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Part I

Working with Objects in Set
Theory
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October 15, 2024
In this chapter, we will discuss the ways in which objects can be manipu-

lated from the perspective of set theory. This includes a precise formulation
of the axioms and a survey of what can be done with them on a relatively
simple level. We are assuming familiarity with the basics of mathematical
logic, including the notions of languages, formulas, sentences, and so on, as
well as Gödel’s Incompleteness Theorems.





Chapter 1

The Axioms of
Zermelo-Fraenkel Set Theory

To start with, we will develop a familiarity with the Zermelo-Fraenkel ax-
ioms and the way they can be used to understand relatively simple objects.

1.1 Stating the Axioms and Beginning to

Work with Them

Without further ado, we state the axioms.

1. Extensionality: ∀x∀y(∀z(z ∈ x ⇐⇒ z ∈ y) =⇒ x = y). (Sets
are uniquely defined by their elements.)

2. Foundation: ∀x(∃y(y ∈ x) =⇒ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))).
(Every nonempty set has an ∈-minimal element.)

3. Comprehension Scheme: Let ϕ be any formula whose free vari-
ables are among {x, z, w1, w2, . . . , wn}. Then

∀z∀w1 . . . ∀wn∃y∀x(x ∈ y ⇐⇒ (x ∈ z ∧ ϕ)).

(Definable subsets of sets are sets.)

4. Pairing: ∀x, y∃z(x ∈ z ∧ y ∈ z). (For any two sets, there is a set
with both of those sets as elements.)

7
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5. Union: ∀F∃U∀Y, x(x ∈ Y ∧ Y ∈ F ⇐⇒ x ∈ U). (If we have a set
which is a family of sets, its union is a set.)

6. Replacement Scheme: Let ϕ be any formula whose free variables
are among {x, y, A, w1, . . . , wn}. Then

∀A∀w1 . . . ∀wn(∀x ∈ A∃!yϕ =⇒ ∃Y ∀x ∈ A∃y ∈ Y ϕ).

(Images of sets under functions are sets.)

We introduce some notation to make the remaining axioms easier to
read.

• x ⊆ y ⇐⇒ ∀z ∈ x(z ∈ y).

• x = ∅ ⇐⇒ ¬∃y(y ∈ x).

• y = succ(x) ⇐⇒ ∀z ∈ y(z = x ∨ z ∈ x).

• y = v ∩ w ⇐⇒ ∀x(x ∈ y ⇐⇒ (x ∈ v ∧ x ∈ w)).

• singleton(x) ⇐⇒ (∃y ∈ x ∧ ∃y∀z ∈ x(z = y)).

7. Infinity: ∃x(∅ ∈ x ∧ ∀y ∈ x(succ(y) ∈ x)). (There exists an infinite
set, and in particular, the set of natural numbers is a set.)

8. Powerset: ∀x∃y(z ⊆ x ⇐⇒ z ∈ y). (Every set has a power set.)

9. Choice: ∀F (∀x ∈ F (x 6= ∅)∧ ∀x, y ∈ F (x 6= y =⇒ x∩ y = ∅)) =⇒
∃C(∀x ∈ F (singleton(C ∩ x)))) (Any nonempty family of sets has a
choice function.)

We may want to consider various sub-collections of the axioms.

Definition 1.1.1. We can define subsystems of these axioms.

• ZFC refers to all nine axioms.

• ZF refers to the first eight axioms (excluding choice).

• If X is a sub-collection of these axioms, then X −P is that set minus
the powerset axiom.
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• And there are many more variations.

Note that we do not explicitly have an axiom asserting the existence of
an empty set, but the infinity axiom implies that there is an empty set.

Here we can give a simple example of the usage of these axioms to get
something “obvious”.

Proposition 1.1.2. ZF proves that any pair of sets has a union.

Proof. Let x and y be sets. We want to show that

ZF ` “∃z∀u(u ∈ z ⇐⇒ (u ∈ x ∨ u ∈ y))”.

Then by pairing, there is a set w such that {x, y} ⊆ w. (Notice the
actual formulation of the pairing axiom that we are using.) Using the
formula v = x ∨ v = y, we can use the comprehension axiom to ensure
that we have a set equal to {x, y}. Then the union axiom gives us the set
x ∪ y =

⋃
{x, y}.

Observe that the formula above uniquely defines the union by the ex-
tension axiom.

1.2 Orders and Their Formalizations

The next task as to develop the notion of orderings. This will help us build
towards ordinal and cardinal numbers. Let’s clarify the notions that we
want.

Definition 1.2.1. A partial order is a relation ≤ on a set X with the
following properties:

1. ∀a ∈ X, a ≤ a (reflexivity),

2. if a ≤ b and b ≤ a then a = b (antisymmetry),

3. if a ≤ b and b ≤ c then a ≤ c (transitivity).

We refer to X is the underlying set of ≤, and we may refer to X itself
as a partial order and use the notation (X,≤X).

Example 2. Examples of partial orders:
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• Let X be the set of closed subsets of R under the usual Euclidean
topology. For A,B ∈ X, we let A ≤ B if and only if A ⊆ B. We
could just as easily let A ≤ B if and only if A ⊇ B.

• Let X = {0, 1}<ω, the set of finite sequences of 0’s and 1’s. Let
s ≤ t if and only if t end-extends s, i.e. if dom s = {0, . . . , n} then
s = t � {0, . . . , n}.

Definition 1.2.3. A linear order or total order is a partial order (L,≤L)
such that for all a, b ∈ L, one of the following three hold: a = b, a ≤L b, or
a ≥L b.

Example 4. R under its standard ordering, or ω + 1 ∼= N ∪ {∞}.

Definition 1.2.5. Let (L,≤) be a linear ordering. Then (L,≤) is a well-
ordering if every nonempty subset X ⊆ L has a ≤-least element.

Example 6. Any finite linear ordering is a well-ordering, and so are N and
ω + 1. Both Q and R are not well-orderings.

Now that we have some definitions in mind, let’s show that they can be
formalized in terms of ZFC.

Definition 1.2.7. Given sets x and y, the ordered pair 〈x, y〉 is the set
{{x}, {x, y}}.

Proposition 1.2.8. ∀x∀y∀x′∀y′(〈x, y〉 = 〈x′, y′〉 ⇐⇒ (x = x′ ∧ y = y′)).
(In other words, ordered pairs define a pair in a specific order.)

Proof. We will show the forward direction by considering two cases. The
other direction is fairly simple.

Suppose x = y. Then 〈x, y〉 = {{x}} = {{x′}, {x′, y′}}. By extension
we have {x} = {x′} = {x′, y′}. The first equality gives x = x′ and the
second gives x′ = y′. Transitivity of equality gives x = y = x′ = y′ and so
x = x′ and y = y′.

Suppose x 6= y. Then 〈x, y〉 = {{x}, {x, y}} = {{x′}, {x′, y′}} (in
which the apparent two-element sets are actual two-element sets). There-
fore {x, y} = {x′, y′} and x′ 6= y′ and {x′} = {x}. Therefore x = x′ and
y = y′.

Proposition 1.2.9. The Cartesian product of two sets is a set.
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Proof. Given sets A and B, we want to show that {〈x, y〉 : x ∈ A ∧ y ∈ B}
is a set.

If x ∈ A and y ∈ B, then observe that 〈x, y〉 = {{x}, {x, y}} ∈ P(P(A∪
B)) (where P is indicating the powerset operation). To see this, observe
that {x} ∈ P(A) ⊆ P(A ∪B) and {x, y} ∈ P(A ∪B).

Then apply comprehension to obtain

C = {z ∈ P(P(A ∪B)) : ∃x∃y(x ∈ A ∧ y ∈ B ∧ z = 〈x, y〉}

and we are done.
October 17, 2024

1.3 Ordinals and Transfinite Induction

Proposition 1.3.1. The following are equivalent:

1. L is a well-ordering, i.e. all subsets have a minimal element.

2. L does not contain any infinite descending sequences.

Proof. (1) =⇒ (2): Suppose contrapositively that 〈xn : n < ω〉 is an
infinite descending sequence through L, i.e. x0 > x1 > x2 > . . .. Then
this is a subset of L without a minimal element. (2) =⇒ (1): Suppose
contrapositively that X ⊆ L has no minimal element. Let x0 ∈ X be
arbitrary, then inductively choose x1 < x0 and so on.

But how were we allowed to use induction there? We should to work
towards some justification of induction, which is the next task. In order
to do this, we first establish some facts about well-ordered sets using our
starting definition.

Definition 1.3.2. If L is well-ordered and x ∈ L, then {y ∈ L : y <L x} is
an initial segment of L.

Proposition 1.3.3. No well-ordered set can be isomorphic to an initial
segment of itself.

Proof. First we argue that if (W,<) is well-ordered and f : W → W is
strictly increasing (i.e. x < y implies f(x) < f(y)) then f(x) ≥ x for all
x ∈ W : If X = {x ∈ W : f(x) < x} is nonempty then it has a least element
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z. If w = f(z), then f(w) = f(f(z)) < f(z) = w < z, which contradicts
minimality of z.

Now if (W,<) were isomorphic to an initial segment {x : x < u} via f ,
then f(u) < u, which is not possible.

Proposition 1.3.4. The only automorphism of a well-ordered set is the
identity.

Proof. Given f , apply Proposition 1.3.3 to both f and f−1.

Proposition 1.3.5. If W1 and W2 are well-orderings and f, g : W1 → W2

are isomorphisms, then f = g.

Proof. If x is the W1-least element such that f(x) 6= g(x), then you can
show that either f or g “misses a spot”.

Proposition 1.3.6. If W1 and W2 are well-ordered, then exactly one of the
following three cases will hold:

1. W1
∼= W2,

2. W1 is isomorphic to an initial segment of W2,

3. W2 is isomorphic to an initial segment of W1.

Proof. The previous proposition shows that the cases are mutually exclu-
sive.

If x ∈ Wi for i ∈ {1, 2} then let Wi(x) denote the initial segment
{y ∈ Wi : y <Wi

x}. Define

f = {(x, y) : W1(x) ∼= W2(y)}.

We argue that f is a one-to-one function: The fact that it is a function and
that fact that it is one-to-one both follow from Proposition 1.3.3.

If dom f = W1 and range f = W2 then W1
∼= W2: Using Proposi-

tion 1.3.5, we can argue that the isomorphisms from the W1(x)’s to the
W2(y)’s can be unioned up to get an isomorphism from W1 to W2.

If range f 6= W2, then we can argue that W1 is isomorphic to an ini-
tial segment of W2. Observe that range f is downwards closed. Hence if
range(f) 6= W2 and y is the least element of W2 \ range(f) then range(f) =
W2(y). Then it must be the case that dom(f) = W1 since otherwise we
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would have (x, y) ∈ f where x is the least element of W1 \dom(f), but then
it would be absurd that this cannot be extended.

If dom f 6= W1, then we can similarly argue that W2 is isomorphic to an
initial segment of W1.

Definition 1.3.7. A set X is transitive if ∀y ∈ X(z ∈ y =⇒ z ∈ X).

Example 8. Observe that ∅ is vacuously transitive. The set P(P(∅)) is
also transitive. However, the set {∅, {{∅}}} is not transitive.

Definition 1.3.9. We say that α is an ordinal if it α is transitive and
well-ordered by ∈.

Definition 1.3.10. A successor ordinal is an ordinal of the type α = β ∪
{β} := β + 1. A limit ordinal α takes the form α =

⋃
α.

Example 11. Every natural number can be represented as an ordinal: 0 =
∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, etc. We write the set of
natural numbers as the limit ordinal ω = {∅, {∅}, {∅, {∅}}, {∅, {∅, {∅}}, . . .}.
ω + 1 := ω ∪ {ω} is an infinite successor.

Proposition 1.3.12. The following hold:

1. 0 := ∅ is an ordinal.

2. If α is an ordinal and β ∈ α, then β is an ordinal.

3. If α, β are ordinals, α 6= β, and α ⊆ β, then α ∈ β.

4. If α and β are ordinals, then either α ⊆ β or β ⊆ α.

5. If α and β are ordinals, then exactly one of the following hold: α = β,
α ∈ β, or β ∈ α.

6. If X is a set of ordinals, then
⋃
X is an ordinal.

7. Every ordinal is either a successor or a limit.

Proof. (1) is immediate. (2) will actually follow from (3) and (4).
(3): Let γ be the ∈-minimal element of β \ α. If δ ∈ γ then δ ∈ α by

minimality. If δ ∈ α then δ ∈ β by α ⊆ β. Hence α = γ.
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(4): It is immediate that α ∩ β is an ordinal. Let α ∩ β = γ. Then
if α 6= β and if γ 6= α, β, then it follows that γ ∈ α, β. This implies that
γ ∈ γ, which is not possible (see homework).

(5): Follows from (4) and Proposition 1.3.6.
(6): If α ∈ β ∈

⋃
X, and γ ∈ X is such that β ∈ γ, then α ∈ γ so

α ∈
⋃
X. If Y ⊆ X choose some α ∈ Y . Then α is an ordinal, so either

Y ∩ α = ∅, in which case α is minimal, or we choose a minimal element of
Y ∩α. Since we now know that all ordinals are comparable we are done.

Theorem 1.3.13. Every well-ordered set is isomorphic to a unique ordinal
number.

Proof. We already have uniqueness.
If W is a well-order and x ∈ W , then let F (x) be the (unique) α (if it

exists) such that {y ∈ W : y <W x} ∼= α. To show that F is defined for
all x ∈ W , suppose for contradiction that x is the <W -least element of W
for which W is undefined. Then we can argue that {y ∈ W : y <W x} ∼=⋃
y<W x F (y), which is an ordinal, so this is a contradiction.

Now we can argue that F [W ] = {F (x) : x ∈ W} is a set by the replace-
ment schema. By the same argument as in the previous paragraph, F [W ]
is an ordinal α and F : W ∼= α.

Now we want to start reasoning about the ordinals as a whole.

Proposition 1.3.14. There is no set of all ordinals.

Proof. If X were the set of all ordinals, then it would itself be an ordinal α.
But then we would have α ∈ α, and this is not possible (see homework).

A class refers to a collection of sets that is definable with some param-
eters that is not itself necessarily a set. If a class is not a set, then it is
referred to as a proper class. By the above proposition, the collection of
ordinals is a class which we will denote ON.

There are ways of formalizing classes, such as Bernays-Gödel set theory,
but we will not emphasize that here. We want to make sure that whenever
we refer to a class, our statements are shorthand for statements made in
terms of sets.October 22, 2024

Theorem 1.3.15 (Transfinite Induction). Suppose C is a subclass of the
ordinals such that:
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1. 0 ∈ C holds,

2. for all ordinals α, if β ∈ C for all β < α, then α ∈ C.

Then C equals the class of all ordinals.

Proof. This is equivalent to saying if C is a nonempty class of ordinals and
C 6= ON, then there is a minimal α ∈ ON \ C.

To see that this is the case, let β /∈ C. Then β∩C is a set by separation.
(Remember that our “set operations” on classes are just abbreviations.) If
β∩C = ∅ then β is our witness. Otherwise, by the foundation axiom, there
is some minimal α ∈ β ∩ C, so α ∩ C = ∅. Then α is the witness.

A class function is a class taking the form of a function, i.e. a class of
ordered pairs.

Theorem 1.3.16 (Transfinite Recursion). F be a class function that is
defined on all sets. Then there exists a unique class function G that is
defined on all ordinals such that ∀α ∈ ON(G(α) = F (G � α).

Proof. If G1, G2 are two functions satisfying this description, then we can
prove that ∀α ∈ ON, G1(α) = G2(α) by transfinite induction.

For existence, call g a δ-approximation if g is a (set) function with
domain δ and

∀α < δ(g(α) = F (g � α)).

If g is a δ-approximation and g′ is a δ′-approximation, then g � (δ ∩ δ′) =
g′ � (δ ∩ δ′): This uses the fact that δ can be compared with respect to the
ordering on ordinals. By transfinite induction, we can argue that there is a
δ-approximation for each δ. Then let G(α) be the value g(α) where g is a
δ approximation for some (equivalently, any) δ > α.

Example 17 (Schweber). Let Nω = N×N× . . . be the countable product
of the natural numbers with itself where the copies themselves are ordered
as in the natural numbers. In other words, there is N0, N1, and so on where
Nm < Nn if m < n. Let α be the ordinal that is isomorphic to this ordering.

We will define a function α → ω by transfinite induction. For β < α,
if p : β → X is a function, let F (p)(β) = 0 if β is a limit ordinal and let
F (p)(γ) = p(γ) + 1 if β = γ + 1.

Then the function G produced by transfinite inductions “mods out” the
copies of N.
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We have essentially started doing ordinal arithmetic.

1.4 Ordinal Arithmetic

Recall that successor operation: β = succ(α) = S(α) ⇐⇒ ∀z(z ∈ β ⇐⇒
(z = α ∨ z ∈ α)).

Proposition 1.4.1. Every ordinal is either a successor ordinal or a limit
ordinal.

Proof. We want to show that for all ordinals α, either there is some β such
that S(β) = α or else α =

⋃
{β : β ∈ α}. (Note that if α = S(β), then⋃

{β : β ∈ α} =
⋃

({β} ∪ {γ : γ ∈ β}) = β 6= α.)
Suppose that α is not a successor. We can see that

⋃
{β : β ∈ α} ⊆ α,

so the task is to show that there are no missing points. For all β ∈ α,
S(β) 6= α. This implies that S(β) ∈ α, and so β ∈ S(β) ⊆

⋃
α.

According to the definition, 0 counts as a limit ordinal, but it is usually
best not to think of it as one.

From now on, if α and β are ordinals, we will (usually) write α < β for
α ∈ β. We will write supξ<η αξ for

⋃
ξ<η αξ. We are ready to define the

rules of ordinal arithmetic.
Remember that we proved that every well-ordered set is isomorphic to

an ordinal.

Definition 1.4.2. If X is well-ordered, the order-type of X is the unique
ordinal α such that (X,<X) ∼= α. It is often denoted ot(X).

Definition 1.4.3. Suppose α and β are ordinals. Let R be

{〈〈ξ, 0〉, 〈η, 0〉〉 : ξ < η < α}∪
∪ {〈〈ξ, 1〉, 〈η, 1〉〉 : ξ < η < β} ∪ [(α× {0})× (β × {1})].

Then α + β := ot(α× {0} ∪ β × {1}, R).

Example 4. ω + 1 6= 1 + ω.

Proposition 1.4.5. Let α, β, γ be ordinals.

1. α + 0 = α.
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2. α + 1 = S(α).

3. α + S(β) = S(α + β).

4. If β is a limit ordinal, then α + β = sup{α + ξ : ξ < β}.

5. α + (β + γ) = (α + β) + γ.

Proof. For 1., check that the definition of R above yields some empty sets as
components. For 2., note that S(α) adds one extra point, which essentially
gives 3. as well.

For 4., we can inductively define an order-isomorphism as follows: Re-
member that sup{α+ξ : ξ < β} =

⋃
ξ<β α+ξ. So we will inductively define

fξ to have domain α + ξ. Define f0(ζ) = ζ for ζ < α. If we have defined
fξ, let fξ+1 be such that fξ+1(ζ) = ζ for ζ ∈ dom fξ. Then let fξ+1(ξ) be
the point in α+ β that corresponds to ξ in the copy of β. If ξ is a limit, let
fξ =

⋃
η<ξ fξ.

Point 5. can be proved by induction using the previous points where 3.
gives the base case.

Definition 1.4.6. Let α and β be ordinals and let R be the lexicographic
order on β × α, i.e.

〈ξ, η〉R〈ξ′, η′〉 ⇐⇒ (ξ < ξ′ ∨ (ξ = ξ′ ∧ η < η′)).

Then α · β = ot(R).

Example 7. 2 · ω = ω < ω · 2.

Proposition 1.4.8. Let α, β, γ be ordinals.

1. α · 0 = 0.

2. α · 1 = α.

3. α · S(β) = α · β + α,

4. If β is a limit then α · β = sup{α · ξ : ξ < β}.

5. α · (β · γ) = (α · β) · γ.

6. α · (β + γ) = α · β + α · γ.
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Proof. Homework.

Definition 1.4.9. Let α 6= 0 and β be ordinals.

1. α0 = 1.

2. αβ+1 = αβ · α.

3. If β is a limit then αβ = sup{αξ : ξ < β}.

Note: I was indeed wrong about needing transfinite induction to define
the ordinals. As suggested in the lecture, we have a solution here: https:

//math.stackexchange.com/questions/149158/ordinal-exponentia

tion-and-transfinite-induction.

Example 10. 2ω = ω in terms of ordinal exponentiation, but not in terms
of cardinal exponentiation!

Definition 1.4.11. The natural numbers (in this context) are the set of
finite ordinals.

Proposition 1.4.12. Let α be an ordinal.

1. If β < γ then α + β < α + γ.

2. If β < γ and α > 0 then α · β < α · γ.

3. If α < β then there is a unique ordinal δ such that α + δ = β.

4. If α > 0 and γ is arbitrary, then there exist a unique β and a unique
ρ < α such that γ = α · β + ρ.

5. If β < γ and α > 1 then αβ < αγ.

Proof. The first two points can be proved by induction. Point 3 lets δ be
the order type of {γ ∈ β : γ ≥ α}, and its uniqueness is from the first point.

For 4, we argue first that there is a greatest ordinal β such that α·β ≤ γ.
This is because the least ordinal β′ such that α · β′ > γ is a successor: if
it were a limit, then we would have α · ε ≤ γ for all ε < β′ and then our
definition would give us α · ε ≤ γ. Once we have defined β, we let ρ be as
given from 3.

For 5 we do an induction similar to 1 and 2.

https://math.stackexchange.com/questions/149158/ordinal-exponentiation-and-transfinite-induction
https://math.stackexchange.com/questions/149158/ordinal-exponentiation-and-transfinite-induction
https://math.stackexchange.com/questions/149158/ordinal-exponentiation-and-transfinite-induction
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Theorem 1.4.13 (Cantor Normal Form). Every ordinal α > 0 can be
represented uniquely in the form

α = ωβ1 · k1 + . . .+ ωβn · kn,

where n ≥ 1, α ≥ β1 > . . . > βn, and k1, . . . , kn are nonzero natural
numbers.

Proof. We prove this by induction. If α = 0 then there is technically nothing
to prove. If α = 1 then α = ω0 · 1.

Suppose that α > 1 is an arbitrary ordinal. Therefore there is a maximal
β such that ωβ ≤ α (as in the argument for 4 in Proposition 1.4.12). By 4
of Proposition 1.4.12 there are unique δ and ρ < ωβ such that ωβ · δ + ρ.
By minimality of β, δ must be finite. Then plug in the inductive statement
for ρ.

1.5 The Notion of Cardinality
October 24, 2024

Next we will develop the notion of cardinality, and the aspects of it that do
not depend on the axiom of choice.

Definition 1.5.1. A cardinal is an ordinal κ such that for all α < κ, there
is no surjection f : α→ κ.

Definition 1.5.2. If (emphasis on if!) A is well-ordered, then the cardi-
nality |A| is the least ordinal α such that there is a bijection f : α→ A.

We have some structure without necessarily assuming the axiom of
choice.

Theorem 1.5.3 (Bernstein-Cantor-Schröder). If there is an injection f1 :
A→ B and an injection f2 : B → A then there is a bijection from A to B.

Proof. Homework.

Proposition 1.5.4. If |α| ≤ β ≤ α then |β| = |α|.

Proof. We have an injection β → α since β ⊆ α. We have an injection
α→ β via α→ |α| → β.

Definition 1.5.5. Let κ and λ be cardinals.
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1. κ+ λ = |(κ× {0}) ∪ (λ× {1})|.

2. κ · λ = |κ× λ|.

Proposition 1.5.6. Cardinal addition and multiplication are associative
and commutative.

Definition 1.5.7. Gödel’s canonical well-ordering on ON×ON is defined
as follows: (α, β) < (γ, δ) if and only if

• either max{α, β} < max{γ, δ} or

• max{α, β} = max{γ, δ} and α < γ or

• max{α, β} = max{γ, δ}, α = γ and β < δ.

Clearly, this a linear ordering.

Proposition 1.5.8. Gödel’s ordering is a well-ordering.

Proof. Homework.

Theorem 1.5.9. If κ is a cardinal then κ · κ = κ.

Proof. It is clear that |κ · κ| ≥ κ, so we will prove the other direction by
transfinite induction.

Each 〈α, β〉 ∈ κ × κ has ≤ |(max{α, β} + 1) × (max{α, β} + 1)| < κ
(which can be checked by cases). Therefore ot(κ × κ, /) ≤ κ where / is
the Gödel ordering (which can be seen by considering the contrapositive).
Therefore |κ× κ| ≤ κ.

Theorem 1.5.10. If κ and λ are cardinals, then κ+λ = κ ·λ = max{κ, λ}.

Proof. We have κ, λ ≤ κ+ λ ≤ κ · λ. If WLOG κ ≤ λ then κ · λ ≤ λ · λ =
λ.

Theorem 1.5.11. If κ is an infinite cardinal, then [κ]<ω (the set of finite
subsets of κ) has cardinality κ.

Proof. By induction we can use the previous proof to obtain an injection
f : [κ]<ω → ω × κ. And |ω × κ| = κ.

Since the ordinals are ordered, the cardinals are ordered.
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Definition 1.5.12. α+ is the least cardinal larger than α.

Definition 1.5.13. We define ℵα be transfinite recursion:

• ℵ0 = ω,

• ℵα+1 = ℵ+α ,

• if α is a limit then ℵα = supβ<α ℵβ.

Definition 1.5.14. If α is an ordinal, the cofinality of α is the least ordinal
β such that there is an increasing unbounded function f : β → α. Let cf(α)
denote the cofinality of α.

Definition 1.5.15. A cardinal κ is singular if cf(κ) < κ. Otherwise κ is
regular.

Example 16. ℵω is singular.

Example 17. cf(ω + ω) = cf(ω · ω) = ω.

Proposition 1.5.18. For all ordinals α, cf(cf(α)) = cf(α).

Proof. Composition of functions.

Proposition 1.5.19. If α is an ordinal, then cf(α) is a regular cardinal.

Proof. Let f : cf(α)→ α be unbounded.
Suppose for contradiction that κ = | cf(α)| < cf(α) (i.e. that cf(α) is not

a cardinal). Let g : κ→ cf(α) be a surjection. Observe that f ◦g : κ→ α is
unbounded. This is a contradiction because cf(α) is supposed to be minimal
for the existence of such an unbounded function.

Suppose for contradiction that there is an unbounded function g : κ→
cf(α) and then run a similar argument.

1.6 The Axiom of Choice and Cardinal

Arithmetic

We can quickly review some equivalent statements of the axiom of choice.

Definition 1.6.1. Let (P,<P ) be a partially ordered.
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1. A subset X ⊆ P is a chain if it is totally ordered, i.e. for all y, z ∈ X,
either y <P z, z <P y, or z = y.

2. An upper bound of a chain X is an element y ∈ P such that for all
z ∈ X, y <P z.

3. An element x ∈ P is maximal if for all y ∈ P , if y ≥P x then y = x.

Theorem 1.6.2. The following are equivalent:

1. For every family F of nonempty sets, there is a function C : F →
⋃
F

such that for all x ∈ F , F (x) ∈ x. (The Axiom of Choice, AC)

2. If P is a partially ordered set such that every chain has an upper
bound, then P has a maximal element. (Zorn’s Lemma)

3. Every set can be well-ordered. (The Well-Ordering Theorem)

Proof. 3. =⇒ .1 Let <F be a well-ordering of
⋃
F . For all x ∈ F , let <F

be a well-ordering of x. Let F (x) be the <x-least element of x.
1. =⇒ 2. Suppose for contradiction that AC holds and that P is a

partially ordered set such that every chain has an upper bound, but that
P has no maximal element. Using the choice function we can define a
<P-increasing sequence that has no upper bound.

2. =⇒ .3 Let X be a set. Let P consist of all functions f into the
ordinals such that dom(f) ⊆ X. Every such chain clearly has an upper
bound. Let g ∈ P be a maximal element. Then it must necessarily have
dom g = X.

For the remainder of the section assume AC.

Proposition 1.6.3. If there is surjection from Y onto X then there is an
injection from X to Y .

Proof. Let f : Y → X be a surjection. For each b ∈ X let ab ∈ f−1(a)
(using the axiom of choice). Then let g(b) = ab.

Proposition 1.6.4. Every infinite cardinal is a limit ordinal.

Proof. |α + 1| = |α|.

Theorem 1.6.5 (Cantor). If X is a nonempty set then there is no surjec-
tion from X onto P(X).
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Proof. Suppose for contradiction that there is a surjection from X onto
P(X). Let Y = {z ∈ X : z /∈ f(z)}. Let z be such that f(z) = Y . If
z ∈ Y ⇐⇒ z /∈ f(z) ⇐⇒ z /∈ Y .

October 29, 2024

Proposition 1.6.6. A countable union of countably infinite sets is count-
able.

Proof. Let 〈An : n < ω〉 be a sequence of countably infinite sets. Its union
will be at least countable.

For each n we choose an enumeration 〈ank : k < ω〉. Then there is a
surjection f : ω × ω →

⋃
n<ω An given by (n, k) 7→ ank . This shows that the

union is at most countable.

Proposition 1.6.7. If S is a set then |
⋃
S| ≤ |S| · sup{|X| : X ∈ S}.

Proof. Let κ = |S| and let λ = sup{|X| : X ⊆ S}.
Now we show that κ·λ ≥ |

⋃
S|. We have an enumeration S = 〈Xα : α <

κ〉. For each Xα ∈ S, we have an enumeration Xα = 〈aαξ : ξ ≤ λα〉 where
λα ≤ λ. Now we have the mapping κ× λ→

⋃
S given by (α, ξ) 7→ aαξ .

Proposition 1.6.8. If α is a successor ordinal, then ℵα is regular.

Proof. Suppose f : δ → ℵα+1 where δ < ℵα+1. Then f(ξ) is an ordinal of
cardinality ≤ ℵα. Therefore |

⋃
im f | = |

⋃
ξ∈δ f(ξ)| = |δ| · ℵα = ℵα by the

previous proposition.

Remark: This is consistently false! The Axiom of Determinacy implies
that ℵ3 is singular.

1.7 Cardinal Arithmetic with

Exponentiation

Definition 1.7.1. If κ ≥ λ are cardinals, then [κ]λ = {X ⊆ κ : |X| = λ}.

Definition 1.7.2. If A and B are sets, then AB = BA = {f |f : B → A}.

Definition 1.7.3 (Using AC). If κ and λ are cardinals then κλ = |λκ|
(where the former is indicating the exponential operation and the latter is
indicating the cardinality of that particular set of functions).
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Proposition 1.7.4. 2κ = |P(κ)|.

Proof. Use the characteristic functions χX where χX(α) = 1 if α ∈ X and
χX(α) = 0 otherwise.

Proposition 1.7.5. If κ ≤ λ then 2κ ≤ 2λ.

Proof. From P(κ) ⊆ P(λ).

Proposition 1.7.6. If κ, λ, µ are cardinals, then µκ+λ = µκ ·µλ and µκ·λ =
(µκ)λ.

Proof. Check the definitions in terms of functions. For the first assertion,
observe that the set of functions from κ×{0} ∪ λ×{1} to µ is in bijection
with the disjoint union of the functions from κ to µ and the functions from
λ to µ.

You can also argue by cases where, without loss of generality λ ≥ κ and
both are assumed to be infinite (since the finite cases are fairly immediate).

Proposition 1.7.7. If 2 ≤ κ ≤ λ and λ is infinite then κλ = 2λ.

Proof. 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ.

Sometimes infinite sums and products are used.

Definition 1.7.8. Given an indexed set of cardinals {κi : i ∈ I} choose
{Xi : i ∈ I} such that |Xi| = κi for all i ∈ I. We define

∑
i∈I

κi =

∣∣∣∣∣⋃
i∈I

Xi

∣∣∣∣∣
and ∏

i∈I

κi =

∣∣∣∣∣∏
i∈I

Xi

∣∣∣∣∣ .
Observe that assuming AC, these definitions do not depend on the Xi’s.

Proposition 1.7.9. If λ is infinite and κi > 0 for all i < λ, then∑
i<λ

κi = λ · sup
i<λ

κi.
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Theorem 1.7.10 (König’s Theorem). If κi < λi for every i ∈ I then∑
i∈I

κi <
∏
i∈I

λi.

Proof. Choose Yi’s such that |Yi| = λi. Suppose that Xi’s are subsets of∏
i∈I Yi such that |Xi| ≤ κi. We want to show that

⋃
i∈I Xi 6=

∏
i∈I Yi.

Let Zi = {f(i) : f ∈ Xi. Since |Xi| < |Yi|, we have that Zi 6= Yi. Let
f be a function so that f(i) /∈ Zi for all i ∈ I. Then f does not belong to
any of the Xi’s.

Hence have shown that
⋃
i∈I Xi 6=

∏
i∈I Yi.

Corollary 1.7.11. If κ is an infinite cardinal then cf(2κ) > κ.

Proof. It suffices to show that if κi < 2κ for all i < κ, then
∑

i<κ κi < 2κ.
Let λi = 2κ. Then ∑

i<κ

κi <
∏
i<κ

λi = (2κ)κ = 2κ.

Corollary 1.7.12. If κ is an infinite cardinal, κcf κ > κ.

Proof. Write κ =
∑

i<cf κ κi with κi < κ. Then

κ =
∑
i<cf κ

κi <
∏
i<cf κ

κ = κcf κ.

Definition 1.7.13. The continuum hypothesis, denoted CH, is the assertion
that 2ℵ0 = ℵ1. The generalized continuum hypothesis, denoted GCH, as the
assertion that for all infinite cardinals κ, 2κ = κ+.

Definition 1.7.14. By transfinite induction, define the beth function as
follows:

• i0 = ℵ0,

• iα+1 = 2iα ,

• iα = sup{iβ : β < α} if α is a limit.
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So GCH holds if iα = ℵα for all ordinals α.

Proposition 1.7.15. If GCH holds and κ and λ are infinite cardinals, then
the following are true:

1. If κ ≤ λ then κλ = λ+,

2. If cf κ ≤ λ < κ then κλ = κ+,

3. If λ < cf κ then κλ = κ.

Proof. 1. κλ = 2λ.
2. We know that κλ ≥ κcf κ ≥ κ+. We also have κλ ≤ κκ ≤ (2κ)κ =

2κ = κ+.
3. Write κλ =

⋃
α<κ α

λ using the fact that functions from λ into κ
are bounded. For α < κ we have |αλ| ≤ (2|α|)λ = 2|α|·λ = (|α| · λ)+ ≤ κ
(where the second-to-last relation is using GCH). This then implies that
κλ = κ.



Chapter 2

Filters, Ideals, and Algebras

2.1 The Basics of Filters and Ideals

Definition 2.1.1. Let X be a set. A filter on X is a set F ⊆ P(X) such
that:

1. ∀A,B ∈ F,A ∩B ∈ F ,

2. ∀A ∈ F,B ⊇ A,B ∈ F ,

3. ∅ /∈ F .

Some sources omit the requirement that ∅ /∈ F and instead call a filter
nontrivial if this holds.

Example 2. • The trivial filter {X}.

• Principal filters: Take z ∈ X, then F = {Y ⊆ X : z ∈ Y }.

• The Frechet filter, e.g. on ω let F = {Y ⊆ ω : |ω \ Y | < ω}.

Definition 2.1.3. A family G of sets has the finite intersection property
if for every finite {X1, . . . , Xn} ⊂ G has a nonempty intersection, i.e. X1 ∩
. . . ∩Xn 6= ∅.

Proposition 2.1.4. 1. Every filter has the finite intersection property.

2. If X is a set and G ⊆ P(X) has the finite intersection property, then
there is a filter F such that G ⊆ F .

27
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Proof. The first assertion follows easily by induction. For the second asser-
tion, let F be the set of all Y ⊆ X such that for some finite {X1, . . . , Xn} ⊆
G, X1 ∩ . . . ∩Xn ⊆ Y .

Definition 2.1.5. A filter F on a set X is an ultrafilter if for all Y ⊆ X,
either Y ∈ F or X \ Y ∈ F .

Proposition 2.1.6. The following are equivalent for a set X:

1. F is a maximal filter on X, i.e. if F ′ ⊇ F is a filter then F ′ = F .

2. F is an ultrafilter on X.

Proof. If U is an ultrafilter is is maximal: If we have F ) U with Y ∈ F \U ,
then X \ Y ∈ U , contradicting that F is a filter.

Suppose F is not an ultrafilter and that Y,X \ Y /∈ F . We will show
that there is filter extending F . We can use the finite intesection property
to show that either there is a filter containing F ∪{Y } or a filter extending
F ∪ {X \ Y }.

So we want to show that either F ∪ {Y } has the finite intersection
property or else F ∪ {X \ Y }. Suppose this is true for neither. Then there
is some A1, . . . , Am ∈ F such that A1∩ . . .∩Am∩Y = ∅ and B1, . . . , Bn ∈ F
such that B1 ∩ . . . ∩Bn ∩ (X \ Y ) = ∅. But we know that A1 ∩ . . . ∩ Am ∩
B1 ∩ . . . Bn 6= ∅, so this is impossible.

Theorem 2.1.7. Every filter can be extended to an ultrafilter.

Proof. Use Zorn’s lemma and the fact that maximal filters are ultrafilters.
The main point is to show that if 〈Fi : i < θ〉 is a sequence of filters so that
Fi ⊆ Fj for i < j, then

⋃
i<θ Fi is a filter (in other words, unions of chains

of filters are filters).
November 5, 2024

Definition 2.1.8. A filter F on X is uniform if |Y | = |X| for all Y ∈ F .

Example 9. The Frechet filter is uniform, but principal filters on sets of
cardinality > 1 are not.

Theorem 2.1.10. If κ is an infinite cardinal then there are 22κ-many uni-
form filters on κ.
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Proof. We call a family A of subsets of κ independent if for distinct sets
X1, . . . , Xn, Y1, . . . , Ym ∈ A, the intersection

X1 ∩ . . . Xn ∩ (κ \ Y1) ∩ . . . ∩ (κ \ Ym)

has cardinality κ.

Claim. There is an independent family of subsets of κ of cardinality 2κ.

Assuming the claim, we can obtain the rest of the theorem: Let A be
the family witnessing the claim. For each A→ {0, 1}, consider

Ff = {X : f(X) = 1} ∪ {κ \X : f(X) = 0} ∪ {X : |κ \X| < κ}.

We can see that Ff has the finite intersection property: Suppose X1, . . . , X`

are such that f(Xi) = 1, Y1, . . . , Ym are such that f(κ \ Yi) = 0, and
Z1, . . . , Zn are sets that are co-bounded (i.e. they are from the last compo-
nent of Ff ). Then W0 :=

⋂
1≤i≤`Xi ∩

⋂
1≤i≤m Yi has cardinality κ by the

definition of independence. It is reasonably easy to see (just from De Mor-
gan’s Laws) that W1 :=

⋂
1≤i≤n Zi also has the property that |κ \W1| < κ,

so there is some α < κ such that (α, κ) = {β < κ : α ≤ β < κ} ⊆ W1.
Therefore W0 ∩W1 has cardinality equal to κ.

We can also see that if f 6= g then Ff 6= Fg. Therefore if Uf ’s are
the respective ultrafilters extending the Ff ’s, then we have 22κ-many Uf ’s
because {f |f → {0, 1}} has cardinality κ.

Proof of Claim. Let P be the set of all pairs (s, F ) where s is a finite subset
of κ and F is a finite set of finite subsets of κ. Since |P | = |[κ]<ω| = κ, it
is sufficient to find an independent family of subsets of P of cardinality 2κ.

For each u ⊆ κ, let

Xu = {(s, F ) ∈ P : s ∩ u ∈ F}

and let A = {Xu : u ⊆ κ}. If u and v are distinct subsets of κ, then
Xu 6= Xv: if (WLOG) α ∈ u and α /∈ v, then let s = {α}, F = {s}, and
(s, F ) ∈ Xu. Then (s, F ) ∈ Xu and (s, F ) /∈ Xv.

To say that A is independent, let u1, . . . , un, v1, . . . , vm be distinct sub-
sets of κ. For each i ≤ n and j ≤ m, let αi,j ∈ ui∆vj. Now let s be any finite
subset of κ such that s ⊇ {αi,j : i ≤ n, j ≤ m}. We have s ∩ ui 6= s ∩ vj for
all i ≤ n and j ≤ m. Thus if we let F = {s ∩ ui : i ≤ n} then (s, F ) ∈ Xui

for i ≤ n and (s, F ) /∈ Xvj for j ≤ m.
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Hence we have chosen that every such finite set s is an element of

Xu1 ∩ . . . ∩Xun ∩ (P \Xv1) ∩ . . . ∩ (P \Xvm),

and since there are κ-many such s, the intersection has cardinality κ.

Having proven the claim, we are done with the proof.

2.2 Clubs and Stationary Sets

Definition 2.2.1. A function f whose domain is a subset of the ordinals
is regressive if f(α) < α for all α ∈ dom(f) \ {0}.

Remark 2.2.2. Obviously we have an injective regressive function f with
domain ω: Just let f(n) = n − 1. But can we get an injective regressive
function with domain ℵ1?

Definition 2.2.3. Let κ be an uncountable regular cardinal. A subset
C ⊆ κ is club in κ (or a club in κ) if:

1. C is unbounded in κ, i.e. ∀β < κ,∃α ∈ C, α > β;

2. C is closed, i.e. if 〈αξ : ξ < λ〉 ⊂ C with λ < κ, then supξ<λ αξ ∈ C.

The set {X ⊂ κ : X contains a club} is called the club filter on κ.

Example 4. Consider (1) the set of limit ordinals in κ or perhaps (2) κ\α
for any α < κ.

Remark 2.2.5. We can define clubs in limit ordinals that are not cardinals.

Proposition 2.2.6. The club filter is κ-complete. In other words, if 〈Cξ :
ξ < λ〉 are clubs in κ and λ < κ, then

⋂
ξ<λCξ is a club in κ. (In particular,

the club filter is a filter.)

Proof. Closure of
⋂
ξ<λCξ is straightforward from the definitions.

For unboundedness, we will first argue that the intersection of any two
clubs C and D in κ is unbounded. Fix δ < κ. Using the unboundedness of
C and D, define by induction sequences 〈αn : n < ω〉 ⊂ C and 〈βn : n <
ω〉 ⊂ D such that α0 ≥ δ and αn < βn < αn+1 for all n < ω. Then we can
see that supn<ω αn = supn<ω βn = γ. (This is known as “interleaving.”) By
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closure of C, we know that γ = supn<ω αn ∈ C, and by closure of D, we
know that supn<ω βn = γ ∈ D, and thus γ ∈ C ∩D.

Now let us do the general argument. We will argue that
⋂
ξ<η Cξ is

unbounded in κ by induction on η < κ.

• The statement is of course trivial if we are taking only one club, so
that gives us the base case.

• Suppose that we are considering

⋂
ξ<η+1

Cξ =

(⋂
ξ<η

Cξ

)
∩ Cξ+1.

The first part is a club by our inductive hypothesis, and the intersec-
tion of everything is a club by the same argument we used for two
clubs.

• Now suppose we are considering
⋂
ξ<η Cξ where η is a limit ordinal.

By induction,
⋂
ξ<ζ Cξ is a club for all ζ < η. Therefore we can assume

without loss of generality that Cζ ⊆ Cξ for all ξ < ζ, i.e. the clubs
are “nested.” Now define a sequence 〈αξ : ξ < η〉 to be an increasing
sequence above some fixed δ < κ such that αξ ∈ Cξ for all ξ < η.
If β = supξ<η αξ, then β < κ by regularity. Because of nestedness,
αξ ∈ Cζ for all ζ ≤ ξ, and so β = supζ≤ξ<η αξ ∈ Cζ for all ζ < η.

This finishes the proof.
November 5, 2024

Definition 2.2.7. Let κ be an uncountable regular cardinal and let 〈Xα :
α < κ〉 be a collection of subsets of κ. Then 4α<κXα := {α < κ : α ∈⋂
β<αXβ} is the diagonal intersection of this collection. A filter F on κ is

normal if for all 〈Xα : α < κ〉 ⊂ F , 4α<κXα ∈ F .

Remark 2.2.8. We do not necessarily have 4α<κXα ⊆ Xα for all α < κ:
Consider the example where Xα = κ \ α for all α < κ.

Proposition 2.2.9. If κ is an uncountable regular cardinal and 〈Cα : α <
κ〉 is a collection of clubs in κ, then 4α<κCα is a club in κ. (In other words,
the club filter is normal.)
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Proof. Notice that the diagonal intersection is the same if we replace each
Cα with

⋂
β≤αCβ. Hence, as in the last proof, we can assume without loss

of generality that Cβ ⊆ Cγ for γ ≤ β.

Closure: Consider 〈γξ : ξ < η〉 ⊂ 4α<κCα be a strictly increasing
sequence where η is a limit ordinal, and let supξ<η γξ = γ∗. By the definition
of the diagonal intersection, we need to show that γ∗ ∈

⋂
β<γ∗ Cβ.

The definition of diagonal intersections already tells us that γξ ∈
⋂
β<γξ

Cβ
for all ξ < η. Using nestedness, this means that γζ ∈ Cγξ for all ζ ∈ (ξ, η),
which implies that γ∗ = supζ<η γζ = supξ≤ζ<η γζ ∈ Cγξ for all ξ < η. Again
using nestedness, we conclude that γ∗ ∈ Cβ for all β < γ∗.

Unboundness: Given β < κ, we will inductively define a sequence 〈γn :
n < ω〉 as follows: Let γ0 be any ordinal in the interval (β, κ). Given γn,
choose γn+1 ∈ (γn, κ) to be an element of

⋂
α<γn

Cα, which we know is a
club. Then let γ∗ = supn<ω γn.

Of course, γ∗ is larger than β, so we just need to show that γ∗ ∈ 4α<κCα,
i.e. that γ∗ ∈ Cα for all α < γ∗. Given some particular α < γ∗, there is
some n such that α < γn. Then we see that γm ∈ Cα for all m > n. As in
our previous reasoning, γ∗ ∈ Cα.

Definition 2.2.10. Let κ be regular uncountable. We say that S ⊆ κ is
stationary if S ∩ C 6= ∅ for all clubs C ⊂ κ.

Example 11. Given a regular uncountable κ, all clubs in κ are stationary.
Also, {α < κ : cf(α) = ω} is stationary.

Proposition 2.2.12. If S ⊂ κ is stationary, then S is unbounded in κ.

Theorem 2.2.13 (Fodor’s Lemma). Let κ be regular uncountable and let
S ⊂ κ be stationary. If f is a regressive function with domain S, then there
is a stationary subset S ′ ⊆ S and some γ < κ such that for all α ∈ S ′,
f(α) = γ.

Proof. Suppose otherwise. Then for all γ < κ, there is some club Cγ such
that for all α ∈ Cγ∩S, f(α) 6= γ. (We are sort of jumping past a step here.)
Now take C := 4γ<κCγ, which we now know is a club. Let δ ∈ C ∩ S 6= ∅,
and let f(δ) = γ < δ. By the definition of diagonal intersections, δ ∈⋂
α<δ Cα, meaning that δ ∈ Cγ, but this contradicts the way we defined

Cγ.
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Theorem 2.2.14. If κ is an uncountable regular cardinal, then every sta-
tionary subset of {α < κ : cf(α) = ω} is the union of κ-many disjoint
stationary sets.

Proof. Let S ⊆ Eκ
ω := {α < κ : cf(α) = ω}. For each α ∈ S, let 〈δαn : n < ω〉

be a sequence of ordinals less than α that is cofinal in α.
We argue that there is some N < ω such that for all γ < κ, {α ∈ S :

γ ≥ δαN} is stationary. Suppose otherwise. Then for all n < ω, there is some
Cn and γn such that for all α ∈ Cn ∩ S, δαn < γn. Consider the stationary
set S ∩

⋂
n<ω Cn, let γ∗ = supn<ω γn, and take α ∈ S ∩

⋂
n<ω Cn such that

α > γ∗. Then we should be able to choose n such that δαn > γ∗ because
〈δαn : n < ω〉 is supposed to be cofinal in α, but this contradicts the choice
of Cn and γn.

Fix N as in the previous paragraph. Define Sξ and γξ for ξ < κ as
follows: Apply Fodor’s Lemma with the function α 7→ δαN and let S0 ⊆ S
be a stationary set such that this function is constant with value γ0. Then
we continue in this way. Given Sζ and γζ defined similarly for ζ < ξ, apply
α 7→ δαN to the set {α ∈ S : δαN > supζ<ξ γζ} to get a stationary set Sξ such
that this function is constant with value γξ.

Because κ is regular, we can continue until we have defined 〈Sξ : ξ < κ〉.
These sets are distinct because if δαn 6= δβn then α 6= β. (We can “fill in the
complement” with S0.)

2.3 Boolean Algebras

Definition 2.3.1. A Boolean algebra is a set B with at least two elements,
0 and 1, and endowed with two binary operations, + and ·, is well is a unary
operation −.

The operations satisfy the following axioms:

1. u+ v = v + u and u · v = v · u (commutativity),

2. u+ (v + w) = (u+ v) + w and u · (v · w) = (u · v) · w (associativity),

3. u·(v+w) = u·v+u·w and u+(v ·w) = (u+v)·(u+w) (distributivity),

4. u · (u+ v) = u and u+ (u · v) = u (absorption),

5. u+ (−u) = 1 and u · (−u) = 0.



34 CHAPTER 2. FILTERS, IDEALS, AND ALGEBRAS

Example 2. Let X be any nonempty set. Then there is a Boolean algebra
on P(X) where 0 = ∅, 1 = X, + is ∪, · is ∩, and − is \.

Proposition 2.3.3. If B is a Boolean algebra, then for all x, y ∈ B:

1. x+ x = x and x · x = x,

2. x+ y = y if and only if x · y = x.

Proof. x+ x = x+ x · (x+ x) = x for the first part of the first item.
If x+ y = y then x · y = x · (x+ y) = x.

Definition 2.3.4. If B is a Boolean algebra, then let a ≤B b if and only if
a+ b = b.

Proposition 2.3.5. If B is a Boolean algebra, ≤B is a partial order. The
greatest lower bound of {x, y} is x · y and the least upper bound {x, y} is
x+ y.

Proof. Reflexivity is by the previous proposition. For transitivity: Let x ≤
y and y ≤ z. Then

x+ z = x+ (y + z) = (x+ y) + z = y + z = z.

For antisymmetry: Let x ≤ y and y ≤ x; then y = x+ y = y + x = x.
To see that, e.g. x+y is the least upper bound of x and y, then z ≥ x, y.

Then (x+ y) + z = x+ (y + z) = x+ z = z.

Proposition 2.3.6. For all x:

1. 0 ≤ x ≤ 1,

2. x+ 0 = x and x · 1 = x,

3. x · 0 = 0 and x+ 1 = 1.

Proof. glb{−x, x} = x · (−x) = 0, so 0 ≤ x. Hence 0 + x = x by definition
of ≤. Also, x · 0 = 0 since 0 + x = x. You can do the rest with duality.

Proposition 2.3.7. The following can be derived from the Boolean algebra
axioms:

1. u+ u = u,
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2. u · u = u,

3. u+ 1 = 1,

4. −(u+ v) = −u · −v,

5. −(u · v) = −u+−v.

Example 8. Let L be a first-order language and let S be the set of sentences
of L. Consider the equivalence relation ` ϕ ⇐⇒ ψ. Let B be the set
of equivalence classes [ϕ] is a Boolean algebra with: [ϕ] + [ψ] = [ϕ ∨ ψ],
[ϕ] · [ψ] = [ϕ ∧ ψ], −[ϕ] = [¬ϕ], 0 = [ϕ ∧ ¬ϕ], 1 = [ϕ ∨ ¬ϕ].

Definition 2.3.9. A homomorphism of Boolean algebras will preserve 0, 1,
and the operations. An isomorphism (of course) is a bijective homomor-
phism.

Theorem 2.3.10 (Stone’s Representation Theorem). Every Boolean agebra
is isomorphic to an algebra of sets.

November 7, 2024

Proof. Let B be a Boolean algebra. Let S = {p : p is an ultrafilter on B}.
For every u ∈ B, let Xu be the set of p ∈ S such that u ∈ p. Let S = {Xu :
u ∈ B}.

Consider the map π : B → S be given by π(u) = Xu. We have π(1) = S
and π(0) = ∅. From the definition of an ultrafilter: π(u · v) = π(u) ∩ π(v),
π(u + v) = π(u) ∪ π(v), π(−u) = S − π(u). So we have that π is a
homomorphism.

We see that π is a surjection by definition. To see that π is injective: If
u 6= v, then find an ultrafilter p on B containing one element but not the
other.

We will sketch some material briefly with the goal of reaching Theo-
rem 2.3.16.

Definition 2.3.11. If B is a BA then B+ = B \ {0}.

Definition 2.3.12. Suppose B is a Boolean algebra.

1. Suppose X ⊆ B. Then
∑
X = supX and

∏
X = inf X if these

values exist.
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2. A Boolean algebra B is complete if
∑
X ∈ B and

∏
X ∈ B for all

X ⊆ B.

3. If B is a Boolean algebra and A ⊆ B is a subalgebra, then A is dense
in B if for every u ∈ B+ = B \ {0}, there is some 0 6= v ∈ A such
that v ≤ u.

4. If B is a Boolean algebra, then a completion C of B is a complete
Boolean algebra such that B ⊆ C.

Proposition 2.3.13. If B is a Boolean algebra and B ⊆ C,D where C and
D are completions of B, then C ∼= D.

Proof. Define a map π : C → D by

π(c) =
∑
D

{u ∈ B : u ≤ c}

where the supremum is taken within D. Then argue that π is an isomor-
phism.

Theorem 2.3.14. Every Boolean algebra has a completion

Proof. Let B be a Boolean algebra.
A set U ⊆ B+ is a cut if p ≤ q and q ∈ U implies p ∈ U .
For some p ∈ B+, let Up = {x : x ≤ p}.
A cut U is regular if whenever p /∈ U , there is some q ≤ p such that

U ∩ Uq = ∅.
Consider the operations U · V = U ∩ V and U + V = U ∪ V , and also

−U = {p : Up ∩ U = ∅}.
One can argue that the algebra of regular cuts is complete, and that the

assignment p 7→ Up shows that B is dense in the algebra of regular cuts.

Definition 2.3.15. Let B be a Boolean algebra.

• A set W ⊆ B+ is an antichain if u · v = 0 for all u, v ∈ W with u 6= v.

• If W is an antichain and
∑
W = u, then W is a partition of u. A

partition of 1 is called a partition of B or a maximal antichain.

• B is κ-saturated if there is no partition W of B such that |W | = κ.
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• sat(B) equals the least κ such that B is κ-saturated.

Theorem 2.3.16. If B is an infinite complete Boolean algebra, then sat(B)
is a regular uncountable cardinal.

Proof. Given a Boolean algebra B, we will let cB denote

sup{|X| : X is an antichain of B}

(this is called the cellularity). Also, if x ∈ B+, we let B � x = {y ∈ B :
y ≤ x}. If B is a Boolean algebra, we let cB(x) = c(B � x). Observe that
if x ∈ B and cB(x) > µ, then there is some antichain Y of B � x such that
|Y | = µ.

Suppose that λ = cB is a singular cardinal. Then our goal is to show
that there is some partition/antichain of B of cardinality λ.

Let λ = supα<κ λα where κ = cf(λ).
There are three cases to consider.
Case 1: There is some z ∈ B such that c(x) = λ for all 0 < x ≤ z.

Since κ < λ, we have an antichain {bα : α < κ}. For each α < κ, we have
some antichain Zα in B � bα of cardinality λα. Then if Z =

⋃
α<κ Zα, we

have an antichain of cardinality λ.
Now assume that the first case does not hold. Let

S = {a ∈ B+ : c(a) < λ}

and let X be maximal among the antichains of B included in S. This uses
Zorn’s Lemma: observe that unions of antichains are antichains.

Case 2: Suppose supz∈X c(z) = λ. Inductively choose a sequence of
elements 〈yα : α < κ〉 such that for all α < κ, λα < c(yα). Let Zα be an
antichain of cardinality λα in B � yα. Then Z =

⋃
α<κ Zα is an antichain of

cardinality λ.
Case 3: Suppose supz∈X c(z) < λ. We will argue that |X| = λ. Suppose

otherwise.
Let µ = supz∈X c(z) and let µ′ = (max{|X|, µ})+. Then µ′ < λ since λ

is a limit cardinal. Since λ = cB we find an antichain Y of cardinality µ′.
For z ∈ X, let

Yz = {w ∈ Y : w · z > 0}.
Since X is maximal, we have that Y =

⋃
z∈X Yz. The set {z · y : y ∈ Yz} is

pairwise disjoint in B � z, so |Yz| ≤ c(z) ≤ µ. It follows that |Y | ≤ µ · |X| <
µ′, which is a contradiction of the choice of Y .
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Definition 2.3.17. Let κ be a regular uncountable cardinal.

• The nonstationary ideal on κ is the subset of nonstationary subsets
of κ and is often denoted NSκ.

• The saturation of the nonstationary ideal is the saturation of the
Boolean algebra P (κ)/NSκ, where element are equivalence classes un-
der the relation X ∼ Y if and only if X∆Y is nonstationary.

Corollary 2.3.18 (of Solovay’s Splitting Theorem). The saturation of the
nonstationary ideal on ω1 is ≥ ω2.

Of course, this is generalized to κ for the “non-baby” version of Solovay’s
theorem.

Corollary 2.3.19. Let κ be a regular uncountable cardinal. Then the sat-
uration of the nonstationary ideal is regular.



Part II

Working with Models of Set
Theory
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Chapter 3

Some Examples of Models and
Easy Independence Proofs

3.1 The Von Neumann Hierarchy

Definition 3.1.1. The Von Neumann hierarchy is defined by induction on
α ∈ ON as follows:

• V0 = ∅,

• Vα+1 = P(Vα),

• if α is a limit then Vα =
⋃
β<α Vβ.

Proposition 3.1.2. For all ordinals α:

1. Vα is transitive,

2. ∀β < α, Vβ ⊂ Vα.

Proof. Prove 1. by induction on α. This holds vacuously for ∅. If we know
that Vα is transitive and y ∈ x ∈ Vα+1 = P(Vα), then y ∈ Vα ∈ P(Vα) =
Vα+1. If α is a limit and y ∈ x ∈ Vα, then there is some β < α so that
x ∈ Vβ, so y ∈ Vβ ⊆ Vα.

Again, this is vacuous for V0. If the statement holds for Vα and β < α+1,
then either β < α and Vβ ⊆ Vα ⊆ P(Vα) or β = α we have the same think.
The same kind of argument applies to the limit case.

41
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Definition 3.1.3. If x ∈ V , then rank(x) if the least α such that x ∈ Vα+1.

Proposition 3.1.4. 1. If x ∈ y then rank(x) < rank(y).

2. rank(y) = sup{rank(x) + 1 : x ∈ y}.

Proof. Suppose α = rank(y) ≤ rank(x). This means that x /∈ Vα. If it were
the case that x ∈ y ∈ P(Vα), then we would have x ∈ Vα.

The second point is clarified if we consider the difference between suc-
cessor and limit cases.

November 12, 2024

Proposition 3.1.5. For all α ∈ ON,

1. α ∈ V ,

2. rank(α) = α,

3. Vα ∩ON = α.

Proof. These are all straightforward with transfinite induction. Observe
that rank(∅) = 0.

Proposition 3.1.6. N,Z,Q,R ∈ Vω+ω.

Proof. We have that N = ω ∈ Vα+1. For the rest, check that we have
enough room when ordered-pairs are used.

3.2 Transitive Closures, Well-Founded

Relations and the Mostowski Collapse

Proposition 3.2.1. If x is a set, there is a transitive set T such that x ⊆ T .
Moreover, we can show that if T ′ is transitive and x ⊆ T ′, then T ⊆ T ′.

Proof. Define Sn by induction on n ∈ ω as follows: S0 = x and for n ∈ ω,
Sn+1 =

⋃
Sn. Then let T =

⋃
n<ω Sn. Obviously we have that T ⊇ S.

To see that T is transitive, suppose that z ∈ y ∈ T . Then there is some
n ∈ ω such that y ∈ Sn. Then z ∈ Sn+1 ⊆ T . To see that T is the smallest
transitive set in the sense claimed by the proposition, observe that if A is
transitive then

⋃
A ⊆ A, so we can argue inductively that if Sn ⊆ T ′ where

T ′ is as in the statement of the proposition, then Sn+1 ⊆ T ′.
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Definition 3.2.2. Let x be a set. The transitive closure of x, denoted
tc(x), is the smallest transitive set containing x as a subset.

Proposition 3.2.3.

1. If x is transitive, then tc(x) = x.

2. If x ⊆ y then tc(x) ⊆ tc(y).

3. tc(x) = x ∪ {tc(y) : y ∈ x}.

Proof. 1. By definition.
2. Use the fact that if A ⊆ T and T is transitive then tc(A) ⊆ T .
3. For the forward direction, it is enough to show that the set on the

right hand side is transitive, which is clear.
For the other direction, suppose that z ∈ x ∪ {tc(y) : y ∈ x}. If z ∈ x

then we are done by definition. If there is some y ∈ x such that z ∈ tc(y),
then we have z ∈ tc(x) because tc(y) ⊆ tc(x).

Proposition 3.2.4. If C is a class, then there is an ∈-minimal member of
C.

Proof. We can denote C to be the class of x such that ϕ(x, p̄) holds (for
some ϕ). Let S ∈ C, so S is in particular a set. Then S ∩C is a set by the
separation schema. If S ∩ C = ∅ then we are done. If S ∩ C 6= ∅ then we
let X = T ∩ C where T = tc(S). If z ∈ X is ∈-minimal element (of which
there must be an instance) then z is an ∈-minimal element of C.

Proposition 3.2.5. For all sets x there is some α such that x ∈ Vα.

Proof. Let C be the hypothetical class of x such that there is no α ∈ ON
such that x ∈ Vα. Then let x be an ∈-minimal element of C. Then for all
z ∈ x there is αz such that z ∈ Vαz , so there is some β = supz∈x αz, and we
see that x ∈ Vβ+1, a contradiction.

Theorem 3.2.6 (∈-induction). Let T be a transitive class and let Φ be a
property. Assume that:

1. Φ(∅) holds,

2. if x ∈ T and Φ(z) holds for every z ∈ x, then Φ(x) holds.
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Then it follows that every x ∈ T has property Φ.

Proof. Let C be the class of all x ∈ T that do not have the property Φ. If
C is nonempty, then it has an ∈-minimal element. If it is ∅ we contradict
the first point, otherwise we contradict the second point.

Theorem 3.2.7 (∈-recursion). Let T be a transitive class and let G be
a function defined for all x. Then there is a function F on T such that
F (x) = G(F � x) for every x ∈ T . Moreover, F is the unique such function.

Proof. For every x ∈ T , we let F (x) = y if and only if there exists a function
f such that dom(f) is a transitive subset of T and (i) (∀z ∈ dom f)f(z) =
G(f � z) and (ii) f(x) = y. As in ordinal induction, we can argue that this
definition does not depend on f .

Definition 3.2.8. A class C is extensional if for all x, y ∈ C, if x 6= y then
there is some z ∈ x∆y such that z ∈ C.

Theorem 3.2.9 (Mostowski’s Collapsing Theorem).

1. For every extensional class C, there is a transitive class M and an
isomorphism π between (C,∈) and (M,∈). Both the class M and the
map π are unique.

2. If C is an extensional class and T ⊆ C is transitive, then π(x) = x
for all x ∈ T .

Proof. We define π by ∈-induction. Let πC(x) = {πC(y) : y ∈ x ∩ C}. Let
M := imπC . To see that M is transitive, suppose that z ∈ y ∈ M . Then
y = πC(a) for some a, and so z = πC(b) for some b ∈ a. Hence z ∈M .

To see that πC is one-one, suppose for contradiction that z is of minimal
rank such that z = π(x) = π(y) for some x 6= y. It must be the case that
x and y are nonempty and that (without loss of generality) there is some
u such that u ∈ x \ y. Then π(u) ∈ π(x) = π(y). Therefore there is v ∈ y
such that π(u) = π(v). But v 6= u so this is a contradiction of minimality
of z.

Next we argue that x ∈ y if and only if πC(x) ∈ πC(y). First, if x ∈ y
then πC(x) ∈ πC(y) by definition. If πC(x) ∈ πC(y) then πC(x) = πC(z) for
some z ∈ y. By injectivity, z = x.
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It can be argued that an isomorphism between transitive classes must
be the identity. If π1, π2 are isomorphisms from C to M1 and M2, then
π2 ◦ π−11 is an isomorphism and therefore the identity.

Lastly, suppose that C is transitive. Then we can argue by ∈-induction
that πC(x) = x for all x ∈ C: First, πC(∅) = ∅. Furtherore, x ⊆ C for all
x ∈ C, so by induction we have πC(x) = {πC(y) : y ∈ x ∩ C = x} = {y :
y ∈ x} = x.

Example 10. • Suppose thatX is a set of ordinals. Then the Mostowski
collapse of X equals α where α = ot(X).

• Consider Vα and consider γ > α. Then the Mostowski collapse of
Vα ∪ {γ} = Vα ∪ {α}.

3.3 Hereditary Sets
November 14, 2024

Definition 3.3.1. Let κ be an infinite cardinal. Then H(κ) denotes the
set of sets x such that | tc(x)| < κ.

Example 2.

• {ℵ2,ℵ3} /∈ H(ℵ1).

• We have ω ⊂ H(ω) but ω /∈ H(ω).

• Interpret the set of rationals Q as pairs of natural numbers modded
out be an equivalence relation. Then Q ∈ H(ℵ1).

Proposition 3.3.3. Let κ be an infinite cardinal. Then the following are
true:

1. H(κ) is transitive,

2. H(κ) ∩ON = κ.

3. If x ∈ H(κ) then
⋃
x ∈ H(κ).

4. If x, y ∈ H(κ) then {x, y} ∈ H(κ).

5. If x ∈ H(κ) and y ⊆ x then y ∈ H(κ).
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Proof. 1. First we argue that x ∈ y implies that tc(x) ⊆ tc(y): It is
sufficient to argue that tc(y) ⊇ x by minimality of tc(x). Suppose that
z ∈ x. Since z ∈ x ∈ y, it follows that z is an element of any transitive set
containing y, so z ∈ tc(y).Note: This was the part

where the lecture was
sketchy! Hopefully it’s
clear here.

Use that x ∈ y implies that tc(x) ⊆ tc(y) and hence | tc(x)| ≤ | tc(y)|.
2. Use that tc(α) = α for ordinals α since they are transitive.
3. We can prove by ∈-induction that tc(

⋃
x) =

⋃
y∈x tc(y). Therefore

| tc(
⋃
x)| ≤ ·|x| · supy∈x | tc(y)| ≤ |x| · |x| = |x| < κ.

4. tc({a, b}) = {a, b} ∪ tc(a) ∪ tc(b) as in the previous point.
5. Uses that y ⊆ x implies tc(y) ⊆ tc(x).

Proposition 3.3.4. Suppose κ is a regular uncountable cardinal. Then
H(κ) satisfies the ZFC axioms besides powerset.

Proof. Extensionality. We need to say that if x 6= y and x, y ∈ H(κ), then
there is some z ∈ x∆y such that z ∈ H(κ). Since there is definitely some
z ∈ x∆y, WLOG in x, we know | tc(z)| ≤ | tc(x)| < κ.

Pairing. Done above.
Schema of Comprehension/Separation. Uses that if x ⊆ y then tc(x) ⊆

tc(y).
Union. Done above.
Infinity. ω is transitive.
Schema of Replacement. Let ϕ(v, w̄) define a function with parameters

b̄ and domain A.
Regularity/Foundation. If y ∈ x then tc(y) ⊆ tc(x).
Axiom of Choice. Similar to previous items.

We still get a fragment of the powerset axiom for H(κ)’s though.

Definition 3.3.5. We say that an uncountable cardinal κ is:

1. weakly inaccessibe if λ+ < κ for all λ < κ;

2. strongly inaccessible or just inaccessible if 2λ < κ for all λ < κ.

Theorem 3.3.6. Let κ be regular and uncountable. The following are equiv-
alent:

1. κ is strongly inaccessible,

2. H(κ) = Vκ,
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3. H(κ) |= ZFC.

Proof. 1. =⇒ 2. We know that H(κ) ⊆ Vκ. The other direction uses
induction, the definition of inaccessibility, and the fact that if 2λ < κ then
| tc(P(λ))| < κ.

2. =⇒ 1. Suppose that λ < κ and 2λ ≥ κ. Then P(λ) ∈ Vκ \H(κ).

1. =⇒ .3 We only need to check the powerset axiom because we already
proved that we have the others: Suppose X ∈ H(κ). Then |X| ≤ | tc(X)| <
κ. Since 2|X| < κ, we have that P(X) ∈ H(κ).

3. =⇒ .1 Again, if the powerset axiom fails, this implies failure of
inaccessibility. More precisely, if there is some X ∈ H(κ) such that P(X) /∈
H(κ), then this can only be the case if 2|X| ≥ κ.

3.4 Reviewing Some Basic Model Theory

Recall some definitions from model theory, which we will summarize in very
loose terms for the sake of haste:

1. A language is a set of symbols including constant, function, and rela-
tion symbols. In set theory we will only use the language L = {=,∈}
(typically the notation for equality is suppressed).

2. Symbols from the language are built up into terms, which are build
up with variables to create formulas using ¬,∧,∨ and adding quan-
tifiers ∃,∀. Variables are free if they are not included in the scope of
quantifiers. A formula with no free variables is called a sentence and
sentences have truth values.

3. Given a language L, an L-structure is a set in which we can interpret
truth values of sentences.

4. A theory is a set of sentences. It is satisfiable if it has a model M .

5. Two structures are elementary equivalent, denoted M ≡ N , if they
satisfy the same sentences. If M ⊆ N , then we say M is an elementary
submodel of N , denoted M ≺ N , if for all ā ∈ M and formulas ϕ,
M |= ϕ(ā) if and only if N |= ϕ(ā).
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6. We say that a ∈ M is definable with a parameter b̄ if there is a
formula ϕ(v, b̄) such that M |= ϕ(a, b̄) and a is the only element with
this property.

Theorem 3.4.1 (Tarski-Vaught Test). Let M ⊆ N be L-structures. Sup-
pose it is the case that if ā ∈M and there is b ∈ N such that N |= ϕ(b, ā),
then there is c ∈M such that M |= ϕ(c, ā). Then it follows that M ≺ N .

Theorem 3.4.2 (Downward Löwenheim-Skolem). Let K be a structure and
let A ⊂ K. Then there is M ≺ K such that A ⊂M and |M | = |A|+ ℵ0.

3.5 Absoluteness and Reflection
November 19, 2024

Definition 3.5.1. Let ϕ(x1, . . . , xn) be a formula and M a class. Then the
relativization of ϕ to M , denoted ϕM , is defined via the following cases:

1. (x ∈ y)M ↔ x ∈ y,

2. (x = y)M ↔ x = y,

3. (ϕ ∧ ψ)M ↔ ϕM ∧ ψM ,

4. (¬ϕ)M ↔ ¬(ϕM),

5. (∃vϕ(v, x̄))M ↔ (∃v ∈M)ϕ(v, x̄).

Example 2. This can also affect the truth of the statement. Let ϕ state
that there is an uncountable cardinal. Then ϕ is false in H(ℵ1).

Definition 3.5.3. Suppose ϕ(x̄) is a formula with free variables among x̄.

1. Suppose that M ⊆ N are classes. Then ϕ is absolute for M and N if

∀ā ∈M(ϕM(ā) ⇐⇒ ϕN(ā)).

2. If M is a class, we say that ϕ is absolute (without explicit reference
to another model) if it is absolute for M and V .

Proposition 3.5.4. A formula ∆0 if it is generated by the following rules:

1. x ∈ y and x = y are ∆0.
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2. If ϕ, ψ are ∆0 then ϕ ∧ ψ and ¬ϕ are ∆0.

3. If ϕ is ∆0, then ∃v(v ∈ w ∧ ϕ(v, ū)) is ∆0.

Proposition 3.5.5. Suppose M ⊆ N are transitive classes. Then ∆0 for-
mulas are absolute with respect to M and N .

Proof. We induct on formula composition. The only nontrivial case is
bounded quantification. First, observe that if ā, b ∈ M and M |= ∃v(v ∈
b ∧ ϕ(v, ā) as witnessed by c, then c ∈ N and we have N |= (c ∈ ∧ϕ(c, ā)
by formula induction and therefore N |= ∃v(v ∈ b ∧ ϕ(v, ā).

Now suppose that ā, b ∈M and N |= ∃v(v ∈ b∧ϕ(v, ā) as witnessed by
c. Since b ∈ M , transitivity implies that c ∈ M , and by formula induction
we have that M |= ∃v(v ∈ b ∧ ϕ(v, ā).

Proposition 3.5.6. The following formulas are expressible as ∆0 formulas
for any model of ZF− {powerset, foundation, infinity}: 1. x ∈ y, 2. x = y,
3. x ⊆ y, 4. {x, y} (or z = {x, y}), 5. {x}, 6. 〈x, y〉, 7. ∅, 8. x∪ y, 9. x∩ y,
10. x \ y, 11. S(x) = x ∪ {x}, 12. x is transitive, 13.

⋃
x, 14.

⋂
x (where

∩∅ = 0).

Proof. Since some of these are similar, we will present sufficiently many of
the items to give a clear picture.

1,2 are by definition.
3. ∀z ∈ x(z ∈ y).
4. x ∈ z ∧ y ∈ z ∧ ∀w ∈ z(w = x ∨ w = y).
6. z = 〈x, y〉 if and only if

∃w ∈ z(w = {x}) ∧ ∃w ∈ z(w = {x, y}) ∧ ∀w ∈ z(w = {x} ∨ w = {x, y}).

7. z = ∅ iff ∀w ∈ z(w 6= w).
8. z = x ∪ y if and only if ∀w ∈ z(w ∈ x ∨ w ∈ y) ∧ x ⊆ z ∧ y ⊆ z.
12. x is transitive if and only if ∀v ∈ x∀z ∈ v(z ∈ x).
13. y =

⋃
x if and only if ∀v ∈ x(v ⊆ y) ∧ ∀z ∈ y∃v ∈ x(z ∈ v).

Lemma 3.5.7. Suppose M ⊆ N and that ϕ(x̄) and Gi(ȳ) (i = 1, . . . , n)
are absolute for M,N (where absoluteness for functions has the natural
definition). Then the formula

ϕ(G1(ȳ), . . . , Gn(ȳ))

is absolute for M,N .
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Proof. If a ∈M , then with some notational simplifications,

(ϕ(G(a)))M ⇐⇒ ϕM(GM(a)) ⇐⇒ ϕN(GN(a)) ⇐⇒ (ϕ(G(a)))N .

Proposition 3.5.8. The following are absolute for any model of ZF −
{powerset, foundation, infinity}: 1. z is an ordered pair. 2. A×B. 3. R is
a relation. 4. domR. 5. rangeR. 6. R is a function. 7. R(x). 8. R is a
one-one function.

Proof. Again, we will go through just some of the main points.
Saying that z is an ordered pair is equivalent to saying that

ϕ(z 7→
⋃

z, z 7→
⋃

z, z)

where ϕ(a, b, c) is the formula

∃x ∈ a∃y ∈ b(c = 〈x, y〉).

The rest of the points clearly build on one another.
For example, R is a relation if and only if ∀z ∈ R, z is an ordered

pair.

3.6 Relative Consistency
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