency of the tree property at ℵ2.

Fact 6.1 (Specker). If κ is a cardinal and κ<κ = κ, then there is a κ+-
Aronszajn tree and therefore the tree property fails at κ+.

Corollary 6.2. If CH holds, i.e. 2ℵ0 = ℵ1, then the tree property fails at
ℵ2.

Corollary 6.3. For any cardinal κ, the tree property fails at ℵ2 in the model
V [Col(ℵ1, < κ)].

6.1 Two-Step Iterations

Definition 6.4. Suppose that (P,≤P) is a poset and (Q̇, ≤̇Q) is a P-name

for a poset. Then the two-step iteration P∗Q̇ is the poset defined as follows:

1. Conditions take the form (p, q̇) where p ∈ P and 1P  q̇ ∈ Q̇.

2. (ps, q̇s) ≤P∗Q̇ (pw, q̇w) if and only if ps ≤P pw and ps P “q̇s ≤Q̇ q̇w”.

Remark 6.5. There are different ways of defining two-step iterated forcing,
and we are using Jech’s definition.

Theorem 6.6 (Fundamental Theorem of Two-Step Iterations). Suppose
that P ∗ Q̇ is a two-step iteration. Then:

45



46 CHAPTER 6. MITCHELL FORCING

1. Suppose that G is P-generic over V and H is Q̇[G]-generic over V [G].
Then K := {(p, q̇) : p ∈ G, q̇[G] ∈ H} is P ∗ Q̇-generic over V .

2. Suppose that K is P ∗ Ġ-generic. Then G := {p ∈ P : ∃q̇, (p, q̇) ∈ K}
is P-generic over V and H := {q̇[G] : ∃p ∈ G, (p, q̇) ∈ K} is Q̇[G]-
generic over V [G].

Proof. This is analogous to the similar theorem for product forcings.
Proof of 1. To see that K is a filter, suppose that (p0, q̇0) ∈ K and

(p0, q̇0) ≤PQ̇ (p1, q̇1). Then p0 ∈ G and p0 ≤P p1, so p1 ∈ G. Also, p0 
“q̇0 ≤Q̇ q̇1”, so V [G] |= “q̇0[G] ≤Q̇[G] q̇1[G] where q̇0[G] ∈ H, so q̇1[G] ∈ H
by upwards closure. Hence (p1, q̇1) ∈ K. This gives upwards closure and
compatibility is similar.

Now we argue that K is generic. Suppose that D ⊂ P ∗ Q̇ is dense.

Claim. The set D′ = {q̇[G] : ∃p ∈ G, (p, q̇) ∈ D} ∈ V [G] is dense in Q̇[G].

Proof of Claim. We first show that for each q̇0 such that P “q̇0 ∈ Q̇”, the
set Dq̇0 := {p ∈ P : ∃q̇1, p  “q̇1 ≤ q̇0” and (p, q̇1) ∈ D} ∈ V is dense in P.
To see this, observe that for any p̄ ∈ P, there is some (p, q̇1) ∈ D such that
(p, q̇1) ≤P∗Q̇ (p̄, q̇0) by the density of D. Then the fact that p ∈ Dq̇0 follows
from the definition of ≤P∗Q̇.

Now suppose that q̇0[G] ∈ Q̇[G]. Find p̄ ∈ G such that p̄  “q̇0 ∈ Q̇”.
Then apply the above paragraph to find p ≤ p̄ such that p ∈ Dq̇0 ∩ G and
suppose q̇1 witnesses this. Then (p, q̇1) ∈ D and q̇1[G] ∈ D′.

Now use the density of D′ to find some q̇[G] ∈ H ∩D′. This means that
(p, q̇) ∈ K ∩D.

Proof of 2. This is very similar to the proof of the “Fundamental The-
orem of Product Forcing.”

Proposition 6.7. If P is κ-closed and P “Q is κ-closed”, then P ∗ Q̇ is
κ-closed.

Proof. Suppose that 〈(pα, q̇α) : α < δ〉 is ≤P∗Q̇-decreasing for some δ < κ.
Using that κ-closure of P, there is some p∗ ∈ P such that p∗ ≤P pα for all
α < δ. By the definition of the ordering of P ∗ Q̇, p∗  “〈q̇α : α < δ〉 is
decreasing”. We also have p∗  “Q̇ is κ-closed”, so it follows that there is
some q̇∗ such that p∗  “q̇∗ is a lower bound of 〈q̇α : α < δ〉”. By definition
(p∗, q̇∗) is a lower bound of 〈(pα, q̇α) : α < δ〉.
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6.2 Defining the Mitchell Forcing

Definition 6.8. We recall some notation for Cohen posets.

• If λ is a cardinal, then Add(λ, 1) consists of partial functions p : λ→ 2
such that |p| < λ where p ≤ q precisely when p ⊇ q.

• Let λ be an infinite cardinal and let δ ≥ λ be any ordinal. Then
Add(λ, δ) consists of partial functions p : δ×λ→ 2 such that |p| < λ.

• If κλ = κ, then Add(λ, κ) is λ+-Knaster.

• If p ∈ Add(λ, δ) and γ < δ, then p � γ will be used to refer to p � γ×λ.

Definition 6.9. Fix some regular κ. Mitchell forcing M(ω, κ) is the poset
consisting of pairs (p, q) such that the following hold:

1. p ∈ Add(ω, κ).

2. q is a function such that:

a) dom(q) ⊆ κ;

b) dom(q) is countable;

c) ∀α ∈ dom(q), Add(ω,α) q(α) ∈ ˙Add(ω1, 1).

The order relation (ps, qs) ≤ (pw, qw) holds if and only if the following
hold:

(i) ps ≤Add(ω,κ) pw;

(ii) dom(qs) ⊇ dom(qw);

(iii) for all α ∈ dom qw, ps � α  “qs(α) ≤ ˙Add(ω1,1) qw(α)”.

We will often refer to M(ω, κ) simply as M.

Proposition 6.10. If κ is inaccessible, then the Mitchell forcing M(ω, κ)
has the κ-chain condition. In fact, it is κ-Knaster.
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Proof. Suppose (pξ, qξ) are conditions in M(ω, κ) for ξ < κ. Then it follows
from two applications of the ∆-System Lemma (also using the fact that
inaccessibility of κ gives us λω < κ for all λ < κ) that there is some
unbounded I ⊂ κ, a finite set d1, and a countable set d2 such that for all
ξ, η ∈ I, dom(pξ) = dom(pη) = d1 and dom(qξ) ∩ dom(qη) = d2.

Since the pξ’s are functions into {0, 1}, there are only finitely many
possibilities for pξ � d1 for an arbitrary ξ ∈ I. Similarly, since for an
arbitrary ξ ∈ I we have Add(ω,α) qξ(α) ∈ ˙Add(ω1, 1) for each α ∈ d2 and
|Add(ω, α)| < κ, there are strictly fewer than κ-many possibilities for qξ(α).
Therefore we can apply the Pigeonhole Principle to I to find J ⊂ I with
|J | = κ, p̄, and q̄ such that for any ξ ∈ J , pξ � d1 = p̄ and qξ � d2 = q̄. This
means that for any ξ, η ∈ J , (pξ, qξ) and (pη, qη) are compatible.

Therefore, if G is M(ω, κ)-generic over V , then V [G] |= “κ is a cardinal”.

6.3 Projections

In this section, we will show that M(ω, κ) preserves ℵ1 and κ and collapses
all cardinals in the interval (ℵ1, κ) It then follows that V [M(ω, κ)] |= “κ =
ℵ2”. For the rest of this section, let M = M(ω, κ).

Definition 6.11. We say that π : P → Q is a projection if the following
hold:

1. For all p0 ≤P p1, π(p0) ≤Q π(p1).

2. For all p ∈ P, if q ≤ π(p), then there is some p′ ≤ p such that
π(p′) ≤ q.

Proposition 6.12. Suppose that π : P → Q is a projection and G is P-
generic over V . Then H := {q ∈ Q : ∃p ∈ G, π(p) ≤ q} is Q-generic over
V .

Lemma 6.13. V [M(ω, κ)] |= “2ω = κ”.

Proof. The map π : (p, q) 7→ p is a projection M → Add(ω, κ). It is
clear that this is order-preserving. Moreover, if p′ ≤ π(p, q) = π(p), then
(p′, q) ≤M (p, q) and π(p′, q) = p′, which gives us the second requirement.
Therefore it follows that V [Add(ω, κ)] ⊂ V [M(ω, κ)]. This shows that
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V [M(ω, κ)] |= “2ω ≥ κ”. But we can also find that since |M(ω, κ)| = κ,
there are at most κω = κ-many nice names for subsets of ω, so therefore
V [M(ω, κ)] |= “2ω ≤ κ” as well.

Lemma 6.14. V [Add(ω, α)][Add(ω1, 1)] |= “|α| ≤ ωV1 ”.

Proof. Since V [Add(ω, α)] |= “|2ω| = |α|” for α ≥ ω1 and Add(ω1, 1)
does not add new subsets of ω, it is enough to argue that in general
V [Add(ω1, 1)] |= “2ω = ω1”.

Let G be Add(ω1, 1)-generic over V and let A =
⋃
G be the generic

function ω1 → {0, 1}. Working in V [G], define F : 2ω → ω1 as follows: if
s ∈ 2ω, then F (s) is the least limit ordinal β < ω1 such that for all n < ω,
A(β + n) = s(n). The function F is injective from 2ω to ω1: if s 6= t, then
there is some n < ω such that s(n) 6= t(n), so if we had F (s) = F (t) = β,
then it would follow that A(β + n) = s(n) 6= t(n) = A(β + n).

Therefore it is enough to show that F is actually defined for all s ∈ 2ω.
For all s ∈ 2ω, work in V to define Ds ⊆ Add(ω1, 1) to consist of all
p ∈ Add(ω1, 1) such that ∃β < ω1,∀n < ω, (β + n) ∈ dom p and ∀n <
ω, p(β + n) = s(n). It enough to show that Ds is dense because if G is
Add(ω1, 1)-generic over V and p ∈ G ∩Ds, then F (s) is defined.

We argue that Ds is dense: If p ∈ Add(ω1, 1), then |p| < ω1, so choose
a limit ordinal β < ω1 large enough that dom p ⊂ β. Let p′ be a condition
so that p′ � dom p = p, β + n ∈ dom(p′) for all n < ω, and p′(β + n) = s(n)
for all n < ω. Then p′ ≤Add(ω1,1) p and p′ ∈ Ds.

Lemma 6.15. For all cardinals α < κ, M(ω,κ) “|α| ≤ ℵV1 ”.

Proof. First we use:

Claim. For all α < κ, there is a projection π : M(κ, ω) → Add(ω, α) ∗
˙Add(ω1, 1).

Proof of Claim. The projection is defined as π : (p, q) 7→ (p � α, q(α)) if
α ∈ dom(q) and π : (p, q) 7→ (p � α, 1 ˙Add(ω1,1)) otherwise. To see that this
fulfills the first requirement, suppose that (p0, q0) ≤M (p1, q1). Then we can
see that (p0 � α) ≤Add(ω,α) p1 � α. If α ∈ dom(q0), then p0 � α  “q0(α) ≤
q1(α) from the definition of the Mitchell forcing.

To see that the second requirement is fulfilled, suppose that (r, s) ≤
π(p, q). This means that r ≤Add(ω,α) p � α, and we know that r ∈ Add(ω, α),
so p′ := r ∪ p is well-defined as a function in Add(ω, κ). Let q′ be such that
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dom(q′) = dom(q) ∪ {α}, q′(α) = s, and q′(β) = q(β) for all β ∈ dom(q).
Then we can see that (p′, q′) ≤M (p, q) and π(p′, q′) ≤ (r, s).

Then this follows from Lemma 6.14.

Definition 6.16. The termspace forcing Q is the poset consisting of func-
tions q such that dom(q) ⊆ κ, dom(q) is countable, and ∀α ∈ dom(q),
Add(ω,α) q(α) ∈ ˙Add(ω1, 1).

The ordering is as follows: qs ≤ qw if dom(qw) ⊆ dom(qs) and for all
α ∈ dom qw, 1Add(ω,α)  “qs(α) ≤ ˙Add(ω1,1) qw(α)”.

Remark 6.17. The difference between point (iii) in Definition 6.8 and the
ordering of the termspace forcing is extremely important.

Lemma 6.18. The termspace forcing Q from Definition 6.16 is countably
closed.

The following is an important elementary fact of forcing:

Proposition 6.19 (Mixing Principle). Let P be any poset. If we have
p  ∃v, ϕ(v, ȧ1, . . . , ȧk), then there is some P-name σ such that we have
p  ϕ(σ, ȧ1, . . . , ȧk).

Proof of Lemma 6.18. Let 〈qn : n < ω〉 be a descending sequence of condi-
tions in Q. Let dn = dom(qn) and let d =

⋃
n<ω dom(qn). Then d will be

an at most countable subset of κ. For all α ∈ d, there will be some nα such
that α ∈ dom(qn) for all n ≥ nα. For each α ∈ dom(qn), we have

Add(ω,κ) “〈qn(α) : nα ≤ n < ω〉 is descending in Add(ω1, 1)”.

Hence

Add(ω,κ) “there is a lower bound of 〈qn(α) : nα ≤ n < ω〉”.

By the Mixing Principle, we therefore have ċα such that

Add(ω,κ) “ċα is the lower bound of 〈qn(α) : nα ≤ n < ω〉”.

More specifically, we inductively construct a maximal antichain Aα ⊂
Add(ω, κ) such that for all u ∈ Add(ω, κ), there is some ċαu such that
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u  “ċαu is a lower bound of 〈qn(α) : nα ≤ n < ω〉”. For each α ∈ d, let
ċα = {〈σ, u′〉 : ∃u ∈ Aα, u′ ≤ u, u′  σ ∈ ċαu}.

Now we let q be the condition with domain d such that for all α ∈ d,
q(α) = ċα. We see that q is a lower bound of 〈qn : n < ω〉.

Lemma 6.20. There is a projection π : Add(ω, κ)×Q�M(ω, κ).

Proof. The projection π is just the identity: π(p, q) = (p, q). However, the
ordering in M is different from that of Add(ω, κ)×Q, so there is still work
to do. Observe that (p0, q0) ≤Add(ω,κ)×Q (p1, q1) implies that (p0, q0) ≤M
(p1, q1), so the projection is automatically order-preserving.

It is left to show that if (r, s) ≤M π(p0, q0), then there is some condition
(p1, q1) ≤Add(ω,κ)×Q (p0, q0) such that π(p1, q1) ≤M (r, s). We will choose
p1 := r, so we just need to find q1. We know that for all α ∈ dom(q0), it is
the case that α ∈ dom(s) as well, and moreover that r � α  s(α) ≤ ˙Add(ω1,1)

q0(α).
We define dom(q1) = dom(s). For each α ∈ dom(s) \ dom(q0), let

q1(α) = s(α). For each α ∈ dom(q0), we define

q1(α) = {〈σ, u〉 : u ≤ r � α, u  σ ∈ s(α) or u ⊥ r � α, u  σ ∈ q0(α)}.

This gives us both of our requirements:

• 1Add(ω,α)  q1(α) ≤ ˙Add(ω1,1) q0(α);

• r � α = p1 � α  q1(α) ≤ ˙Add(ω1,1) s(α).

Lemma 6.21 (Easton). Suppose that P has the κ-chain condition and Q
is κ-closed. Then Q “P has the κ-chain condition”.

Proof. Suppose that q̄ ∈ Q and q̄ Q “Ȧ is an antichain in P of size ≥ κ”.
We will find an antichain A∗ ⊂ P such that A ∈ V and |A| = κ. By
induction on ξ < κ we define a ≤Q-decreasing sequence 〈qξ : ξ < κ〉 below
q̄ and the antichain A∗ = 〈pξ : ξ < κ〉.

The induction works as follows: In the successor case where qξ and pξ
have been defined, use the fact that qξ  “|Ȧ| ≥ κ” to choose qξ+1 ≤ qξ
and pξ+1 ∈ Ȧ and such that qξ+1  “∀η ≤ ξ, pξ+1 6= pη”. It ξ is a limit and



52 CHAPTER 6. MITCHELL FORCING

qη, pη have been defined for all η < ν, first use the κ-closure of Q to find a
lower bound q∗ξ of 〈qη : η < ξ〉, then choose qξ and pξ as an the successor
case.

Finally, we can argue in V that 〈pξ : ξ < κ〉 is an antichain in P is an
antichain. The construction was done so that pη 6= pξ for all η < ξ < κ.
Furthermore, since qξ  “Ȧ is an antichain” for all ξ < κ, it follows that for
all η < ξ < κ, we have pη ⊥ pξ.

Lemma 6.22. M(ω, κ) preserves ℵ1 (i.e. ℵV1 ).

Proof. Because the projection π : Add(ω, κ) × Q � M(κ, ω) that implies
that V [M(ω, κ)] ⊂ V [Add(ω, κ)][Q], it is enough to show that the product
Add(ω, κ)×Q preserves ℵ1.

Let µ = ℵV1 and let G × H be Add(ω, κ) × Q-generic over V . Recall
that we can write V [G ×H] = V [G][H] = V [H][G] where G is Add(ω, κ)-
generic over V [H] and H is Q-generic over V . We know that V [H] |=
“µ = ℵ′′1 because closed posets always preserve ℵ1. We know that V [H] |=
“Add(ω, κ)V has the countable chain condition” by Easton’s Lemma above,
and so therefore V [H][G] |= “µ = ℵ1” because posets with the countable
chain condition always preserve ℵ1.

6.4 Quotients and Lifted Embeddings

Theorem 6.23 (Silver). Let j : V → M be an elementary embedding with
critical point κ. Suppose that G is P-generic and H is a j(P)-generic such
that j“G := {j(p) : p ∈ G} ⊆ H. Then j(G) = H and moreover in V [H]
there is an elementary embedding j∗ : V [G] → M [j(G)] = M [H] such that
j∗ � V = j.

Remark 6.24. We typically write j∗ as j.

Proof. Of course, any element of V [G] takes the form ẋ[G] where ẋ is a
P-name in V . This allows us to define j∗ as j∗ : ẋG 7→ j(ẋ)H .

First we argue that this is well-defined. Suppose that V [G] |= “ẋ[G] =
ẏ[G]”. Then there is some p ∈ G such that p  “ẋ = ẏ”. Since j(p) ∈ H
and j(p)  “j(ẋ) = j(ẏ)”, it follows that j∗(ẋ[G]) = j(ẋ)[H] = j(ẏ)[H] =
j∗(ẏ[G]).

Next, we need to argue that this is an elementary embedding. (From the
definition, it is clear that j∗ � V = j.) Suppose that V [G] |= ϕ(ẋ1[G], . . . , ẋk[G]).
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Then there is some p ∈ G such that p VP ϕ(ẋ1, . . . , ẋk), and so we continue
with an argument analogous to the one in the previous paragraph to find
that j(p) Mj(P) ϕ(j(ẋ1), . . . , j(ẋk)) and soM [H] |= ϕ(j∗(ẋ1[G]), . . . , j∗(ẋk[G])).

Finally, to see that j(G) = H, consider the fact that there is a canonical
name Γ = {(p̌, p) : p ∈ P} for the generic filter. Therefore j(G) = j(Γ)[H] =
{(p̌, p) : p ∈ j(P)}[H] = H.

The next proposition serves as an example of this theorem:

Proposition 6.25. Let κ be measurable as witnessed by j : V → M , let
P = Add(ω, κ), and let G be Add(ω, κ)-generic over V . Then there is an
extension V [G][K] of V [G] in which a lift j : V [G]→ M [j(G)] = M [G][K]
is defined.

Remark 6.26. Observe that in this proposition, κ is no longer measurable
in V [G].

Proof. Observe thatM |= “j(P) = Add(j(ω), j(κ)) = Add(ω, j(κ))”, mean-
ing that in M , Add(ω, j(κ)) consists of finite partial functions j(κ)× ω →
{0, 1} that are ordered by reverse inclusion. This definition is absolute
enough that V |= “j(P) = Add(ω, j(κ))”.

Let P′ be the poset of finite partial functions from (j(κ)\κ)×ω → {0, 1},
ordered by reverse inclusion. Then we can see that there is an isomorphism
Add(ω, j(κ)) ∼= Add(ω, κ)×P′ given by p 7→ (p � (κ×ω), p � ((j(κ)\κ)×ω)).

Now let G be Add(ω, κ)-generic over V and let K be P′-generic over
V [G]. Observe that j(p) = p for all p ∈ Add(ω, κ), so that if we identify
Add(ω, κ) with its isomorphic copy in Add(ω, κ)× P′, then j′′G ⊂ G×K.
Furthermore, G×K is equivalent to an Add(ω, j(κ))-generic over V , so we
can apply Silver’s Lifting Lemma to obtain j : V [G]→M [G][K].

Lemma 6.27. Let j : V → M be a non-trivial elementary embedding
with critical point κ and let M = M(ω, κ). Then there is a projection
π : j(M)→M.

Proof. First, observe that we can understand the definition of j(M) by
elementarity. Considitions in j(M) take the form (p, q) where:

1. p ∈ Add(ω, j(κ));

2. dom q is a countable subset of j(κ) and for all α ∈ dom(q), Add(ω,α)

“q(α) ∈ ˙Add(ω1, 1)”.
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Moreover, we have (p0, q0) ≤j(M) (p1, q1) precisely when:

(i) p0 ≤Add(ω,j(κ)) p1;

(ii) dom q0 ⊇ dom q1 and for all α ∈ dom q1, p0 � α  q0(α) ≤Add(ω,α)

q1(α).

Now we can define the projection π as π : (p, q) 7→ (p � (κ × ω), q � κ).
We can observe that π is order-preserving.

Now we just need to show that if (r, s) ≤M π(p0, q0), then there is
some (p1, q1) ≤j(M) (p0, q0) such that π(p1, q1) ≤M (r, s). To find p1, just
let p1 := r ∪ p0, which is a well-defined function in Add(ω, j(κ)) because
r � (ω × κ) ≤ p0. Define q1 such that dom(q1) = dom(s) ∪ dom(q0).
If α ∈ dom(s), then let q1(α) = s(α). Otherwise it must be the case
that α ≥ κ, and so we let q1(α) = q0(α). Then (p1, q1) has the needed
properties.

Proposition 6.28. Let κ be measurable as witnessed by j : V → M , let
M = M(ω, κ), and let G be M-generic over V . Then there is an extension
V [G][H] of V [G] in which a lift j : V [G]→M [j(G)] is defined.

6.5 Branch Preservation Lemmas

Lemma 6.29 (Silver’s Lemma). Let κ and λ be regular cardinals. Suppose
that T is a κ tree, that 2λ ≥ κ, and that P is λ+-closed. Then P does not
add cofinal branches to T .

Proof. Generalize from Lemma 3.16, which we used for Kurepa trees.

Lemma 6.30. Assume that κ is regular and that T is a κ-tree with no
cofinal branches. If P is κ-Knaster, then P does not add any cofinal branches
to T .

Proof. Fix P and T . Let p ∈ P be such that p P “ḃ is a cofinal branch of
T”. We will find a cofinal branch of T in V .

For each α < κ, find pα ≤ p and xα ∈ T such that pα  “ḃ∩ Tα = {xα}.
By κ-Knasterness, there is an unbounded set I ⊆ κ (in particular, |I| = κ)
such that for all α, β ∈ I, pα‖pβ. Now let
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a = {t ∈ T : ∃α ∈ I, t ≤ xα} ∈ V.

We claim that a is a cofinal branch of T . From its definition we can see
that a ∩ Tα 6= ∅ for all α < κ. To see that it is will-ordered, observe that if
α, β ∈ I and α < β, then xα <T xβ because otherwise pα and pβ would be
incompatible, i.e. we would have pα ⊥ pβ. Specifically, if we had xα 6<T xβ
and r ≤ pα, pβ witnessed Knasterness, then we would have r  “ḃ is not
linearly ordered”.

Remark 6.31. There is an improvement of this lemma, due to Carl Thomas
Dean, that does not assume that T has no cofinal branches in the ground
model.

Lemma 6.32 (Unger). Suppose that κ is regular and P is a poset and P×P
has the κ-chain condition. Then if T ∈ V is a tree of height κ, P does not
add cofinal branches to T .

Remark 6.33. This lemma is a weakening of the statement that Unger
proved, which had to do with something called the κ-approximation prop-
erty. Note also that we assume nothing about the width of T since we did
not say that it needs to be a κ-tree.

Proof. Let T be a tree of height κ and suppose that there is some p ∈ P
such p  “ḃ is a cofinal branch of T” and there is no a ∈ V and q ≤ p such
that q  “ḃ = ǎ.

Claim. For all q ≤ p and α < κ, there is some β ∈ (α, κ), some q0, q1 ≤ q,
and x0 6= x1 such that qi  “ḃ(β) = xi for i ∈ {0, 1}.

Proof of Claim. This is as in the lemma of Silver that we used for Kurepa
trees. If this were not the case, and there were some q̄ ≤ p and ᾱ < κ
witnessing this, then we would have

q̄  “ḃ = {x ∈ T : ∃y ≥T x, q ≤ q̄, q  “y ∈ ḃ}.

This is because for all β ∈ (ᾱ, κ), there is some q ≤ q̄ deciding ḃ(β), and
it does so uniquely.

Now we will finish proving the lemma by building an antichain of size
κ in P × P. We define 〈(p0

ξ , p
1
ξ) : ξ < κ〉 below p at the same time as an

increasing sequence of ordinals 〈αξ : ξ < κ〉 in κ such that for all ξ < κ, p0
ξ
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and p1
ξ decide ḃ � αξ the same way but decide ḃ(αξ) differently. We define

these sequences simultaneously by a induction on ξ < κ in which the limit
and successor cases are basically identical. Suppose that for some η < ξ
we have already defined 〈(p0

ξ , p
1
ξ) : ξ < η〉 and 〈αξ : ξ < η〉. Let β < κ be

such that β > supξ<η αξ. We find some p̄ξ and xξ such that p̄ξ  ḃ(β) = x

for some x ∈ T . Observe that the implies that p̄ξ forces ḃ(αη) to be the
predecessor of x on the αth

η level of T for all η < ξ. Then we apply the
claim to find p0

ξ , p
1
ξ ≤ p̄ξ and some αξ ∈ (β, κ) such that

Now we argue that 〈(p0
ξ , p

1
ξ) : ξ < κ〉 is an antichain. Suppose for

contradiction that ξ < η < κ and that (p0
ξ , p

1
ξ) and (p0

η, p
1
η) are compatible

in the product ordering. Since p0
η, p

1
η both decide ḃ(αξ) the same way, this

implies that p0
ξ , p

1
ξ also decide ḃ(αξ) the same way—otherwise (p0

ξ , p
1
ξ) and

(p0
η, p

1
η) would be incompatible. However, this contradicts the construction,

in which p0
ξ and p1

ξ decide ḃ(αξ) differently.

Proposition 6.34. If µ is regular and P is µ-Knaster, then P× P has the
µ-chain condition.

Proof. This is a weakening of the homework problem to prove that if P is
µ-cc and Q is µ-Knaster, then P×Q is µ-cc.

6.6 Putting Everything Together

Theorem 6.35. If V |= “κ is measurable”, then V [M] |= “ℵ2 has the tree
property”.

Proof. Suppose G is M-generic over V and fix an ℵ2-tree T ∈ V [G]. Let
j : V →M be a measurable embedding with critical point κ. Let T ∈ V [G]
be a κ-tree, or in other words, an ℵ2-tree. Without loss of generality, T ⊂ κ.

First we argue that there is an extension V [G][H] in which T has a cofinal
branch b. There is a projection π : j(M) → M, so let H be j(M)/G :=
{r ∈ j(M) : π(r) ∈ G}-generic over V . Observe that for all r ∈ M,
j(r) = r because the critical point of j is κ, and so j′′M = M ⊂ j(M).
Working in V [G][H], we can apply Silver’s lifting lemma to extend j to
j : V [G] → M [j(G)] = M [G][H]. Then we define the cofinal branch b in
the usual way, where we find some z ∈ j(T )κ (that is, a point in j(T ) on
the κth level) and let b = {x ∈ T : x = j(x) <j(T ) z}.
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Now we argue that in fact b ∈ V [G]. This will follow from the projection
of products, which we will recall now. It was argued in the homework
that, working in V [G], there is a countable chain condition poset P′ and a
countably closed poset Q′ such that there is a projection π′ : P′ × Q′ →
j(M)/G. Therefore can find a filter H1 that is Q′-generic over V [G] and a
filterH2 that is P′-generic over V [G][H1] such that V [G][H] ⊂ V [G][H1][H2].

We can argue that the extension of V [G][H1][H2] over V [G] does not
contain additional cofinal branches of T , which will finish the proof. In
the homework it was proved that P′ is κ-Knaster in V [G], which implies
that P′ × P′ has the κ-chain condition in V [G], which implies by Easton’s
Lemma that P′ × P′ still has the κ-chain condition in V [G][H1], and so
Unger’s Lemma implies that that cofinal branch b could not have been
added by P′ and therefore we have b ∈ V [G][H1]. Recall that V [G] |= “κ =
ℵ2 = 2ω”, so because of the countable closure of Q′, Silver’s Lemma implies
that b ∈ V [G].

Definition 6.36. A collection A ⊂ P(S) of sets is an algebra if the following
hold:

1. X ∈ A =⇒ S \X ∈ A;

2. X, Y ∈ A =⇒ X ∩ Y ∈ A.

An algebra A is κ-complete if 〈Xξ :< λ〉 ⊂ A =⇒
⋂
ξ<λXξ ∈ A for all

ordinals λ < κ.

Definition 6.37. Let A be an algebra of subsets of S. Then an A-ultrafilter
F is a filter such that for all X ∈ A, either X ∈ F or S \X ∈ F .

We use the following proposition, which is useful for the following the-
orem.

Proposition 6.38. Suppose that κ is inaccessible and X ⊂ Vκ. Then there
is a model M ⊃ X such that M is transitive, M |= ZFC−Powerset, κ ∈M ,
and M<κ ⊂M .1

Proof. Choose some regular cardinal Θ > κ; then it is the case that HΘ :=
{x : | tc(x)| < κ} (where tc(x) is the transitive closure of x) is a model of

1This is stated slightly differently than it was in the lecture.
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ZFC − Powerset. (This is Exercise 12.13 in Jech.) Then let 〈Mξ : ξ < κ〉
be an ⊆-increasing sequence of elementary submodels of HΘ of size κ such
that Vκ ∪ {κ} ∪X ⊂ M0, and M<κ

ξ ⊂ Mξ+1. Then let M ′ =
⋃
ξ<κMξ and

let M = π(M ′), the Mostowksi collapse of M ′. By construction, M is a
transitive set model of ZFC − Powerset such that |M | = κ, κ ∈ M , and
M<κ ⊂ M . Most importantly, since X ⊂ Vκ ⊂ M , we have πM(z) = z for
all z ∈ X, and therefore X ⊂M .

Theorem 6.39 (Folklore?). Let κ be inaccessible.2 Then the following are
equivalent:

1. κ has the tree property.

2. Every κ-complete algebra A ⊂ P(κ) such that |A| = κ has a κ-
complete non-principal A-ultrafilter F .

3. Suppose M is a transitive set model of ZFC−Powerset such that |M | =
κ, κ ∈ M , M<κ ⊂ M . Then there is an elementary embedding j :
M → N where N is transitive, |N | = κ, N<κ ⊂ N , the critical point
of j is κ.

Proof of 1. =⇒ 2. assuming κ is inaccessible. We will define a κ-tree T such
that a cofinal branch of T will give us the filter.

First we need to establish some notation and facts. Let F̄ be the “gen-
eralized Frechet filter” of co-bounded sets in κ, or more precisely F̄ :=
{X ⊂ κ : |κ \ X| < κ} It is straightforward that this filter is closed
under intersections of size less than κ. Let 〈Xξ : ξ < κ〉 enumerate
{X ⊂ κ : X ∈ M, |X| = |κ \X| = κ}. Let X1

ξ = Xξ and let X0
ξ = κ \Xξ.

Let <κ2 denote
⋃
η<κ

η2, meaning the set of functions s : η → {0, 1} for
some η < κ. For s ∈ <κ2, we denote

Ys :=
⋂
ξ<η

X
s(ξ)
ξ .

Now define T to be the set of s ∈ <κ2 such that Ys has cardinality κ,
and where s <T t if s v t, i.e. dom s ⊆ dom t and t � dom s = s. For η < κ,
the level Tη = {s ∈ T : dom s = η}.

2Some of the implication partially work if κ is not inaccessible, but it seems best to
give the statement for inaccessible κ.
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We need to make sure that T has height κ and levels of width strictly
less than κ. By inaccessibility of κ, we have |η2| < κ, so the levels will
certainly have width less than κ. Now we argue that all levels of T are
non-empty. Observe that if s, t ∈ <κ2 are such that dom s = dom t and
s 6= t, then Ys ∩ Yt = ∅. Therefore, for any η < κ, we can express κ as the
disjoint union of Ys for s ∈ η2. By regularity of κ and the fact that |η2| < κ
it follows that the set of s ∈ η2 such that |Ys| = κ is non-empty.

Since κ has the tree property, it follows that T has a cofinal branch b. We
can interpret b as a function κ→ {0, 1} such that for all η < κ,

⋂
ξ<ηX

b(ξ)
ξ 6=

∅. Now define F := F̄ ∪ {X : X = ∃ξ,Xξ and b(ξ) = 1}. It is fairly
straightforward to verify from the construction that F is non-principal,
that F measures all sets in P(κ) ∩M , and that F is κ-complete.

Proof of 2. =⇒ 3. First we show that we can find such an N and a j. Fix
M with all of the required properties. Let F be a filter as in 2. with respect
to M . We define an embedding like the one for measurable cardinals.

We will define j as an ultrapower in terms of functions f : κ→M such
that f ∈ M . For such functions f, g : κ → M , let f ∈F g if and only
if {α < κ : f(α) ∈ g(α)} ∈ F . Since M satisfies the separation schema,
we have {α < κ : f(α) ∈ g(α)} ∈ M , and the same is the case when we
replace ∈ with /∈. Hence F is “as much of an ultrafilter” as we need it to
be. Moreover, we can define equivalence classes [f ]F = {g : κ → M |g ∈
M, g =F f}. Then we define N as the Mostowski collapse of the ultrapower
Ult(M,F ) = {[f ]F |f : κ→M, f ∈M}.

The fact that N is transitive comes from the fact that it is defined as
a Mostowski collapse, and the fact that |N | = κ comes from the fact that
|M | = κ. It remains to show that the critical point of j is κ and that
N<κ ⊂ N . These points follow from the same arguments that are used for
measurable embeddings with no meaningful changes necessary.

Proof of 3. =⇒ 1. It is enough to show that κ has the tree property since
we are assuming that κ is inaccessible. Let T be a κ-tree, meaning that
it has height κ and levels of width strictly less than κ. Without loss of
generality, T ⊆ κ and <T⊆ κ× κ.

Use Proposition 6.38 to find M 3 T such that M is a transitive model
of ZFC− Powerset, |M | = κ, κ ∈M , and M<κ ⊂M . Now take j : M → N
witnessing 2. and consider j(T ), which by elementarity is a j(κ)-tree in
N . Let z ∈ j(T )κ and let b = {x ∈ T : x <j(T ) z}, keeping in mind
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that j(x) = x since T ⊆ κ and the critical point of j is κ. As in similar
arguments, b is linearly ordered by <T and meets every level of T .

Since T was arbitrary, we have proved that κ has the tree property.

Theorem 6.40 (Silver). Let j : M → N be an elementary embedding with
critical point κ where M is a model of ZFC − Powerset. Suppose that G is
P-generic and H is a j(P)-generic such that j“G := {j(p) : p ∈ G} ⊆ H.
Then j(G) = H and moreover in M [H] there is an elementary embedding
j∗ : M [G]→ N [j(G)] = N [H] such that j∗ � V = j.

Proof. This is exactly the same as the proof with V in place of M . We
state this only as an observation that we only need enough of ZFC for M
to be able to interpret the forcing relation.

Theorem 6.41. If V |= “κ is weakly compact”, then V [M] |= “ℵ2 has the
tree property”.

Proof. First, observe that if Ṫ is an M-name for a κ-tree, which without
loss of generality is an M-name for a subset of κ. Therefore we can assume
that Ṫ is a nice name, meaning that elements of Ṫ take that form 〈α̌, r〉
for α < κ and r ∈ M. Moreover, we can assume that ≤Ṫ is a nice name
in a similar sense. Then the fact that |M| = κ implies that without loss
of generality, |Ṫ |, | ≤Ṫ | = κ. Therefore, we can use Proposition 6.38 to
construct a transitive set model of ZFC − Powerset with the usual needed
properties such that Ṫ ∈M .

If G is M-generic over V , then G is M-generic over M . Moreover, the
dense sets deciding points of T are in M since it satisfies the separation
schema. Therefore Ṫ [G] ∈ M [G]. We can then define a lift j : M [G] →
N [j(G)] in V [G][H] = V [j(G)] where H is j(M)/G-generic over V [G]. We
use that usual argument to find b ∈ N [G][H] ⊂ V [G][H]. Then we argue
as before that b ∈ V [G].
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