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Chapter 1

Some Basic Notions of
Machine Learning

The goal of this course is to understand certain mathematical aspects of ma-
chine learning. The material will not be computational, and it will not be
(at least directly) useful for implementation. We specifically want to under-
stand enough of the mathematical aspects to understand their connections
with mathematical logic. This means that we will omit many potentially
interesting subjects within machine learning because our specific goals and
the limitations on our time.

1.1 The Framework of Machine Learning

We will start by developing that formal language with which we can discuss
machine learning. We will give some motivation, provide some definitions,
and start looking at basic mathematical examples.

1.1.1 Conceptual Issues in Machine Learning

What is learning in general, framed in what might be an excessively abstract
way? And how does this bring us to the subject at hand?

e Wikipedia says that learning is “the process of acquiring new under-
standing, knowledge, behaviors, skills, values, attitudes, and pref-
erences.” This is too broad for what we need. Ben-David says
that learning is about “converting experience into expertise.” Coldly
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4 CHAPTER 1. SOME BASIC NOTIONS OF MACHINE LEARNING

speaking, we can equate a lot of experience with data. Understanding
and knowledge seems harder to mathematicize.

o Artifical intelligence is the capacity of machines to mimic human in-
telligence and understanding. This is also quite broad, and its full
extent is outside the scope of this course. But in this case, we should
expect understanding to be something roughly programmable.

e Machine learning is basically about converting data into functions.
According to Mohri, Rostamizadeh, and Talwalkar, “Machine learn-
ing consists of designing efficient and accurate prediction algorithms.”
Now we really have something mathematical. Ben-David and Shelev-
Shwartz say that, “machine learning is not not trying to build auto-
mated imitation of intelligent behavior, but rather to use the strengths
and special abilities of computers to complement human intelligence,
often performing tasks that fall way beyond human capabilities.”

Some natural questions come up.

o Can we expect computers to think? Well, maybe this is not the point.
Computers can process far more information than human beings, and
they can do it with far more speed. Whether they are “thinking” or
not is a separate question.

e Okay, why not just let computers go ahead and crunch the numbers?
Who needs our input? Consider the following pitfall mentioned by
Ben-David: The famous psychologist B.F. Skinner performed an ex-
periment on pigeons. The pigeons were confined to their cages, and
they were given food at random with no reference to their behavior.
At first, the pigeons would peck around, as pigeons do. When food
arrived, they would peck more often in the areas where they were
pecking when food arrived. This, in turn, increased the probability
that they would be pecking in those areas when food arrived again.
Eventually, the pigeons “learned” to search for food in specific areas
in their cages, even though this had nothing to do with their feed-
ing schedule. So we need to be aware of the limitations of inductive
reasoning.

e Is there a general lesson from that example? Zooming out, we need to
be aware that an algorithm depends to a large degree on the framing
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of the problem. This goes to the notion of prior knowledge. We will
be making some assumptions—assuming what we already know to be
true—as we consider various learning algorithms.

Concrete examples of learning tasks include, but are not limited to:

spam filters, image recognition, speech processing, and document classifi-
cation. There are a lot of options.

Going back to the mathematical perspective, here are some learning

tasks framed abstractly:

e Classification: These are problems in which data needs to be sepa-

rated. To use a classic example (from Valiant’s paper defining PAC
learning! [Val84]), imagine that there are a bunch of objects that
are either robots or elephants. The problem would be to accurately
predict whether something is a robot or elephant.

Regression: Like what you may be familiar with from statistics, this
is where the problem is to predict a value for an item. For example,
maybe one wants to predict the price of strawberries given the date.

Ranking: This is where items need to be ranked. This does not mean
e.g. ranking the size of elephants. A non-obvious example would be
search engine rankings.

Clustering: This is where data need to be gathered into clusters. This
is somewhat like classification, but in this case the clusters are not
pre-defined. Think of blocs voting in elections.

Since machine learning is such an interdisciplinary field, there is no

one model for all scenarios. In fact, we will consider at least three types
of machine learning. With this in mind, there are a number of potential
scenarios in machine learning that need to be considered:

o Supervised versus unsupervised: We say that learning is supervised

if the learner is obtaining labeled data. This is like the elephant
example, in which the status of an object—elephant or not—is given
to the learner. Learning is otherwise unsupervised.

e Batch learning versus online learning: If the learner is given a bunch

of data first, and then must derive a predictor, then we call it batch



6 CHAPTER 1. SOME BASIC NOTIONS OF MACHINE LEARNING

learning. Otherwise, if the learner is given a stream of data and makes
successive predictions, then this is online learning.

e Cooperative versus adversarial learning (or in between): This has to
do with the context in which the learner is obtaining information.
An example of adversarial learning would be the detection of spam
emails. Generally, spam emails will be disguised at something that is
not spam, and would be attempting to fool the learner.

o Active learning versus passive learning: Learnings is active if the
learner interacts with the training data in some way.

This is meant to illustrate some breadth, but we will not study all of
these scenarios carefully.

Back to pigeons: It turns out that they can be train to recognize words
[SBUR™16].

1.1.2 A Quick Primer on Probability

We need some basic concepts from probability, so let us review them now.

Definition 1.1.1. Let X be a set. A o-algebra (often referred to in a
probability context as a o-field is a subset F C P(X) of the powerset of X
with the following properties:

1. IfAC X and A€ F, then X \ A € F.

2. If (A; 19 < 0) is an at most countable sequence of subsets of X that
are in F, then (J,_, A; and [,_, A; are both in J.

Definition 1.1.2 (Kolmogorov). A probability space is a triple (2, F, P)
consisting of an underlying set €2, a g-algebra F on €2, and and a function
P :F — |0, 1] with the following properties:

1. P(0)=0and P(S) =1,

2. If (A; 1 i < 6) is a sequence of at most countably many mutually
disjoint sets (i.e. A; N A; =0 if i # j) then the equation

P (U Ai> => P(4)

<0 <0
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holds.
We may refer to a probability space in terms of the triple (Q, F, P).

We get a simple proposition which is easily provable from these require-
ments.

Proposition 1.1.3. Suppose (Q,F, P) is a probability space. Then the
following are true for all A, B € F:

1. P(S\A)=1-P(A).
2. If AC B then P(A) < P(B).
3. PLAUB)=P(A)+ P(B)— P(ANnB).

Definition 1.1.4. Given a probability space (2, F, P), a random variable
over (2,7, P) is a function X : 2 — R.

Example 1.1.5. Suppose our space € is just the set representing the out-
come of flipping a coin twice: {HH,TT, HT,TH}. Then a random variable
X could be the number of heads: X(HH) =2, X(HT) = X(TH) =1, and
X(TT) = 0.

If we write e.g. P(X < 1) then we mean that probability of the event
that X <1, i.e. 3/4.

The notion of a random variable allows us to formalize quantities that
depend on the probability space.

Definition 1.1.6. Suppose (2, F, P) is a probability space and X a random
variable over (2, F, P), the distribution Dx of X is the induced function
D : R — [0, 1] given by

Dy(z) = P(X"H2}) = P(X = 2).

The subscript for X is dropped if the context is clear.
If f:Q — {true,false}, then P, p[f(2)] will denote D({z | f(z) =
true}).

Example 1.1.7. For flipping a coin twice: Take X from the previous exam-
ple. Then D is the function such that D(0) = 1/4, D(1) = 1/2, D(2) = 1/4.
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Definition 1.1.8. A distribution D is discrete if its range is finite or count-
able.

If {z1,..., 2y} enumerates the values of the distribution, then the ez-
pected value is the sum

N
i=1

For a countably infinite distribution, the expected value of a random vari-
able is

E[Z] /OOOIP’[Z > a]dz,

at least when this integral converges.
If the distribution is composed with a function f, the expected value is

denoted E, p[f(2)].

Definition 1.1.9. Two random variables X, Y over (Q, F, P), are indepen-
dent if
P(X <z, Y <y)=PX<z) P(Y <y)

for all z,y € R.
A sequence of random variables Xi,..., X, are independent if for all
Zl,...,ZnER,

Example 1.1.10. Going back to the coin-flip example: A random vari-
able X giving the result of the first flip (1 if heads and 0 if tails) will be
independent of a random variable giving the result of the second flip.

Definition 1.1.11. Two random variables X, Y are identically distributed
if they have the same distribution, i.e. if Dx = Dy..

Example 1.1.12. Again with the coin-flip example: Consider random vari-
able X given the number of heads over two flips and the random variable
Y =1 — X giving the number of tails. Then Dy = Dy even though the
random variables are not equal!

Definition 1.1.13. We say that random variables X and Y are indepen-
dently and identically distributed or 1.i.d. if they are independent and have
the same distribution.
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Example 1.1.14 (Independent but not identically distributed). Flip a coin
once and then roll a twenty-sided die.

Suppose that X is the coin-flip variable, where heads is given with the
outcome 1, and Y is the die-roll variable. Let Dy and Dy be their re-
spective distributions. Then we can express the independence through the
conditional probability

Dx(X=1AY =5) (1/2)-(1/20)

1/2=Dx(X =1y =5) = o = B v =1/2.

Example 1.1.15 (Identically distributed but not independent). Roll a six-
sided die ten times. Let X be the number of times that a one is rolled, and
let Y be the number of times a two is rolled.

Example 1.1.16 (Independent and identically distributed). Roll a die
twice. Let X be the value of the first roll and let Y be the value of the
second roll.

1.1.3 Formal Models

We need some language to discuss particular learning scenarios.

Definition 1.1.17. Here are our most basic definitions, together with the
typically-employed notation.

1. The domain set X is a set of objects that are to be labeled. The
objects in X may be referred to as ezamples or instances, and X itself
may be referred to as the input space.

2. The set of labels or target values may be denoted as Y. It will often be
the case that Y = {0, 1}, which corresponds to a binary classification.

3. We will typically consider a subset X x Y of training data. A subset
S C X x Y may be referred to as a sample.

4. A concept is a function ¢ : X — Y. A set of concepts € is called
a concept class. We will often refer to a restriction of € called the
hypothesis set and denote it J.

5. We consider outputs h € H. An output may be referred to as a
prediction rule, predictor, or classifier.

Corrected from lecture
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Definition 1.1.18 (Informal!). A learning algorthm A is a process for
processing training data and turning it into a predictor. The definition of
the term algorithm is known to be contentious, but we will take it to be
any precise operation that is performed in discrete steps.

Example 1.1.19. Picture some red and blue dots in the upper right quad-
rant of R2. Suppose we are trying to classify points between red and blue.
One algorithm might return a rectangle with the smallest possible diameter
that includes all red points.

Given a concept class € and a set of training data, we will want to find
a reasonably good h that fits the data. The assessment of what a good fit
can be is given by the notion of error.

Definition 1.1.20 (Generalization Error). Given a hypothesis set H, a
target concept C, and a probability distribution D, the generalization error
or risk of a predictor h € H is defined as

Lpo(h) = Pevp[h(z) # c(x)] = D({z : h(x) # c(x)}).
This function may also be referred to as the risk or loss of h.

In other words, ¢ represents what is actually happening, h is a guess,
and Ly .(h) gives the probability (in the context of D that h is wrong. This
is in reference to some framing of “reality.” We also want a concept of error
that pertains to a specific data set. After all, the learner does not know
what D and c are.

Definition 1.1.21 (Empirical Error). Given a training set of the form
S ={(x1,11),..., (Tm,ym)} and predictor h, then

{i € [m] : h(x:) # yi}|

m

Ls(h) =

empirical error or training error.

Going back to specter of bad outcomes, let us first consider how one of
these models can mislead us.

Example 1.1.22 (Overfitting). Suppose we have a classification problem
where a space X = R? is given one of two values. More precisely, suppose
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that the target concept is ¢ : (z,y) — {0, 1} as given by ¢(x,y) = 1 if and
only if y > 0. Consider a sample S = {dy,...,ds, bi,..., 55} where the d@’s
are all above the z-axis and the b’s are all below. Let hg(Z) = 1 if and only
if 2= a,; for 1 <i < 5. Then Lg(hs) = 0 even though hg is obviously a
bad predictor.

This phenomenon is called overfitting. This is why we are interested in
i.i.d. variables.

1.1.4 Our First Solid Example: Empirical Risk
Minimization

Now we are close to actually doing some math. With just a couple more

definitions, we can say something positive about a learning problem.

Definition 1.1.23 (Empirical Risk Minimization). This is any algorithm
that returns a predictor h such that Lg(h) is minimized. He call such a
predictor A an ERM hypothesis.

Definition 1.1.24 (The Realizability Assumption). Given a distribution
D and a labeling function f, there exists h* such that Ly (h*) = 0.

Proposition 1.1.25 (see Shalev-Shwartz/Ben-David). Assume that H is
a finite hypothesis class, that 6 € (0,1), that € > 0, and let m be an integer

such that | 50175
< log(1941/9)
€

Then for any labeling function f, any distribution D for which the realiz-
ability assumption holds, for any i.i.d. sample S of size at least m, for any
ERM hypothesis hs, we have the bound

Lp 5 (hs) < €
with probability at least 1 — 6.

Note that the finiteness of H is used directly in that we can express such
a formula for the threshold of m.

Proof. Fix m as in the hypothesis of the proposition. Consider the set

W = {S € [:X: X ‘j]m ‘ LDJ(hS) > 6}

October 23, 2025
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consisting of “wrong” sample sets. We want to bound this set.
We also have a set of “bad” hypotheses

Hp = {h e H | LDJ(h) > 6}
and a set of “misleading” samples given by
M = {S rx| S e [DC X y]m75|h S U'CB,Ls(h) = 0}

If S € W, then in particular hg € Hp. By the realizability hypothesis,
it must be the case that if S € W then Lg(hg) = 0: there is some predictor
h such that Lg(h) is zero, therefore the learning algorithm can only output
something with Lg equal to zero. Therefore S € M. So W C M.

By the definition of M, we can write

M= [ {Sx5e[XxY" Ls(h) = 0}.

heHp

Therefore

D™ (W) < D™(M) = D™ ( L {5 12l S € [X x Y)™, Ls(h)} = 0) <
heHp

<> DS [x] S € [X x Y™, Lg(h) = 0})

heHp

The statement Lg(h) = 0 is equivalent to the statement that for all
x; € S, h(x;) = f(x;). Applying the i.1i. d. assumption, we have that for all
h e fHB,

D"({Sx | S € [X x Y™ Ls(h) =0}) = ] D{ai | hlz:) = fla)}) =

1<i<m

= (L= Log(h)" <(1—e)"
Claim. The inequality 1 — x < e™* holds for x > 0.

Proof. The inequality is an equality if x = 0. If we look at f(x) = 1—x and
g(x) = e~ and compare derivatives, we have f'(z) = —1 versus ¢'(x) =
—e* = —1/e" > —1 (for + > 0). This implies that the inequality will
hold for x > 0 as follows. Let h(z) = g(z) — f(z), so we are claiming
that h(x) > 0 for x > 0. Otherwise there would be some a > 0 such
that h(a) < 0. Then the Mean Value Theorem implies that there is some
b € (0,a) such that 0 > A/(b) = ¢'(b) — f'(b), and hence f'(b) > ¢'(b). But
this contradicts the fact that f'(z) = —1 < ¢/(z) for x > 0. O
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Applying the claim to the previous inequality, we obtain
DS x| S € [X x Y™, Ls(h) =0}) <e™

and therefore we can combine this with the sum equation above to get

L log(|3€]/9)

DWW < |Fple™ < |H]e™ < |H]e = =6,

This completes the proof. n

1.2 PAC Learning

The preceding examples fits under the general template of PAC-learnability,
which is might be the most widely-used notion of learnability.

1.2.1 Definitions and Examples

Definition 1.2.1 (PAC Learnability). A hypothesis class 3 is PAC Learn-
able if there exist a function mg : (0,1)> — N and a learning algorithm A
with the following property: For every €,0 € (0,1), every distribution D
over X, and every function f : X — {0, 1}, if the realizability assumption
holds with respect to H, D, f, then when running A on m-many i.i.d. sam-
ples with m > mg which are generated by D and labeled by f, A returns
a hypothesis h such that, with probability at least 1 — §, Lp s(h) <.

If such an A exists, then it is called a PAC learning algorithm for . The
function mg(+, -) that chooses the minimal such m is the sample complezity.

Remark 1.2.2. In other contexts we might demand that mg is a polynomial.
If it is, we will say that H is efficiently PAC learnable.

Example 1.2.3. [Proposition 1.1.25| showed that finite hypothesis classes
are PAC-learnable!

Example 1.2.4 (Learning axis-aligned rectangles). Let X = R? and let the
concept class € be the set of axis-aligned rectangles, that is, the rectangles
whose sides are parellel to the z- or y-axis. Assume a continuous probability
distribution[] So each concept ¢ will be a function indicating whether a

'We make this assumption for ease, but in theory we want to have the result for all
probability distributions.
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point in R? is in a particular rectangle (say 0 is negative and 1 is positive).
The learning problem is to determine a particular rectangle R. A hypothesis
will take the form of some axis-aligned rectangle R’.

We describe a learning algorithm A as follows: Given a sample S =
{(z0,Y0,t0),- -, (Tn,Yn, tn) Where the ¢’s are 1 is the coordinate is in R and
0 otherwise, A will return the tightest axis-aligned rectangle fitting that
sample. In other words, the sample will contain a largest value y; where
1y = 1, a smallest such y;, with ¢, = 1, a leftmost such z;, and a rightmost
x,. So the Rg that A returns will be the set of (z,y) such that z; < x < z,
and y, < y < y;. Observe that A does not produce false positives by the
convexity of rectangles.

Fix some € and § from which we will find a way to choose m. Let
Dgr denote the distribution of R, i.e. the probability of choosing a point in
R. We can assume that D(R) > € because otherwise we have the bound
automatically; errors will only occur from points inside R. We can choose
four rectangular regions inside R that Rg would have to avoid for there to
be an error, and where we also assume D(r;) = ¢/4 for ¢ € [1,4] (this is
where we use continuity).

Then we have

D({S : LD,f(RS) > 6}) S @(Ulew{s : RS N r; = @}) S

> DS :Renry=0}) <41 —e/4)" <
1€[4]

< de~ e/,

IN

So if we want D({S : Lp (Rg) > €}) < it is sufficient to choose

4 4
m > —log —.
€ 4]

(Remark: The algorithm depicted is not the only PAC learning algo-
rithm for this problem. One can also choose the largest axis-aligned rect-
angle that avoids false values from the sample.)

Remark 1.2.5. We will see a non-example—a problem that is not PAC-
learnable—below in the No Free Lunch Theorem (Theorem 1.2.10)).
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1.2.2 Agnostic Learnability

Definition 1.2.6 (True Error). P| For a distribution D over X x Y, the true
error of a prediction rule h: X — Y is

Lyp(h) = D({(z,y) : h(x) # y}).

Remark 1.2.7. The true error generalizes the generalization error. First,
any concept ¢ : X — Y, together with a probability distribution Dy on
X, induces a probability distribution D on X x Y. The true error also
generalizes the empirical error under a uniform probability distribution.

In other words, the true error generalizes the generalization error and
empirical error.

Definition 1.2.8 (Agnostic PAC Learnability). A hypothesis class H is
agnostic PAC' Learnable if there exist a function mgc : (0,1)> - N and a
learning algorithm A with the following property: For every €, € (0,1),
every distribution D over X x Y, then when running A on m-many i.1i.d.
samples with m > mgc which are generated by D, A returns a hypothesis
h such that, with probability at least 1 — ¢,

Lp(h) < min Lp(h') + €.
W e
As with PAC learnability, we have a notion of effectiveness when we require
mg¢ to be a polynomial.

Example 1.2.9 (Agnostic PAC Learnability for Finite Classes). There is
a proof here, but we will derive an equivalence below (Theorem 1.3.6)) from
which the result will follow.

1.2.3 The No Free Lunch Theorem

The No Free Lunch Theorem essentially shows that there is no universal
learner. In particular, it provides us with a hypothesis class that is not
PAC-learnable (Corollary 1.2.11] below).

2Ben-David and Shalev-Shwartz call this the “redefined” true error [SSBD14, page
45].
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Theorem 1.2.10 (No Free Lunch). Let A be any learning algorithm for the
task of binary classification over a domain X. Let m be any number smaller
than |X|/2 (where |X| may be infinite). Then there exists a distribution D
over X x {0,1} such that the following hold:

1. There exists a function f: X — {0,1} with Lp(f) = 0.
2. With probability of at least 1/7, we have that Lp(A(S)) > 1/8 over

an i.i.d. sample S of size m.

Corollary 1.2.11. Let X be an infinite domain set and let H be the set of
all functions from X to {0,1}. Then 3 is not agnostic PAC learnable.

Proof. Assume for contradiction that the class is actually learnable. Choose
some € < 1/8 and § < 1/7. By the definition of PAC learnability, there
is an algorithm A and an integer m such that for any distribution D over
X x{0,1}, if there is some function f : X — {0, 1} with Ly (f) = 0, then we
have Lp(A(S)) < e. But the No Free Lunch Theorem contradicts this. [

First we need a couple lemmas.

Proposition 1.2.12 (Markov’s Inequality). If Z is a non-negative random
variable, then for all a > 0,

P[Z > d]

IN

Proof. We have
E[Z] > / PIX > 2)dz > / PIX > aldz > a-P[X > d].
0 0

O

Lemma 1.2.13. Let X be a random variable that takes values in [0, 1] and
let u=E[X]. Then for any a € (0,1), then

—(1—
PIX >1—q >~ =1=9
a
and
—a
P[X>a]2ﬂ > u—a.
l1—a
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Proof. Homework (use Markov’s Inequality). O

Lemma 1.2.14. Let X be a random variable that takes values in [0, 1] and
whose expected value satisfies E[X] > 1/4. Then P[X > 1/8] > 1/7.

Proof. Homework (use [Lemma 1.2.13]). O

Proof of[Theorem 1.2.1() Let C be a subset of X of size 2m. Since the
learning algorithm will only observe half of the examples, we have the flex-
ibility to come up with a target function f that contradicts the samples.

There are £ = 22™-many possible functions from C to {0, 1}. Enumerate
these functions f1,. .., f,. Given f;, let D; be the distribution over C'x {0, 1}
given by

1lcl ity = fi(x)

0 otherwise.

Di({z,y}) = {

Furthermore, Lo, (fi) = D({(z,v) | fi(z) # y}) = 0 for all i.

By |Lemma 1.2.14] it is sufficient to show that for every algorithm A
that receives a training set of m samples from C x {0, 1} and returns A(S) :
C — {0, 1}, we have

max Es~om[Lp, (A(S5))] = 1/4.
1€

There are k = (2m)™-many possible sequences from C. Enumerate these
as (S; 1 1 < j < k). Given S; = (21,...,%m), let S]i- be the sequence
((x1, fi(x1)), ..., (Tm, fi(xm))). For distribution D;, the possible sets of
training data are S} for 1 < j < k, all with the same probability of be-
ing sampled. Therefore we have

By (Lo, (A(S))] = 1 - D Lo, (A(S))).

We also have

October 30, 2025
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Fixing some j and S; = (21, ..., %), let vy, . .., v, enumerate the points
not appearing in C. (If C' is infinite, then just take p larger than m.) Note
that p > m. Therefore, for every h: C'— {0,1} and i we have

1
Ly, (h) = D Z]l[h(m);éfz > 2m Z]l[h (vr)#fi(vr)] = 2p Z]l[h (vr)# fi(vr)]

zeC
because |C| = 2m. We also have

L 1 ¢ P
; Zl Lo, > Z Z Liasi w2t 2
& p

1
2 55 }F;g} Z Liagsiywnfitwn)-
As the final aspect to consider, fix some r € [p]. We can partition all
functions from the enumeration fi, ..., fy into £/2-many pairs (f;, fi) such
that for every ¢, fi(c) # fi(c) if and only if ¢ = v,. Therefore it follows
that

Tpagsyywofitwn) T ]I[A(S;.')(w);éfi/(m)] =1

and thus by symmetry we have

1
7 2 Liaseosnn = 5
i=1

Combining all of this information from the various inequalities, we have

max Es~op Lo, (A(S))] = Ifé?ff = Z Ly, (A
1o . 1 < 11
=T le Lo (A(5) = ?eulﬁ e Z AEHE£hE) = 5" 5
]

1.3 VC Dimension

All of theses examples are understandable through the notion of VC-dimension,
which will give us a clear way to assess which hypothesis classes are PAC-
learnable.
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1.3.1 Definition and Examples

Definition 1.3.1 (VC Dimension). Let H be a hypothesis class of functions
from X to {0, 1}.

1. Let C ={x1,...,2mn} € X. Then the restriction of H to C' is
He = {21, h(@1)), - (5, h))) | b € 3},

2. We say that H shatters a finite C' C X if Ho = 2/, that is, it He is
the set of all functions from C' into {0, 1}.

3. The Vapnik-Chervonenkis dimension or VC' dimension of H, which
we denote VCdim(H), is the maximal size of a set C' C X that is
shattered by JH. If H shatters arbitrarily large finite sets then we say
that the VC dimension is infinite.

Example 1.3.2. Let H = {(0,0)}. Then the VC dimension of 3 is zero
because no set can be shattered by it. (It is also obviously PAC learnable.)

Example 1.3.3. If H has cardinality d < R, (i.e. is finite) then H has VC
dimension at most d.

Example 1.3.4. Consider the set of hyperplanes in R?, i.e. lines in R2,
formatted as classifications. So for every line ¢, we have some h; classifying
all points “above” the line (this word can be tweaked) with 1 and all points
“below” the line to be 0, and h,, the other way around. (Let us assume
we have some consistent distinction for vertical lines.) Then we can argue
that the VC dimension is 3.

First, we show that there are sets of size 3 that are shattered. Consider
any three non-colinear points 7, 7, and 3. If we want them to all have the
same classification, then we put them on one side of a line. If we want
one to differ in classification from the other two, e.g. we want an h with
h(Z) = 0 and h(y) = h(Z) = 1, then we find a line separating Z from the
other two and then choose h = h/ or h = h; accordingly.

Then we want to argue that four points can never be shattered. If three
points are colinear, then the set cannot be shattered, so we can ignore such
cases. Given this restriction, we first consider the case where the four points
outline a convex set. To oversimplify, suppose w = (0,0), ¥ = (1,0), ¢ =
(0,1), and Z = (1,1). Then the pairs w-Z cannot be given a classification
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opposite that of Z-ij. The other case is where the fourth point sits in a
convex set outlined by the other three points. Then the inside point cannot
be given a classification opposite the outside points.

Example 1.3.5. Consider again the case of axis-aligned rectangles. We can
show that there is a set of size 4 which is shattered: Consider a set of points
in a diamond configuration, i.e. {(—1,0),(1,0), (0,1),(0,—1)}. We can iso-
late points across from each other by a sufficiently “skinny” or “squat”
rectangle. We can definitely get each point by itself in a rectangle, and we
can exclude any particular point, and we can catch “adjacent” points as
well.

Then we need to argue that there is no set of size 5 that can be shat-
tered. Let C' = {¢1, 9, ¢3,¢4,¢5}. Then there is a (not necessarily unique)
“topmost,” “leftmost,” “rightmost,” and “bottom-most” point. Let d be
the point that is not counted among these. Consider the assignment that
colors each ¢ # d with 1 and d with 0. This assignment is impossible to
realize, because any rectangle containing the ¢’s for ¢ # d must necessarily
contain d.

When we prove the Fundamental Theorem of Statistical Learning
below), we will have an accurate proof (minus the continuity
assumption from before) that the hypothesis class of axis-aligned rectan-
gles is PAC learnable.

1.3.2 Theoretical Implications of VC Dimension

We can now show that a hypothesis class is PAC-learnable if and only if it
has finite VC-dimension.

Theorem 1.3.6 (The Fundamental Theorem of Statistical Learning). Let
H be a hypothesis class of functions X — {0,1}. The following are equiva-
lent:

1. H is agnostic PAC-learnable.
2. H is PAC-learnable.
3. H has finite VC dimension.

Proposition 1.3.7. If H C X x {0,1} is agnostic PAC-learnable, then it
1s PAC-learnable.
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Proof. We are using the realizability assumption. Let f : X — {0,1} be
a labeling function and D a distribution on X and let h be the function
returned by the agnostic PAC algorithm.

We let D’ be the distribution on X x {0,1} given by

D'(A) =Dz € X | (z, f(x)) € A})

so that we have

Lps(h) = D{z | f(z) # h(z)}) = D'({(z,y) | y # h(x)}) =
= L@/(h) S }r}lelf}r%LD/(h/) +e= }Illllelélc L@J(h/) +e=0+c¢€.

because the realizability assumption allows us to set minyeg Lo f(h') =
0. O

Proof of 1. to 3. for|Theorem 1.3.6 This follows from the proof of the No
Free Lunch Theorem (Theorem 1.2.10): Specifically, from the point where
we observe that there are 2*™-many possible functions from C' to {0, 1},
we do not need to use the hypotheses any further. We could have instead

argued from a hypothesis class H which shatters some C' of cardinality
2m, O

November 6, 2025
For the last part of the loop, we need to develop more terminology.

Definition 1.3.8. Let H C X x Y be a hypothesis class. The growth
function of H, is the function N — N given by

I5(m) = max |Hel.

Lemma 1.3.9 (Sauer’s Lemma). If 3 is a hypothesis set with VCdim(H) =
d, then for all m € N, we have

Tac(m) < Z (m)

This lemma was derived independently by Shelah and Perles. It will use
a weak version of:

Proposition 1.3.10. If H C H' then VCdim(H) < VCdim(H').
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Proof. Homework. m

Proof. We establish the proof by induction on m + d. The left side of the
inequality is zero if m = 0. If m =1 and d € {0, 1}, the left side is one and
the right size includes either one summand of one or else two.

Assume that the statement holds for (m — 1,d — 1) and (m — 1,d). Fix
aset S ={zy,...,2,} witnessing that VCdim(H) = d, that is, a set such
that Hg is cardinality [Is¢(m). Let G := Hs.

Let 8" = {z1,...,2m_1}. Welet §; := Gg (noting that all of these
functions have domain S’, there being no proper subsets). Then we let G,
be the set of functions g with domain S’ such that both ¢~ (x,,,0) and
g (Tm, 1) are in G. If we want to count the functions in G, then we can first
count the functions in Gy, and then ask ourselves which of those functions
need to be counted again, and then we count the functions in Go. In other
words, |G| = |G1] + |G|

We have VCdim(G;) < VCdim(9y) < d. Therefore, the inductive hy-
pothesis gives us

1G] < Mg, (m — 1) :g<mi—1>‘

By the definition of Go, if a set Z C S’ is shattered by G, then the set
ZU{x,,} is shattered by G. Therefore VCdim(92) < VCdim(G) -1 =d—1.
Therefore the inductive hypothesis gives us

d—1
m —1
<II —1) < .
5o <Moo - < 3 (")
Therefore,

\9|si§d;(m;1>+ }_1 (m@_l) Si«mi—l)*(?—_f)) )

K3 K3

U

Il
=)

where the last equality is Pascal’s rule. O
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Corollary 1.3.11. Let H be a hypothesis class with VCdim(H) = d. Then

for allm > d,
em

M) < (2)"
Proof. We have
mon <3 (1) <3 (1) ()< (0) () <

d
=0 =0 7

(DS =@ () =)
— — | =(—= — — ) e“
—\d — 7 m d m —\d
The inequalities follows from: Sauer’s Lemma; the fact that (m/d) > 1;
summing over more non-negative terms; pulling out a constant; and (1 —

x) < e” where x = d/m. The last equality is the bonomial theorem. ]

We have made progress towards proving that finite VC dimension im-
plies pack learnability. The next step is to rephrase the requirements of
what we need to prove.

Definition 1.3.12. Consider a training set S and over a hypothesis class
.

1. S is e-representative (with respect to a distribution D) if

Vh € 3, | Ls(h) — Lo(h)| < c.

2. We say that J has the uniform convergence property if there exists a
function my< : (0,1)? — N such that for every ¢,§ € (0,1) and every
i.i.d. distribution D, if S is a sample of size m > my (e, d), then with
probability at least 1 — ¢, S is e-representative.

Proposition 1.3.13. If H has a uniform convergence property as witnessed
by a minimal mY<, then H is agnostically PAC learnable with sample com-
plexity mac(e,0) < m¥<(e/2,0). Furthermore, the ERMy paradigm gives a
learning algorithm.

Proof. Consider any h € H and let hg by an ERMjy; output. Since |Lg(h)—
Ly(h)| < €/2, we have

LD<h5) < Ls(hs) -+ 6/2 < Ls(h) —+ 6/2 < L@(h) + 6/2 -+ 6/2 = LD(h> + €
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where we are applying €/2-uniform convergence in the first inequality, the
ERMj property for the second, and the €/2-uniform convergence again in
the third. O

Now we know that it will be enough to prove that H has the uniform
convergence property.

Lemma 1.3.14. Let H be a hypothesis class with growth function Ils.
Then for every distribution D and every § € (0,1), we have

log(Ilg(2m))

0V 2m

with probability at least 1 — & from an i.i.d. sample S of size m.

Lo(h) — Ls(h)| < =

Before proving the lemma, which is fairly technical, we will show how
to prove the rest of the theorem.
We will also use an item from the homework:

Proposition 1.3.15. Leta > 1 and b > 0. Then x > 4alog(2a) + 2b —
x > alog(z) + b.

Proof of 3. to 1. for|Theorem 1.5.6. We know that it suffices to show that
a finite VC-dimension implies the uniform convergence property. Specifi-
cally, we will show that it suffices to take m large than

16d 16d 16d log(2¢/d)
ﬂ&vngav>+ (6¢)2

and large enough that y/dlog(2em/d) > 4 in order to bound |Lg(h)— Ly (h)|
by epsilon.
By |[Proposition 1.3.15] if we have

2d 2d 4dlog(2e/d)
: Q&P>+ GE (L1

>4 .
m >4 (56)2 og

then it follows that

. 2dlog(m)+2dlog(26/d)
— (02 (6e)>
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So let us assume that [T.1] holds and that m is . Then, from the corollary of
Sauer’s Lemma, we have

4+ \/dlog(2em/d) 1 [2dlog(2em/d)
Ls(h) ~ Lo()] < IO < 1, f2loglem/d)

and so we are done. O

Now to prove the technical lemma.

Proof of [Lemma 1.3.14). n
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