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Abstract. We show that it is consistent from an inaccessible cardinal that

classical Namba forcing has the weak ω1-approximation property. In fact, this
is the case if ℵ1-preserving forcings do not add cofinal branches to ℵ1-sized

trees. The exact statement we obtain is similar to Hamkins’ Key Lemma.

It follows as a corollary that MM implies that there are stationarily many
indestructibly weakly ω1-guessing models that are not internally unbounded.

This answers a question of Cox and Krueger and partially answers another.

Our result on MM gives a short proof of a weakening of Cox and Krueger’s main
result by removing their use of higher Namba forcings, but we find another

application of their ideas by answering a question of Adolf, Apter, and Koepke
on preservation of successive cardinals by singularizing forcings.

1. Background

Research in infinitary combinatorics has shown that the specific cardinals ℵ0,
ℵ1, ℵ2, etc. exhibit distinct properties. One way to look at this is to examine to
what extent these cardinals can be turned into each other by forcing. Bukovský and
Namba independently showed that ℵ2 can be turned into an ordinal of cofinality ℵ0
without collapsing ℵ1, and this forcing and its variants for other cardinals are now
known as Namba forcing [10]. This paper is about the functions added by variants
of Namba forcing.1

The conditions in classical Namba forcing, which we denote PCNF, are perfect
trees of height ω and width ℵ2. Specifically, p ∈ PCNF if and only if: p ⊆ <ωℵ2;
t ∈ p and s v t implies s ∈ p; for all t ∈ p, |{α < ℵ2 : t_〈α〉 ∈ p}| ∈ {1,ℵ2}; and
for all t ∈ p there is some s w t such that {α < ℵ2 : s_〈α〉 ∈ p} is unbounded in
ℵ2. The particularities of the width ℵ2 will be significant for this paper.

Following work of Viale, Weiss, and others, Cox and Krueger introduced the
weak guessing model property to explore questions around guessing models. Their
approach required an analysis of higher Namba forcings—meaning variations of
Namba forcing that add sequences to cardinals above ℵ2—and a demonstration
that they have the weak countably approximation property [3]. As they point out,
CH implies that classical Namba forcing cannot have the weak ω1-approximation
property. (A forcing P has the weak ω1-approximation property if it does not add
new functions with domain ω1 whose initial segments are in the ground model.)
Since it collapses ωV2 to ω1, there is a new subset of ω1, and since CH implies that
Namba forcing does not add reals [8, Chapter 28], it follows that initial segments
of this new subset are in the ground model. They asked whether classical Namba

1The reader is assumed to have familiarity with the basics of forcing theory [8].
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forcing could have the weak ω1-approximation property [3, Question 5], and we
provide an affirmative answer here.

Theorem 1. Suppose that every ω1-sized tree cannot gain a cofinal branch from
an ω1-preserving forcing. Then it follows that if P = PCNF is the classical Namba
forcing and Q̇ is a P-name for a countably closed forcing, then P ∗ Q̇ has the weak
ω1-approximation property.

Note that Q̇ can name the trivial forcing. The reader will also be able to observe
from the proof Theorem 1 that it is sufficient for Q̇ to be countably strategically
closed. Theorem 1 is optimal in a sense because Krueger showed that any forcing
that has the countable approximation property also has the countable covering
property [9]. Hence classical Namba forcing cannot have the ω1-approximation
property.

Theorem 1 also can be seen as a variation on Hamkins’ Key Lemma [6], which
was used to show how large cardinal properties are preserved in certain forcing
extensions. Many variations have appeared since, notably by Usuba [13]. These
ideas were used by Viale and Weiss, who introduced guessing models to derive
information about the consistency strength of the proper forcing axiom (PFA) [15].
Guessing models have since become a major topic of research.

Let us introduce some of the basic terminology of guessing models that we will
use here. Suppose M ∈ Pω2

(X) with ω1 ⊆M . We say that M is weakly ω1-guessing
if for all f : ω1 → ON such that f � i ∈ M for all i < ω1, it follows that f ∈ M .
We say that M is indestructibly weakly ω1-guessing if this property holds in all ω1-
preserving extensions. Such an M is internally unbounded if for all x ∈ Pω1

(M),
there is some y ∈ M ∩ Pω1(M) such that x ⊆ y. Internal unboundedness and its
variations were studied extensively by Krueger and are important for the properties
of guessing models.

The findings here may be useful for Viale and Weiss’ proposal to work on guess-
ing models for fragments of Martin’s Maximum (MM). Some indication for this
possibility comes from an application to another question of Cox and Krueger, who
ask whether MM suffices to prove their main theorem [3, Question 1]. We are able
to obtain ω1-guessing:

Corollary 2. MM implies that for all θ ≥ ω2, there is a stationary set of M ∈
Pω2

(H(θ)) such that ω1 ⊂M , and M is indestructibly weakly ω1-guessing and not
internally unbounded.

This in particular uses a weaker large cardinal hypothesis than Cox and Krueger,
who obtain their statement from a supercompact and countably many measurables
above it. The higher Namba forcings that they use are not needed for obtaining
Corollary 2. However, we will demonstrate an alternative application for their work:

Theorem 3. Assume the consistency of class-many supercompact cardinals. Then
there is a forcing extension in which, for all double successor cardinals λ++, there is
a further set forcing extension adding a cofinal ω-sequence to λ++ without collapsing
µ for µ ≤ λ+.

Hence we can have a sense of to what extent these higher versions of Namba
forcing generalize the behavior of classical Namba forcing. This answers the first
question of a paper by Adolf, Apter, and Koepke [1], who also indicate that a
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substantial cardinal hypothesis is necessary in order to obtain the statement of
Theorem 3.

2. Classical Namba Forcing and Weak Approximation

Because we will refer to the hypothesis of Theorem 1 repeatedly, we will say that
the Baumgartner Freezing Property holds if for all ω1-preserving forcings P and all
ω1-sized trees T , P does not add a cofinal branch to T . We denote this BFP. (The
attribution will be clarified later.) It consistently holds in the presence of certain
specializing functions, but we will refer to its abstract form [2].

An ω1-sized tree T is B-special if there is a function f : T → ω such that for all
x, y, z ∈ T , if x ≤ y, z and f(x) = f(y) = f(z), then y and z are compatible. In
this case f is called a B-specializing function.

Proposition 4. If all ω1-sized trees have a B-specializing function, then BFP holds.

Baumgartner obtained the consistency of BFP using a model in which there are
no Kurepa trees.

Fact 5. [2, Section 8] BFP is consistent from an inaccessible cardinal.

We underscore an important fact that does not depend on CH. The proof of this
fact will to some extent be imitated in the proof of Theorem 1:

Fact 6. PCNF preserves ω1.

Now we are ready to actually prove the main theorem.

Proof of Theorem 1. Suppose for contradiction that (p′, ċ′) ∈ P ∗ Q̇ forces that

Ḟ : ω1 → ON is a P ∗ Q̇-name for a function whose initial segments are in V .

Claim 7. One of the following holds:

(1) BFP fails.
(2) For all (p, ċ) ≤ (p′, ċ′) and all X ∈ [V ]≤ω1 ∩ V it is not the case that

(p, ċ)  “{Ḟ � i : i < ω1} ⊆ X”.

Proof. Suppose that (2) does not hold. It follows that there is some (p, ċ) ≤ (p′, ċ′)

and some X ∈ [V ]≤ω1 ∩ V such that (p, ċ)  “{Ḟ � i : i < ω1} ⊆ X”. Without loss
of generality, there is a large enough τ such that all elements of X are functions
σ : γ → τ for some γ < ω1. We can assume that |X| > ℵ0 since otherwise it would

be implied that (p, ċ) forces Ḟ to have domain bounded in ω1. Therefore, X is a
ω1-sized tree where the ordering is end-extension, i.e. if y, z ∈ X then y ≤X z if and
only if z � dom y = y. Since Ḟ is forced to be new, (p, ċ)  “X has a cofinal branch

not in V ”. Therefore we have shown that P ∗ Q̇, which preserves ω1 (Fact 6 and
then countable closure) and adds a cofinal branch to an ℵ1-sized tree, and hence
BFP fails. �

We are assuming that BFP holds, so for the rest of the proof we will argue that
Case (2) in Claim 7 leads to a contradiction.

Now we introduce some standard notation: If t ∈ p ∈ P then succp(t) = {t′ ∈ p :
t′ w t, |t′| = |t|+ 1} and osuccp(t) = {α < ℵ2 : t_〈α〉 ∈ p}. If p ∈ P, then stem p is
the v-minimal node such that for all t′ v t, | succp(t

′)| = 1.
We will repeatedly use the following in the remainder of the argument:
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Claim 8. Suppose p  “ċ ∈ Q̇” where osuccp(stem(p)) = Z and there is a sequence

〈(qα, ḋα) : α ∈ Z〉 such that (qα, ḋα) ≤ (p � stem(p)_〈α〉, ċ) for all α ∈ Z. If

q =
⋃
α∈Z qα, then there is some ḋ such that q  “ḋ ≤ ċα” and for all α ∈ Z,

qα  “ḋ = ċα”.

Proof. This is an application of the proof of the Mixing Principle, since 〈qα : α ∈ Z〉
is a maximal antichain below q. �

Now we define the main idea of the rest of the proof. Let ϕ(i, (q, ḋ)) denote the
formula

i < ω1∧(q, ḋ) ∈ P ∗ Q̇ ∧ (q, ḋ) ≤ (p′, ċ′) ∧ ∃〈aα : α ∈ osuccq(stem(q))〉 s.t.

∀α ∈ osuccq(stem(q)), (q � (stem(q)_〈α〉), ḋ)  ‘Ḟ � i = aα’∧
∀α, β ∈ osuccq(stem(q)), α 6= β =⇒ aα 6= aβ .

Claim 9. ∀j < ω1, (p, ċ) ≤ (p′, ċ′) ∈ P∗Q̇,∃i ∈ (j, ω1), (q, ḋ) ≤ (p, ċ) s.t. stem(p) =

stem(q) ∧ ϕ(i, (q, ḋ)).

Proof of Claim. First we establish a slightly weaker claim: ∀j < ω1, (p, ċ) ∈ P ∗
Q̇, t ∈ p s.t. | succp(t)| > 1, there is an ℵ2-sized set W ⊂ osuccp(t) and a sequence
〈(qα, ċα), iα : α ∈W 〉 s.t. :

• ∀α ∈ osuccp(t),
– iα ∈ (j, ω1),
– (qα, ċα) ≤ (p � (t_〈α〉), ċ),
– (q � t_〈α〉, ċα)  “Ḟ � iα = aα),

• α 6= β =⇒ aα 6= aβ .

Consider (p, ċ) ∈ P ∗ Q̇ and t := stem(p). Inductively choose a sequence

〈(qαξ , ḋαξ), iαξ : ξ < ℵ2〉 where 〈αξ : ξ < ℵ2〉 ⊆ osuccp(t) as follows: Suppose

〈(qαξ , ḋαξ), iαξ : ξ < η〉 is defined. Then if possible, choose β ∈ osuccp(t) \
(supξ<η αξ) and (qβ , ḋβ) such that qβ ≤ p � t_〈β〉 and (qβ , ḋβ)  “Ḟ � iβ = aβ”
for some aβ with αβ /∈ {ααξ : ξ < η}. Moreover let iβ be minimal such that

((qβ , ḋβ), iβ) fitting this description can be found. Then set αη := β. If it is not

possible to find such a 〈qβ , ḋβ〉 and iβ , then halt the construction.
Suppose for contradiction that the slightly weaker claim fails. This means that

the construction in the above paragraph must halt. Let η < ℵ2 be the least ordinal
where it is not possible to continue the construction in the paragraph above and
let B := {aαξ : ξ < η}. Then for all α ∈ osuccp(t) \ (supξ<η αξ) we have (p �

t_〈α〉, ċ)  “
⋃
i<ω1

Ḟ � i ⊆ B”. Let q :=
⋃
α∈osuccp(t)\(supξ<η αξ)

p � (t_〈α〉). Then

q ∈ P and q ≤ p. Furthermore, it is the case that (q, ḋ)  “
⋃
i<ω1

Ḟ � i ⊆ B”

where ḋ is obtained by applying Claim 8. But B has size ≤ ℵ1, contradicting the
assumption that we are working in Case (2) of Claim 7.

Now we have established the slightly weaker claim. Choose a ℵ2-sized subset
W ⊆ osuccp(t) and some i ∈ (j, ω1) such that iα = i for all α ∈ W . Then let

q :=
⋃
α∈W qα and apply Claim 8 to obtain ḋ. �
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We plan to build a fusion sequence using Claim 9. To this end, we define a game
Gk for k < ω1.2

Suppose round n of the game is being played where n = 0 is the first round. If
n = 0 then let ((q∗, ċ∗), i∗) be ((p′, ċ′), 0) (recall that (p′, ċ′) is the condition from
the beginning of the proof of Theorem 1). Otherwise if n > 0 let ((q∗, ċ∗), i∗) be
((qn, ċn), in). First Player I chooses an ℵ1-sized subset Zn ⊆ osuccq∗(stem(q∗))
and some δn < k. Then Player II chooses some α ∈ osuccq∗(stem(q∗)) \ Zn and

some condition (qn, ḋn) ≤ (q∗ � stem q∗
_〈α〉, ċ∗) and some in ∈ (δn, k) such that

ϕ((qn, ḋn), in) holds. Hence we have the following diagram:

Player I Z0, δ0 Z1, δ1 Z2, δ2

Player II (q0, ḋ0), i0 (q1, ḋ1), i1 (q2, ḋ2), i2

Player II loses at some stage n if they cannot find appropriate (qn, ċn) and in
witnessing ϕ(in, (qn, ċn)) for some i < k, i.e. if they cannot in particular find such
in ∈ (δn, k). Otherwise Player II wins.

Claim 10. There is some k < ω1 such that Player II has a winning strategy in Gk.3

Proof. Suppose this is not the case. For all i < ω1, Gi is an open game. Therefore
by the Gale-Stewart Theorem, there is a winning strategy σi for Player I in Gi.

Let θ be large enough for H(θ) to contain the sets mentioned in the upcoming

argument, so we consider the structure H := (H(θ),∈, <θ,P, Ḟ , 〈σi : i < ω1〉) where
<θ is a fixed well-ordering of H(θ) that allows for Skolem functions. Let M ≺ H be
a countable elementary submodel. Then M ∩ω1 ∈ ω1, so let us denote k := M ∩ω1.

We will construct a run of the game Gk such that Player I uses the strategy σk
but nonetheless loses the game. We will define the sequence

(Z0, δ0), ((q0, ḋ0), i0), (Z1, δ1), ((q1, ḋ1), i1), . . .

so that Player II’s moves are all in M even though σk /∈M .
Assume for notational convenience that the game is defined with the opening

move ((p′, ċ′), 0) by Player II. Suppose we are considering stage n of the game

and that ((qn, ḋn), in) is defined (we let it be the opening move if n = 0). Let
(Zn+1, δn+1) be obtained by σk as applied to the previous moves. Then let W be

the set of indices i for which ((p′, ċ′), 0), . . . , ((q,ḋn), in) is a sequence of Player II’s
moves in the game Gi where Player I is using σi. This set is nonempty and W ∈M .
Therefore if

Y =
⋃
{Zi : i ∈W,σi(((q−1, ḋ−1), i−1), . . . , ((q,ḋn), in)) = (Zi, δ

∗)}

then Y ∈ M , and moreover |Y | < ℵ2 because it is the union of at most ℵ1-
many ℵ1-sized sets. Choose α ∈ osuccqn(stem(qn)) \ Y and apply Claim 9 to

(qn � stem(qn)_〈α〉, δn+1) in order to obtain ((qn+1, ḋn+1), in+1). By elementarity,

we can obtain ((qn+1, ḋn+1), in+1) ∈ M , so in+1 < k, hence we can continue the
construction.

2This is where the proof of Fact 6 is being imitated (see [4, Section 2.1, Fact 5]). Preservation of
ω1 for classical Namba forcing (and for various other Namba forcings) is achieved by showing that
the forcing preserves stationary subsets of ω1, in which case the game involves deciding ordinals

in a club subset of ω1.
3Technically we get club-many such k < ω1.
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Since Player II does not lose at any initial stage, they win the run of the game
Gk. Hence we have obtained our contradiction. �

Now we will build a condition (q, ḋ) ∈ P ∗ Q̇ by a fusion process in such a way

that any stronger condition deciding Ḟ � k will also code a cofinal sequence in ω2

that exists in the ground model V , thus obtaining a contradiction.
For this we define a bit more standard notation. For all n < ω, define the nth-

order splitting front of some p ∈ P as the set of t ∈ p such that | osuccp(t)| > 1 and
such that there are at most n-many t′ v t with t′ 6= t that have this property.

Fix a sequence 〈δn : n < ω〉 converging to k. We will define 〈(pn, ċn) : n < ω〉 by
induction on n < ω in such a way that:

(1) 〈pn : n < ω〉 is a fusion sequence,
(2) for all n < ω, pn+1  “ċn+1 ≤ ċn”,
(3) For all n < ω, if An is the nth-order splitting front of pn, then for all t ∈ An,

the following is the case: Let s0 v s1 v . . . v sn = t be the sequence of all
splitting nodes up to and including t. Then there is a sequence Zt0, . . . , Z

t
n

such that

(Zt0, δ0), ((p0 � s0, ḋ0), i0), . . . , (Ztn, δn), ((pn � sn, ḋn), in)

is a run of the game Gk in which Player II’s moves are determined by the
winning strategy obtained in Claim 10.

Note that the third point implies the following: For all positive n < ω, if An is
the nth-order splitting front of pn, then for all t ∈ An, there is it ∈ (δn, k) and a
sequence 〈as : s ∈ succpn(t)〉 witnessing that ϕ(it, (pn � t, ċn)) holds.

We do this as follows: Start with stage −1 for convenience and let (p−1, ċ−1) =
(p, ċ). Then A−1 = stem(p−1). Now assume we have defined pn−1, that An is its
nth-order splitting front, and we are considering t ∈ An. Let s0 v s1 v . . . v
sn−1 = t be the sequence of splitting nodes up to and including t. Let St be the
set of α ∈ osuccpn−1

(t) such that for some Zαn , the winning strategy for Player II
applied to the sequence

(Zt0, δ0), ((p0 � s0, ḋ0), i0), . . . , (Ztn−1, δn−1), ((pn−1 � sn−1, ḋn−1), in−1), (Zαn , δn)

produces some ((qn, ḋn), in) where qn ≤ pn−1 � t_〈α〉. We claim that |St| = ℵ2.
Otherwise Player I would have a winning move for the sequence

(Zt0, δ0), ((p0 � s0, ḋ0), i0), . . . , (Ztn−1, δn−1), ((pn−1 � sn−1, ḋn−1), in−1)

by playing St as the subset-of-ℵ2-component of their move. For each such t ∈ An
and α ∈ St, choose (qt,α, ḋt,α) to be produced by the winning strategy for Player

II as the P ∗ Q̇ component of their move. Now let pn =
⋃
{qt,α : t ∈ An, α ∈ St}.

Then use Claim 8 to obtain ċn from the ċt,α’s.

Now let q be the fusion limit of 〈pn : n < ω〉 and let ḋ be the name canonically

forced by q to be a lower bound for 〈ċn : n < ω〉. Then (q, ḋ) forces that the generic

sequence for P can be recovered from Ḟ � k as follows: Let (r, ė) ≤ (q, ḋ) force

Ḟ � k = g ∈ V . We can inductively choose a cofinal branch b ⊂ r such for all t ∈ b,
for some i < k, g � it = at. Specifically, we construct b by defining a sequence
〈sn : n < ω〉 of splitting nodes as follows: Let s0 = stem q. Given sn, let s∗n+1 w sn
be the next splitting node. Then since ϕ(it, (r � s∗n+1, ė)) holds for some it ∈ (δn, k),
there is some α ∈ osuccr(s

∗
n+1) such that (r � s∗n+1

_〈α〉, ė)  “g � it = at”. Then
lelt sn+1 = s∗n+1

_〈α〉. Then let b = {t ∈ r : ∃n < ω, t v sn}. This implies that
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(r, ė) forces that the generic object is equal to b, i.e. that
⋂

Γ(P) = b ∈ V , but this
is not possible.

Hence (q, ḋ)  “Ḟ � k /∈ V ” lest we obtain the contradiction from the previous
paragraph. This contradicts the premise from the beginning of the proof that initial
segments of Ḟ are in V . �

Now we can work on proving Corollary 2. This is mostly a matter of noting some
statements in the established theory. First we state the fact that is most frequently
used to produce various sorts of guessing models:

Fact 11 (Woodin). (Implicit in [16, Theorem 2.53]) Suppose that P is a forcing
poset and that for all sequences D = 〈Dα : α < ω1〉 of dense subsets of P, there
is a D-generic filter. Then for any regular cardinal θ such that P ∈ H(θ), there
are stationarily many M ∈ Pω2

(H(θ)) with ω1 ⊆ M for which there exists an
(M,P)-generic filter.

Then we use a property to violate internal unboundedness. The following is a
partial weakening of Cox-Krueger [3, Lemma 5.2].

Fact 12. Let P be a forcing poset such that P ∈ H(θ) for a regular cardinal θ ≥ ω2.
Let M ∈ Pω2(H(θ)) be such that ω1 ⊆M and M ≺ (H(θ),∈,P, τ). Suppose that P
forces that there is a countable set of ordinals in τ not covered by any countable set
in V . If G is an M -generic filter on P, then there is a countable subset of M that
is not covered by any countable set in M .

Then we have another weaking of Cox-Krueger [3, Proposition 5.4] which an
analog of the lemma used by Viale and Weiss to produce guessing models from
Woodin’s result [15, Lemma 4.6].

Fact 13. Fix a regular cardinal θ ≥ ω2. Assume that the poset P has the weak
ω1-approximation property and forces that 2θ has size ω1. Then there exists a set
w and a P-name Q̇ for an ω1-cc forcing poset such that the following holds: For
any regular χ with P, Q̇, w ∈ H(χ) and any M ∈ Pω2

(H(χ)) such that ω1 ⊆ M

and M ≺ (H(χ),∈,P ∗ Q̇, θ, w), if there exists an M -generic filter on P ∗ Q̇, then
M ∩H(θ) is indestructibly ω1-weakly guessing.

Proof of Corollary 2. Fix the θ such that we want stationarily many indestructibly
weakly ω1-guessing models in Pω2(H(θ)) that are not internally unbounded. Let

P denote the classical Namba forcing and let Q̇ be a P-name for the Lévy collapse
Col(ω1, (2

θ)+). Let χ > θ be large enough for H(χ) to contain the needed objects
referred to in the statement of Fact 13 and then apply MM to Fact 11 to find a
stationary set S′ ⊆ Hω2

(H(χ)) of M ⊇ ω1 for which there is an (M,P ∗ Q̇)-generic
filter. Then the set S := {M ∩H(θ) : M ∈ S′} is the stationary set we are looking
for. Since P adds a countable sequence in ω2 not covered by any set in V and since
we can restrict to find an (M,P)-generic filter, it follows by Fact 12 that for all
M ∈ S′, M is not internally unbounded as witnessed by a subsequence of ω2, so
this is also the case for M ∩H(θ). Since MM implies BFP, Theorem 1 implies that

P ∗ Q̇ has the weak ω1-approximation property, so it follows by Fact 13 that all
M ∈ S are indestructibly weakly guessing. �

3. Higher Namba Forcing and Cardinal Preservation

Now we work towards proving Theorem 3. The work uses higher Laver-Namba
forcings employed by Cox and Krueger to obtain a stationary set of guessing models.
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We retain the crux of their argument: A deft use of the pigeonhole principle, where
ḟ is a name for a function, 〈Dξ : ξ ∈ dom ḟ〉 is a sequence of open dense sets deciding

values ḟ and a stem length n < ω is isolated so that unboundedly many values of
the function can be decided with a single condition. In Cox and Krueger’s case
they argue that a certain Laver-Namba forcing has a weak approximation property,
but in our case we will be showing that certain cardinals are preserved.

We let PLNF(I) be the Laver version of Namba forcing with respect to an ideal
I on some cardinal λ. This means that p ∈ PLNF if and only if p ⊆ ωλ and there is
some t ∈ p such that for all s w t, osuccp(s) ∈ I+. The main feature of the Laver
version to consider is that we can use direct extensions. Given p, q ∈ PLNF(I), we
write p ≤∗ q if p ≤ q and stem(p) = stem(q). We will also use a principle found by
Laver, for which we will suggest some useful notation:

Definition 14. [12, Chapter X,Definition 4.10] Given a successor cardinal κ+, we
write LIP(κ+) if there is a κ+-complete ideal I ⊂ P (κ+) such that there is a set
D ⊆ I+ that is κ-closed subset and dense in itself, i.e. for all A ∈ I+, there is some
B ⊆ A with B ∈ I+ such that B ∈ D.

Fact 15 (Laver). If κ < µ where κ is regular and µ is measurable, then Col(κ,< µ)
forces LIP(µ).

Laver’s proof of Fact 15 is unpublished, but the argument is similar to the one
found by Galvin, Jech, and Magidor for obtaining a certain precipitous ideal on ℵ2
[5]. Some additional details appear in Shelah [12, Chapter X]. We will use a version
of this result for successive cardinals that also comes from unpublished work of
Laver:

Theorem 16 (Laver). Assume the consistency of class-many supercompact car-
dinals. Then there is a forcing extension in which LIP(λ++) holds for all infinite
cardinals λ. (See [7, Page 89] and [11] for related arguments.)

The following facts are covered in detail by Cox and Krueger, though we state
them in some specificity. They are fairly standard arguments for Namba forcings,
and the first two facts to some extent go back to Laver’s proof of the consistency
of the Borel Conjecture (see also Cummings-Magidor [4] and Shelah [12]).

Fact 17. [3, Lemma 6.5],[4, Section 2.1, Fact 1] Suppose I ⊆ κ+ is a κ+-complete
ideal and suppose p ∈ PLNF(I) forces that γ̇ is a name for an ordinal below κ. Then
there is some q ≤∗ p and δ ∈ ON such that q  “γ̇ = δ”.

Fact 18. [3, Lemma 6.4],[4, Section 2.1, Fact 2] Suppose I ⊆ κ+ is a κ+-complete
ideal. Let D ⊆ PLNF(I) be dense open. Then for each p ∈ PLNF(I), there is some
q ≤∗ p and some n < ω such that for any t ∈ q with |t| = stem(p) + n, q � t ∈ D.

Finally, we have closure of the direct extension, the argument for which is much
easier than the one for the last two facts. Lower bounds can be obtained by induc-
tively defining splitting sets via the lower bounds for LIP(κ+).

Fact 19. [3, Lemma 6.13] Suppose that LIP(κ+) holds and is witnessed by I and
that η < κ. If 〈pξ : ξ < η〉 is a ≤∗-decreasing sequence of conditions in PLNF(I),
then there is p̄ such that p̄ ≤∗ pξ for all ξ < η.

Proof of Theorem 3. Using Theorem 16, assume that LIP(λ++) holds for all infinite
λ. For each infinite cardinal µ such that LIP(µ) holds, let Iµ be the witnessing ideal.



CLASSICAL NAMBA FORCING CAN HAVE THE W.C.A.P. 9

We will argue that for all µ = λ++, Pµ := PLNF(Iµ) preserves the cofinalities of all
regular ν ≤ λ+. To do this, we fix some λ++ and choose some regular ν ≤ λ+ for
which we will prove the statement.

First we consider the possibility that ν > ℵ0 is forced by some p ∈ Pµ to have

countable cofinality. Then if ḟ : ω → ν is a name for an unbounded function we
can use Fact 17 to choose a ≤∗-descending sequence 〈pn : n < ω〉 below p such that

pn forces “ḟ(n) = βn” for some βn. Then use Fact 19 to obtain a ≤∗-lower bound q
for this sequence. Then q  “ sup f [ω] = supn<ω βn < ν”, which is a contradiction.

Now suppose that ν is forced to have cofinality τ where ℵ0 < τ < ν. Suppose
that p ∈ Pµ forces that ḟ is a Pµ-name for a function τV → ν. If ḟ were a
surjection, then there would be a strictly increasing and unbounded function, so
assume without loss of generality that ḟ is forced by p to be strictly increasing and
unbounded.

For all ξ < τ , let Dξ ⊆ Pµ be the open dense set of conditions deciding ḟ(ξ).
Now we define a ≤∗-decreasing sequence 〈pξ : ξ < τ〉 as follows: Let p0 = p. If
pξ is defined, use Fact 18 to obtain some pξ+1 ≤∗ pξ such that for some nξ < ω,
for any t ∈ q with |t| = stem(pξ) + nξ, we have q � t ∈ Dξ. If ξ is a limit and we
have defined 〈pξ′ : ξ′ < ξ〉, then let pξ be a ≤∗-lower bound obtained using Fact 19.
Once we have defined the sequence, apply Fact 19 again to obtain p̄, a ≤∗-lower
bound of 〈pξ : ξ < τ〉 (if ν+ = µ then this is the best possible ≤∗-closure).

Now apply the Pigeonhole Principle to find an unbounded set X ⊆ τ and some
` < ω such that for all ξ ∈ X, nξ = `. Take any t ∈ p̄ such that |t| = | stem(p̄)|+ `
and let q = p̄ � t. Then for all ξ ∈ X, q ∈ Dξ and therefore there is some βξ such

that q  “ḟ(ξ) = βξ”. Let β := supξ∈X βξ + 1 < ν. Then since q forces that ḟ

is strictly increasing, it follows that q forces that the range of ḟ is bounded by β.
This shows that ν is preserved by Pµ and thus completes the proof. �

Remark 20. Note that the argument for the case of ℵ2 in the proof of Theorem 3
essentially tells us that having a precipitous ideal on ℵ2 implies CH: Modulo some
details, PLNF(I) does not add reals if I is precipitous, yet failure of CH implies that
PLNF(I) (and ℵ2-splitting Namba forcing in general) adds reals. Hence the nice
behavior obtained for PLNF(I) for higher cardinals does not seem adaptable to the
situation in Theorem 1.

We close with some questions:

(1) What is the exact consistency strength of the statement that PCNF has the
weak ω1-approximation property?

(2) Suppose that I is just the bounded ideal on ℵ2. Is it consistent that the
Laver-Namba forcing PLNF(I) has the weak ω1-approximation property?
What about for other ideals I on ℵ2? (See Remark 20.)

(3) More broadly, are there more specific applications of Theorem 1 to the
program suggested by Viale and Weiss for studying guessing models under
fragments of Martin’s Maximum?
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