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Abstract. We answer a question of Krueger by obtaining disjoint stationary

sequences on successive cardinals. The main idea is an alternative presentation

of a mixed support iteration, using it even more explicitly as a variant of
Mitchell forcing. We also use a Mahlo cardinal to obtain a model in which

ℵ2 /∈ I[ℵ2] and there is no disjoint stationary sequence on ℵ2, answering a

question of Gilton.

1. Introduction and Background

In order to develop the theory of infinite cardinals, set theorists study a variety
of objects that can potentially exist on these cardinals. The objects of interest
for this paper are called disjoint stationary sequences. These were introduced by
Krueger to answer a question of Abraham and Shelah about forcing clubs through
stationary sets. Beginning in joint work with Friedman, Krueger wrote a series of
papers in this area, connecting a wide range of concepts and answering seemingly
unrelated questions of Foreman and Todorčević [3, 10, 11, 12, 13, 14]. The purpose
of this paper is to further develop this area.

Krueger’s new arguments generally hinged on the behavior of two-step iterations
of the form Add(τ) ∗ P. In order to extend the application of these arguments as
widely as possible, Krueger developed the notion of mixed support forcing [11, 14].
These forcings are to some extent an analog of the forcing that Mitchell used to
obtain the tree property at double successors of regular cardinals. Their most
notable feature is the appearance of quotients insofar as the forcings took the form
M ' M̄∗Add(τ)∗Q where M̄ is a partial mixed support iteration. The appearance
of Add(τ) after the initial component, together with the preservation properties of
the quotient Q, allowed Krueger’s new arguments to go through various complicated
constructions. Mixed support iterations have found several applications since [4],
particularly in regard to guessing models [15].

The main idea in this paper is to use a version of Mitchell forcing to accomplish
the task of a mixed support iteration. Specifically, this version of Mitchell forcing
takes the form M ' M̄ ∗ Add(τ) ∗ Q.1 The trick used to obtain this structural
property is reminiscent of the one used by Cummings et al. in “The Eightfold Way”
to demonstrate that subtle variations in the definitions of Mitchell forcing—up to
merely shifting a Lévy collapse by a single coordinate—can substantially alter the
properties of the forcing extension. The benefit of the forcing used here is that it
comes with a projection analysis of the sort that Abraham used for Mitchell forcing
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1The extent to which all variations of these forcings are equivalent or not is left as a loose

end. Here we only deal with the case where the two-step iteration Add(τ) ∗ P takes the form

Add(τ) ∗ Ċol(µ, δ).
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[1]. Both the forcing itself and its quotients are projections of products of the form
A×T where A has a good chain condition and T has a good closure property. This
allows us to obtain preservation properties conveniently, without having to delve
into too many technical details. Abraham in fact used this projection analysis to
extend Mitchell’s result to successive cardinals. This is exactly what we do here
for disjoint stationary sequences, answering the first component of a question of
Krueger [14, Question 12.8]:

Theorem 1. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a
forcing extension in which there are disjoint stationary sequences on ℵ2 and ℵ3.

We lay out the basic definition and concepts in the following subsections and
then develop the proof in Section 2. We also achieve one of Krueger’s separations
for successive cardinals, which answers a component of another one of his questions
[14, Question 12.9]:

Theorem 2. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a forc-
ing extension in which for µ ∈ {ℵ1,ℵ2}, there are stationarily many N ∈ [H(µ+)]µ

that are internally stationary but not internally club.

The last main result is motivated by work of Gilton and Krueger, who answered
a question from “The Eightfold Way” by obtaining stationary reflection for subsets
of ℵ2 ∩ cof(ω) together with failure of approachability at ℵ2 (i.e. ℵ2 /∈ I[ℵ2]) using
disjoint stationary sequences [4]. This result used the fact that the existence of
a disjoint stationary sequence implies failure of approachability. Gilton asked for
the exact consistency strength of the failure of approachability at ℵ2 together with
the nonexistence of a disjoint stationary sequence on ℵ2 [6, Question 9.0.15]. (He
pointed out that Cox found this separation using PFA [2].) It is known that the
failure of approachability requires the consistency strength of a Mahlo cardinal, and
in Section 3 we show that a Mahlo cardinal is sufficient for the separation:

Theorem 3. Suppose that λ is Mahlo in V . Then there is a forcing extension in
which ℵ2 /∈ I[ℵ2] and there is no disjoint stationary sequence on ℵ2.

Disjoint stationary sequences are known to be interpretable in terms of canonical
structure (see Fact 6 below), and the main idea for Theorem 3 is a simple master
condition argument that exploits this connection.

1.1. Basic Definitions. We assume familiarity with the basics of forcing and large
cardinals. We use the following conventions: If P is a forcing poset, then p ≤ q
for p, q ∈ P means that p is stronger than q. We say that P is κ-closed if for all
≤P-decreasing sequences 〈pξ : ξ < τ〉 with τ < κ, there is a lower bound p, i.e.
p ≤ pξ for all ξ < τ . We say that P has the κ-chain condition of all antichains
A ⊆ P have cardinality strictly less than κ.

Now we give our main definitions:

Definition 4. Given a regular cardinal µ, a disjoint stationary sequence on µ+ is
a sequence 〈Sα : α ∈ S〉 such that:

• S ⊆ µ+ ∩ cof(µ) is stationary,
• Sα is a stationary subset of Pµ(α) for all α ∈ S,
• Sα ∩ Sβ = ∅ if α 6= β.

We write DSS(µ+) to say that there is a disjoint stationary sequence on µ+.
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Definition 5. Given a stationary N ∈ [H(Θ)]κ,2 we say:

• N is internally unbounded if ∀x ∈ Pκ(N),∃M ∈ N, x ⊆M ,
• N is internally stationary if Pκ(N) ∩N is stationary in Pκ(N),
• N is internally club if Pκ(N) ∩N is club in Pκ(N),
• N is internally approachable if there is an increasing and continuous con-

tinuous chain 〈Mξ : ξ < κ〉 such that |Mξ| < κ and 〈Mη : η < ξ〉 ∈ Mξ+1

for all ξ < κ such that N =
⋃
ξ<κMξ.

Although disjoint stationary sequences may seem unrelated the separation of
variants of internal approachability, there are deep connections here, for example:

Fact 6 (Krueger, [14]). If µ is regular and 2µ = µ+, then DSS(µ+) is equivalent to
the existence of a stationary set U ⊆ [H(µ+)]µ such that every N ∈ U is internally
unbounded but not internally club.

1.2. Projections and Preservation Lemmas. Technically speaking, our main
goal is to show that certain forcing quotients behave nicely. We will make an
effort to demonstrate the preservation properties of these quotients directly. These
quotients will be defined in terms of projections:

Definition 7. If P1 and P2 are posets, a projection is an onto map π : P1 → P2

such that:

• p ≤ q implies that π(p) ≤ π(q),
• if r ≤ π(p), then there is some q ≤ p such that π(q) ≤ r.

A projection is trivial if π(p) = π(q) implies that p and q are compatible.

Trivial projections are basically ismorphisms:

Fact 8. If π : P1 → P2 is a trivial projection, then P1 ' P2.

For our purposes, we are interested in the preservation of stationary sets. The
chain condition gives us preservation fairly straightforwardly. The following fact is
implicit in parts of the literature, and a version of it can be found in this paper in
the form of Proposition 26.

Fact 9. If P has the µ-chain condition and S ⊂ Pµ(X) is stationary, then P forces
that S is stationary in Pµ(X).

However, we must place demands on our stationary sets in order for them to be
preserved by closed forcings.

Definition 10. A stationary set S ⊂ Pµ(H(Θ)) is internally approachable of length
τ if for all N ∈ S with N ≺ H(Θ), there is a continuous chain of elementary
submodels 〈Mi : i < τ〉 such that N =

⋃
i<τ Mi and for all i < τ , 〈Mi : i < j〉 ∈

Mj+1. In this case we write S ⊆ IA(τ).

Fact 11. If S ⊂ Pµ(X)∩IA(τ) is an internally approachable stationary set, τ < µ,
and P is µ-closed, then P forces that S is stationary in Pµ(X)V ).

2See Jech for details on stationary sets [9].
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1.3. Costationarity of the Ground Model. The notion of ground model co-
stationarity is a key ingredient in arguments pertaining to disjoint stationary se-
quences. It will specifically give us the disjointness, since we will be picking sta-
tionary sets that are not added by initial segments of these forcings.

Gitik obtained the classical result:

Fact 12 (Gitik [7]). If V ⊂ W are models of ZFC with the same ordinals, W \ V
contains a real, and κ is a regular cardinal in W such that (κ+)W ≤ λ, then
PWκ (λ) \ V is stationary.

Because we will need Fact 11, we will actually use Krueger’s refinement of Gitik’s
theorem:

Fact 13 (Krueger [14]). Suppose V ⊂W are models of ZFC with the same ordinals,
W \ V contains a real, µ is a regular cardinal in W , and X ∈ V is such that
(µ+)W ⊆ X, and that in W , Θ is a regular cardinal such that X ⊂ H(Θ). Then in
W the set {N ∈ Pµ(H(Θ)) ∩ IA(ω) : N ∩X /∈ V } is stationary.

2. The New Mitchell Forcing

2.1. Defining the Forcing. In this subsection we will illustrate the basic idea of
this paper by using our new take on Mitchell forcing to prove a known result:

Theorem 14 (Krueger [14]). If λ is a Mahlo cardinal and µ < λ are regular
cardinals, there is a forcing extension in which 2ω = µ+ = λ and there is a disjoint
stationary sequence on λ.

Specifically, we will define a forcing M+(τ, µ, λ) such that the model W in The-
orem 14 can be realized as an extension by M+(ω, µ, λ).

For standard technical reasons, we define a poset ismorphic to Add(τ, λ):

Definition 15. Given a regular τ and a set of ordinals Y , we let Add∗(τ, Y ) be
the poset consisting of partial functions p : {δ ∈ Y : δ is inaccessible} × τ → {0, 1}
where |dom p| < τ . We let p ≤Add∗(τ,Y ) q if and only if p ⊇ q.

Note: In later subsections we will conflate Add(τ, λ) and Add∗(τ, λ) to simplify
notation.

Definition 16. Let λ be inaccessible and let τ < µ < λ be regular cardinals such
that τ<τ = τ . We define a forcing M+(τ, µ, λ) that consists of pairs (p, q) such
that:

(1) p ∈ Add∗(τ, λ),
(2) q is a function such that:

(a) dom q ⊂ {δ < λ : δ is inaccessible},
(b) |dom q| < µ,

(c) ∀δ ∈ dom(q), p�((δ + 1)× τ) Add∗(τ,δ+1) “q(δ) ∈ Ċol(µ, δ)”.

We let (p, q) ≤ (p′, q′) if and only if:

(i) p ≤Add∗(τ,λ) p
′,

(ii) dom q ⊇ dom q′,
(iii) for all δ ∈ dom q′, p�((δ + 1)× τ) Add∗(τ,δ+1) “q(δ) ≤Ċol(µ,δ) q

′(δ)”

First we go through the more routine properties that one would expect of this
forcing.
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Proposition 17. M+(τ, µ, λ) is τ -closed and λ-Knaster.

Proof. Closure uses the facts that Add∗(τ, λ) is τ -closed and Add∗(τ,δ+1) “Ċol(µ, δ)
is µ-closed” for all δ. Knasterness uses a standard application of the Delta System
Lemma. �

Crucially, we get a nice termspace:

Definition 18. Let T = T(M+(τ, µ, λ)) be the poset consisting of conditions q
such that:

(1) dom q ⊂ λ ∩ {δ < λ : δ is inaccessible},
(2) |dom q| < µ,

(3) ∀δ ∈ dom q,Add∗(τ,δ+1) q(δ) ∈ Ċol(µ, δ)”.

Most importantly, we let q ≤ q′ if and only if:

(i) dom q ⊇ dom q′,
(ii) for all δ ∈ dom q, Add∗(τ,δ+1) “q(δ) ≤ q′(δ)”.

Proposition 19. There is a projection Add∗(τ, λ)×T(M+(τ, µ, λ)) � M+(τ, µ, λ).

Proof. We let π be the projection with the definition π(p, q) = (p, q). This is au-
tomatically order-preserving because the ordering ≤Add∗(τ,λ)×T is coarser than the
ordering ≤M+(τ,µ,λ). For obtaining the density condition, suppose (r, s) ≤M+(τ,µ,λ)

(p0, q0). We want to find some (p1, q1) such that (p1, q1) ≤Add∗(τ,λ)×T (p0, q0) and
(p1, q1) ≤M+(τ,µ,λ) (r, s). To do this, we first let p1 = r, and then we define q1

with dom q1 = dom r such that at each coordinate δ ∈ dom q1, we use standard
arguments on names to show that we can get both p0 � ((δ + 1) × τ) Add∗(τ,λ)

“q1(δ) ≤ s(δ)” as well as 1Add∗(τ,λ) Add∗(τ,λ) “q1(δ) ≤ q0(δ)”. �

Proposition 20. T is µ-closed.

Proof. This as an application of the Mixing Principle. Given a ≤T-decreasing se-
quence 〈qi : i < τ〉 with τ < µ we let d =

⋃
i<τ dom qi. Then we define a lower

bound q̄ with domain d such that for all δ ∈ d, q(δ) is a canonically-defined name
for a lower bound of the qi(δ)’s (where i is large enough that δ ∈ dom qi). �

Then we get the standard consequences of the termspace analysis:

Proposition 21. The following are true in any extension by M+(τ, µ, λ):

(1) V -cardinals up to and including µ are cardinals.
(2) For all α < λ, |α| = µ.
(3) λ = µ+.
(4) 2τ = λ.

Proof. (1) follows from the projection analysis and the fact that T is µ-closed and
Add∗(τ, λ) is τ+-cc, and from τ -closure of M+(τ, µ, λ). (2) follows from the fact
that for all inaccessible δ < λ, M+(τ, µ, λ) projects onto Col(µ, δ). (3) follows from
(1) and (2) plus λ-Knasterness. (4) follows from the fact that M+(µ, λ) projects
onto Add∗(τ, λ), so it forces that 2τ ≥ λ. Since the poset has size λ, it also forces
that 2τ ≤ λ. �

The following lemma is the crux of the new idea.
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Lemma 22. If δ0 < λ is inaccessible, then there is a forcing equivalence

M+(τ, µ, λ) 'M+(τ, µ, δ0) ∗Add(τ) ∗ Q

where M+(τ, µ, δ0) ∗Add(τ) forces that Q is a projection of a product of a µ-closed
forcing and a τ+-cc forcing.

Proof. More precisely, we will show that there is a forcing equivalence M+(τ, µ, λ) '
M+(τ, µ, δ0) ∗ Add(τ) ∗ (P × R) where the following hold in the extension by
M+(τ, µ, δ0) ∗Add(τ):

• R is a projection of a product of a µ-closed forcing and Add∗(τ, λ), and
• V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P is µ-closed”.

The statement of the lemma can then be obtained by merging P with the closed
component of the product that projects onto R.

First we describe P and R. To do this, we fix some notation. Given Y ⊆ λ, we let
πYAdd denote the projection (p, q) → p � (Y × τ) from M+(τ, µ, λ) onto Add∗(τ, Y ).
For any poset P, we employ the convention that Γ(P) denotes a canonical name for
a P-generic. If X ⊂ P, then we use the notation ↑ X := {q ∈ P : ∃p ∈ X, p ≤ q}.

We will let

P := Col(µ, δ0)V [(↑(πδ0Add”Γ(M+(τ,µ,δ0))))×Γ(Add(τ))]

if we are working in an extension by M+(τ, µ, δ0) ∗ Add(τ). (In other words, the
poset P will be the version of Col(µ, δ0) as interpreted in the extension of V by
Add∗(τ, δ + 1) where the initial coordinates come from M+(τ, µ, δ0) and the last
coordinate comes from the additional copy of Add(τ).)

Still working in an extension by M+(τ, µ, δ0) ∗ Add(τ), the poset R consists of
pairs (p, q) such that the following hold:

(1) p ∈ Add∗(τ, (δ0, λ)),
(2) q is a function such that

(a) dom q ⊂ {δ ∈ (δ0, λ) : δ is inaccessible},
(b) |dom q| < µ,

(c) ∀δ ∈ dom(q), p�((δ0, (δ + 1))× τ) Add∗(τ,(δ0,δ+1)) “q(δ) ∈ Ċol(µ, δ)”.

The ordering is the one analogous to that of M+(τ, µ, λ). An easy adaptation of
the arguments for the projection analysis for M+(τ, µ, λ) will then give a projection
analysis for R.

The rest of the proof of the lemma consists of verifying the more substantial
claims.

Claim 23. M+(τ, µ, λ) 'M+(τ, µ, δ0) ∗Add(τ, 1) ∗ (P× R).

Proof. We identify M+(τ, µ, δ0) ∗Add(τ, 1) ∗ (P×R) with the dense subset of con-
ditions ((r, s), t, u, (r, ṡ′)) such that ṡ′ is forced to have a specific domain in V . The
fact that this subset is dense follows from the fact that M+(τ, µ, λ) ∗ Add(τ) has
the µ-covering property.

We will argue that there is a trivial projection defined by

π : (p, q) 7→ ((p�(δ0 × τ), q �δ0)︸ ︷︷ ︸
M+(µ,δ0)

, p�({δ0} × τ)︸ ︷︷ ︸
Add(τ)

, q∗(δ0)︸ ︷︷ ︸
P

, (p̄, q̄)︸ ︷︷ ︸
R

)

such that

• p̄ := p�((δ0, λ)× τ);
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• q∗(δ0) is obtained by changing q(δ0) from an Add∗(τ, δ0 + 1)-name to an
Add(τ)-name as interpreted in the extension by the relevant generic, namely

(↑ (πδ0Add”Γ(M+(τ, µ, δ0))));
• q̄ has domain (δ0, λ), and for each δ ∈ (δ0, λ), q̄(δ) has changes analogous

to the changes made to q∗(δ0).

It is clear that π is order-preserving. We also want to show that if

((r, s), t, u, (r′, ṡ′)) ≤M+(τ,µ,δ0)∗Add(τ)∗(P×R) π(p0, q0)

then there is some (p1, q1) ≤M+(µ,λ) (p0, q0) such that we have π(p1, q1) ≤ ((r, s), t, u, (r′, s′)).
This can be done by taking:

• p1 = r ∪ t̃ ∪ r′ where t̃ writes t as as a partial function {δ} × τ → {0, 1},
• q1 = s∪ ũ∪ s̃′ where ũ reinterprets u as a Add∗(δ0 + 1)-name and for each
δ ∈ dom(ṡ′), s̃′ reinterprets ṡ′(δ) as a Add∗(δ + 1)-name.

Last, we argue that π(p0, q0) = π(p1, q1) implies that (p0, q0) and (p1, q1) are
compatible. Suppose that (p0, q0) and (p1, q1) are incompatible. If p0 and p1 are
incompatible as elements of Add∗(τ, λ), then one of pi � (δ0 × τ), pi � ({δ0} × τ),
and pi �((δ0, λ)× τ) must be distinct for i = 0 and i = 1. Otherwise, there is some
p′ ≤ p0, p1 and some δ ∈ dom q0∩dom q1 inaccessible such that p′  “q0(δ) ⊥ q1(δ)”,
which implies that q0(δ) 6= q1(δ). Therefore, one of qi � δ0, qi(δ0), or qi � (δ0, λ) is
distinct for i ∈ {0, 1}. �

Claim 24. V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P is µ-closed”.

Proof. In fact, our argument will also show that

V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P = Col(µ, δ0)”.

We fix some arbitrary generics:

• G is M+(τ, µ, δ0)-generic over V ,
• r is Add(τ)-generic over V [G],

• H is the Add∗(τ, δ0)-generic induced from G by πδ0Add,
• K is the generic for the quotient of M+(τ, µ, δ0) by Add∗(τ, δ0), i.e. the

generic such that V [H][K] = V [G],
• T is the generic for the termspace forcing T(M+(τ, µ, δ0)), so that V [G] ⊂
V [T ][H].

It is enough to argue that V [G][r] |= “P is µ-closed” knowing that V [H][r] |= “P
is µ-closed”. Because adjoining G does not change the definition of Add(τ), and
because K is defined in terms of the subsets of τ adjoined by the filter H, we have
V [G][r] = V [H][K][r] = V [H][r][K]. Therefore, it is enough to show that K does
not add <µ-sequences over V [H][r], so that V [H][r]’s version of Col(µ, δ0) remains
µ-closed in V [G][r]. We have

V [H][r] ⊂ V [H][r][K] = V [H][K][r] = V [G][r] ⊂ V [T ][H][r] = V [H][r][T ],

and Easton’s Lemma implies that T does not add new <µ-sequences over V [H][r],
so therefore K does not add new <µ-sequences over V [H][r] since it is an interme-
diate factor of the extension. �

This completes the proof of the lemma. �

Now we have an application for the case where τ = ω.

Proposition 25. If λ is Mahlo then V [M+(ω, µ, λ)] |= DSS(λ).
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This basically repeats Krueger’s argument for [14, Theorem 9.1].

Proof. Let G be M+(ω, µ, λ)-generic over V . The set of V -inaccessibles in λ will
form the stationary set S ⊂ µ+ ∩ cof(µ) carrying the disjoint stationary sequence
in the extension by M+(ω, µ, λ). For every such δ ∈ S, let Ḡ be the generic on

M+(ω, µ, δ) induced by G and let r be the Add(ω)-generic induced by G via π
{δ}
Add.

We use Fact 13 to obtain a stationary set S∗δ ⊂ Pµ(H(δ))V [Ḡ][r] such that for all
N ∈ S∗δ , N ∩ δ /∈ V [Ḡ] and such that S∗δ is also internally approachable by a ω-
sequence. Therefore we can apply Lemma 22 with Fact 11 and then Fact 9 to find
that S∗δ is stationary in V [G]. We then let Sδ = {N ∩ δ : N ∈ S∗δ}, and we see that
〈Sδ : δ ∈ S〉 is a disjoint stationary sequence. �

2.2. Proving the Main Theorems. Now we will apply the new version of Mitchell
forcing to answer Krueger’s questions. Theorem 1 follows quickly:

Proof of Theorem 1. Begin with a ground model V in which λ1 < λ2 and the λ’s
are Mahlo. Let M1 = M+(ω,ℵ1, λ1). (Any λ1-sized forcing that turns λ1 into
ℵ2 and adds a disjoint stationary sequence on ℵ2 would work, so we could also
use a more standard mixed support iteration.) Then let Ṁ2 be an M1-name for

M+(ω, λ1, λ2). We argue that if G1 is M1-generic over V and G2 is Ṁ2[G1]-generic
over V [G1], then V [G1][G2] |= “DSS(λ1)∧DSS(λ2)”. We get DSS(λ2) from the fact
that λ2 remains Mahlo in V [G1] together with Proposition 25, so we only need to

argue that the disjoint stationary sequence ~S := 〈Sα : α ∈ S〉 ∈ V [G1] remains a
disjoint stationary sequence in V [G1][G2].

Working in V [G1], preservation of ~S follows from the projection analysis: Let H1

andH2 be chosen so thatH1 is T := T(M2)-generic over V [G1], H2 is Add(ω, λ2)V [G1]-
generic over V [G1][H1], and V [G1][G2] ⊆ V [G1][H1][H2]. Since T is λ1-closed, it
preserves stationarity of S and the Sα’s, and Add(ω, λ2)V [G1] still has the countable
chain condition in V [G1][H1]. It follows that the stationarity of S is preserved in

V [G1][H1][H2], as well as the stationarity of the Sα’s (by Fact 9). Therefore ~S is a
disjoint stationary sequence on λ1 in V [G1][G2]. �

It will take a bit more work to show that Theorem 2 holds in the same model
given for Theorem 1. Note that we cannot just apply Fact 6 because 2ω = ℵ3 in
the model for Theorem 1, plus it is consistent that there can be a stationary set
which is internally unbounded but not internally stationary [12].

We will give some facts on preservation of the distinction between stationary
sets that are internally stationary but not internally club:

Proposition 26. Suppose P is ν-closed and S ⊆ Pδ(X) is a stationary set such
that |X|<δ ≤ ν and δ ≤ ν. Then P “S is stationary in Pδ(X)”.

Proof. Let Ċ be a P-name for a club in Pδ(X). Let ~x = 〈xξ : ξ ≤ ν̄〉 be an
enumeration of Pδ(X) (where ν̄ ≤ ν). We construct a sequence ~z = 〈zξ : ξ ≤ ν̄〉 ⊆
Pδ(X) and a ≤P-descending sequence 〈pξ : ξ ≤ ν̄〉 such that for all ξ, pξ  “xξ ⊆
zξ ∈ Ċ”. Let D be the set of unions

⋃
i<δ̄ zξi for all increasing chains 〈zξi : i < δ̄〉 ⊂

~z (where δ̄ < δ). Since D is a club in Pδ(X) defined in V , there is some w ∈ D∩S.
Let 〈zξi : i < δ̄〉 be an ⊆-increasing chain with δ̄ < δ such that

⋃
i<δ̄ zξi = w and

let ξ∗ < ν̄ be such that ξ∗ > supi<δ̄ ξi. Then pξ∗  “w ∈ Ċ ∩ S”. �
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Proposition 27. Let P1 have the δ-chain condition, let P2 be ν-closed, and let X
be a set such that |X|δ ≤ ν with δ+ ≤ ν. If S ⊆ [X]δ is stationary and internally
stationary but not internally club, then P1 × P2 forces that S is stationary and
internally stationary but not internally club.

Proof. First, S remains stationary in the extension by P2 by Proposition 26, and it
remains stationary in the further extension by P1 by the fact that P1 still has the
δ-chain condition together with Fact 9. If N ∈ S, then N ∩Pδ(N) is stationary, so
its stationarity is preserved by the same reasoning, using the fact that we still have
the appropriate chain condition. The fact that N is not internally club is preserved
in the extension by P2 because of ν-closure and the fact that δ ≤ ν, and then it
is preserved in the further extension by P1 because the proof of Fact 9 shows that
added clubs contain ground model clubs. �

We use a concept from Harrington and Shelah to handle Mahlo cardinals:

Definition 28. [8] Let N be a model of some fragment of ZFC. We say that M ≺ N

is rich if the following hold:

(1) λ ∈M;
(2) λ̄ := M ∩ λ ∈ λ;
(3) λ̄ is an inaccessible cardinal in N;
(4) The size of M is λ̄;
(5) M is closed under <λ̄-sequences and λ̄ < λ.

Lemma 29. If λ is Mahlo, then M+(ω, µ, λ) forces that there are stationarily many
Z ∈ [µ+]µ which are internally stationary but not internally club.

This follows Krueger’s proof of [14, Theorem 10.1], making necessary changes
for Mahlo cardinals, and including enough details to show that we can get the
necessary preservation of stationarity simply from the projection analysis. We do
not need guessing functions (which are used in Krueger’s argument) because we are
only obtaining one instance of separation per large cardinal.

Proof of Lemma 29. Denote M := M+(ω, µ, λ) and let Ċ be an M-name for a club

in ([H(µ+)]µ)V [M]. We want to find an M-name Ż for an element of ([H(µ+)]µ)V [M]∩
Ċ that is internally stationary but not internally club. Let Ḟ be an M-name for
a function (H(µ+)V [M])<ω → H(µ+)V [M] with the property that all of its closure

points are in Ċ. Let Θ be as large as needed for the following discussion and let N

be the structure (H(Θ),∈, <Θ,M, Ḟ , λ, µ) where <Θ is a well-ordering of H(Θ).
Since λ is Mahlo, we can find some M ≺ N with µ ⊂M that is a rich submodel of

cardinality λ̄. Now set G to be M-generic over V . Note that H(λ)V [G] = H(λ)[G]
because M has the λ-chain condition and M ⊂ H(λ). We will argue that Z :=
M[G] ∩H(λ)[G] is what we are looking for.

Claim 30. Z ∈ C := Ċ[G].

Proof. We have λ̄ ≤ |Z| ≤ |M| ≤ λ̄ and λ̄ has cardinality µ in N[G], so Z ∈
[H(λ)V [G]]µ. If a1, . . . , an ∈ Z, there are M-names ḃ1, . . . , ḃn ∈ M ∩ H(λ) such

that ai = ḃi[G] for all 1 ≤ i ≤ n. By elementarity, M contains the <Θ-least

maximal antichain A ⊂ M of conditions deciding Ḟ (ḃ1, . . . , ḃn). Since |A| < λ,
|A| ∈M∩λ = λ̄, so it will follow that A ⊂M. Therefore if p ∈ G∩A, then p ∈M in

particular, so p  Ḟ (ḃ1, . . . , ḃn) = ḃ∗ for some ḃ∗ ∈M∩H(λ) where we automatically
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get ḃ∗ ∈ H(λ̄), and therefore F (a1, . . . , an) = a∗ := ḃ∗[G] ∈ M[G] ∩H(λ)[G] = Z

(where of course F := Ḟ [G]). �

For the rest of the proof let Ḡ := πM(G) where πM is the Mostowski collapse
relative to M. Since πM(M) = M+(ω, µ, λ̄), there is an extension πM : M[G] ∼=
πM(M)[Ḡ]. We also denote h := πM(H(λ)[G] ∩M[G]). Note that V [πM(G)] |=
“h<̄λ ⊂ h” by the facts that M is rich and πM(M) has the λ̄-chain condition.

Claim 31. Z is internally stationary.

Proof. First, we argue that S := Pµ(h)N[Ḡ] is stationary as a subset of Pµ(h)N[G]

in N[G]. By Lemma 22, the quotient M/Ḡ is a projection of a forcing of the form

A1 ∗ (Ṫ × A2) where A1 has the countable chain condition, Ṫ is an A1-name for a
µ-closed forcing, and A2 also has the countable chain condition. Let K1, KT , and
K2 be respective generics such that V [G] ⊆ V [Ḡ][K1][KT ][K2]. Working in N[Ḡ],
note that S′ := S ∩ IA(ω) is stationary, and therefore has its stationarity preserved
in V [Ḡ][K1] by Fact 9.

We must also show that the stationarity of S′ will be preserved by countably
closed forcings over N[Ḡ][K1]. Suppose 〈Mn : n < ω〉 witnesses internal approach-

ability of some N ∈ S′ in V [Ḡ] with respect to the structure H(λ+)V [Ḡ], and let
Mω :=

⋃
n<ωMn. Then we can see that 〈Mn[K1] : n < ω〉 is a chain of elementary

submodels of H(λ)[Ḡ][K1] = H(λ)V [Ḡ][K1]. We also have Mn[K1] ∩ V [Ḡ] = M and

Mω[K1] ∩ V [Ḡ] = Mω ∈ S′ with Mω[K1] ≺ H(λ)V [Ḡ][K1]. If we choose the Mn’s to

be elementary substructures of H(λ+)V [Ḡ](∈, <∗, Ċ, . . .) where <∗ is a well-ordering

and Ċ is a A1 ∗ Ṫ-name for a club, then an argument almost exactly like the one
showing that internal approachability is preserved (i.e. the proof of Fact 11) will
show that S′ is stationary in N[Ḡ][K1][KT ].

Then the extension of N[Ḡ][K1][KT ][K2] over N[Ḡ][K1][KT ] preserves the sta-
tionarity of S′ by another application of Fact 9, so we get stationarity in N[G].

Now that we have established preservation of stationarity of S′, we can finish
the argument. Since |h| = µ in N[G], we can write h =

⋃
i<µ xi where 〈xi : i < µ〉

is a continuous and ⊂-increasing chain of elements of Pµ(h). (This is not a chain

through Pµ(h)N[Ḡ].) The chain is a club in Pµ(h)N[G], in which S′ is stationary, so
there is a stationary X ⊆ µ such that {xi : i ∈ X} ⊆ S′. Since S′ ⊆ S, it follows
that i ∈ X implies that xi = πM(yi) for some yi ∈ Z. Therefore 〈yi : i < µ〉 is
⊂-increasing with union Z, and in particular 〈yi : i ∈ X〉 is stationary in Z. �

Claim 32. Z is not internally club.

Proof. Suppose for contradiction that Z is internally club and hence that there is
a ⊂-increasing and continuous chain 〈Zi : i < µ〉 ∈ N[G] with |Zi| < µ for all
i < µ and

⋃
i<µ Zi = Z. So for all i < µ, Zi ⊂ Z, and so 〈πM[Zi] : i < µ〉 is an

⊂-increasing and continuous chain with union h. If we let Wi := πM[Zi] for all
i < µ, then the fact that |Wi| < µ implies that Wi = πM(Zi) ∈ M[Ḡ]. Therefore
〈Wi : i < µ〉 is a continuous and ⊂-increasing chain of sets in Pµ(h) with union h.

Next we define a set U ∈ N[Ḡ][r] (where r is the generic induced by G from

π
{λ̄}
Add) as

{A ∈ Pµ(H(χ)) ∩ IA(ω) : A ∩ h /∈ N[Ḡ]}.
We have a real in N[Ḡ][r] \ N[Ḡ] and (µ+)N[Ḡ][r] = λ ⊂ H(λ). Hence we apply
Fact 13 to see that U is stationary in N[Ḡ][r], and it remains stationary in N[G] by
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the preservation properties of the quotient (i.e. Lemma 22 combined with Fact 11

and Fact 9). Therefore in N[G], since h ⊆ H(χ)N[Ḡ][r], {A∩h : A ∈ U} is stationary
in Pµ(h). Since 〈Wi : i < µ〉 is club in h, there is some i < µ such that Wi = A∩ h
for some A ∈ U . But by definition, A ∩ h /∈ N[Ḡ], but Wi ∈ M[Ḡ] ⊂ N[Ḡ], so this
is a contradiction. �

This completes the proof of the lemma. �

Proof of Theorem 2. Let M1 be any λ1-sized forcing that turns λ1 into ℵ2 and adds
stationarily many N ∈ [H(ℵ2)]ℵ1 that are internally stationary but not internally

club. Let Ṁ2 be an M1-name for M+(ω, λ1, λ2), let G1 be M1-generic over V , and

let G2 be Ṁ2[G1]-generic over V [G1]. Then we can see that the theorem holds
in V [G1][G2]: the distinction between internally stationary and internally club on
[H(ℵ2)]ℵ1 is preserved in V [G1][G2] by Proposition 27, and we get a distinction
between internally stationary and internally club for [H(ℵ3)]ℵ2 by Lemma 29. �

3. A Club Forcing and a Guessing Sequence

3.1. A review of the tools. The main idea of the proof of Theorem 3 is to force
a club through the complement of a canonical stationary set, which is described as
follows:

Fact 33 (Krueger,[14]). Suppose µ is an uncountable regular cardinal and µ<µ ≤
µ+. Let x = 〈xα : α < µ+〉 enumerate [µ+]<µ and let

S(x) := {α ∈ µ+ ∩ cof(µ) : Pµ(α) \ 〈xβ : β < α〉 is stationary}.

Then DSS(µ+) holds if and only if S(x) is stationary.

The natural thing to do is to define the following:

Definition 34. Let µ be an uncountable regular cardinal such that µ<µ = µ+

and let x and S(x) be defined as in Fact 33. Then let C(x) be the set of closed
bounded subsets p of µ+ such that p ∩ S(x) = ∅. We let p′ ≤ p if and only if
p′ ∩ (max p+ 1) = p.

Proposition 35. Assuming µ<µ ≤ µ+, C(x) is µ+-distributive.

Sketch of Proof. If S(x) is nonstationary, then the result is trivial. If it is sta-
tionary, then S(x) does not contain a stationary set of approachable points [10,
Corollary 3.7]. Since µ<µ ≤ µ+ there is going to be stationary set S∗ of approach-
able points, which without loss of generality is disjoint from S(x). Then a standard
distributivity argument applies (see Cox’s explanation [2]). �

We will also crucially need a characterization of diamonds. This following ap-
pears in joint work with Gilton and Stejskalová [5].

Fact 36. The following are equivalent:

(1) λ is Mahlo and ♦λ(Reg) (where of course Reg = {τ < λ : τ regular}) holds.
(2) There is a function ` : λ → Vλ such that for every transitive structure N

satisfying a rich fragment of ZFC that is closed under λ+-sequences in V ,
the following holds: For every A ∈ N with A ∈ H(λ+) and any a ⊂ H with
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|a| < λ, there is a rich M ≺ N with a ∪ {`} ⊂ M such that `(λ̄) = πM(A)
(where λ̄ = M ∩ λ and πM is the Mostowski collapse).3

We can always use such an ` assuming the consistency of a Mahlo cardinal: If λ
is Mahlo in a model V , then it is Mahlo in Gödel’s class L where ♦λ(S) holds for
all regular λ and stationary S ⊂ λ.

Two other forcings will be used, mostly for their black-boxed properties:

Definition 37. If T is an Aronszajn tree of cardinality ℵ1, let B(T ) be Baum-
gartner’s forcing for specializing Aronszajn trees. It consists of finite functions
f : T → ω such that f(x) 6= f(y) if x ≤T y or y ≤T x. If f, g ∈ B(T ), then f ≤ g if
and only if f ⊇ g.

Definition 38. Let S ⊂ [ℵ2]ω be stationary. Then let P(S) be the forcings con-
sisting of countable chains 〈Mξ : ξ ≤ η〉 of elements of S. For p, q ∈ P(S), p ≤ q if
and only if p end-extends q.[3]

Fact 39. The following are true for these forcings:

• For Aronszajn trees T of cardinality ℵ1, B(T ) has the countable chain con-
dition.
• For S ⊂ [ℵ2]ω stationary, P(S) adds a closed unbounded set in [ℵV2 ]ω

through S.
• If S ∈ V , then Add(ω) ∗ Ṗ(S) has the weak ω1-approximation property,

i.e. if ḟ is an Add(ω) ∗ Ṗ(S)-name for a function ω1 → ON whose initial

segments are in V , then ḟ is forced to be in V .[10]

3.2. The proof. Now we prove Theorem 3. Fix λ Mahlo. We can assume that
♦λ(Reg) holds, so let ` witness Fact 36.

Let I = 〈Iα, J̇α : α < λ〉 be a countable-support iteration of length λ such that

if `(δ) is an Iδ-name for a proper forcing then Iδ “J̇δ = `(δ)” and otherwise J̇δ is

forced to be the trivial forcing. We have V [I] |= ℵ<ℵ11 ≤ ℵ2, so we fix an I-name
ẋ of [ℵ2]<ℵ1 in V [I] as well as a sequence of names 〈ẋα : α < ℵ2〉 that canonically

represent the elements listed by ẋ. Then let Ċ be an I-name for C(ẋ). Let G be

I-generic over V and let H be C := Ċ[G]-generic over V [G]. Then the model in
which the theorem is realized is V [G][H].

Most of the desired properties of V [G][H] follow easily. First, V [G][H] |= λ =
ℵ2: For all Θ < λ the forcing Col(ℵ1,Θ) appears in the iteration, I has the λ-
chain condition because the iterands have size less than < λ, and I preserves ℵ1

because it is proper. Then adjoining H preserves ℵ2 by the distributivity property
noted above. The fact that V [G][H] |= ¬DSS(µ+) follows from Fact 33 given that
the generic object added by H is a club through the complement of the relevant
stationary set. The main part of the work is to show that the approachability
property fails.

Note: If M ≺ N is rich and πM is the Mostowski collapse relative to M, we will
typically denote πM(a) as ā.

Lemma 40. V [G][H] |= ¬AP(ℵ2).

Proof. If AP(ℵ2) holds then this is forced by some condition z ∈ I ∗ C. Assuming
this is the case, we can derive a contradiction.

3The original is stated with a different quantification—for all rich structures, there exists a
function, not the other way around. However, the proof works with the quantification used here.



ON DISJOINT STATIONARY SEQUENCES 13

Claim 41. Let M ≺ N be a rich model chosen to witness Fact 36 in the sense of
having the properties that M ∩ λ = λ̄, z ∈M, and `(λ̄) is an I � λ̄-name for

πM(Ċ(ẋ) ∗Add(ω) ∗ P(Y ) ∗ B(Y )).

where Y = ([λ]ω)V [I∗Ċ(ẋ)], and moreover P(Y ) regards Y as a stationary set and
B(Y ) regards Y as a tree ordered by end-extension.

Suppose Ḡ0∗H̄0 is Ī∗C̄-generic over V . Then there is a G0∗H0 which is I∗C(ẋ)-
generic over V such that if j : M̄→M ⊂ N is the inverse of the Mostowski collapse,
then there is a lift j : M̄[Ḡ0][H̄0] → N[G0][H0] with the property that G0 ∗ H0

is an ℵ1-preserving extension over V [Ḡ0][H̄0][K̄0][K̄1][K̄2] where K̄0 ∗ K̄1 ∗ K̄2 is
Add(ω) ∗ P̄(Y ) ∗ B̄(Y )-generic.

Proof of Claim. We will lift the elementary embedding j : M̄→ N to j : M̄[Ḡ0][H̄0]→
N[G0][H0]. We therefore fix the notation λ̄ = M ∩ λ, and we have an M̄-generic

Ḡ0, so we let C = Ċ(ẋ)[G0].
To perform the lift, we need to show that we can absorb the generic H̄0. The first

stage is for handling G0. The forcing Ċ(ẋ) ∗Add(ω) ∗P(Y ) ∗B(Y ) is an iteration of
proper forcings and is therefore proper, and similarly its image under πM is proper.
Hence it is guessed, and so G0 takes the form Ḡ0 ∗ H̄0 ∗ K̄0 ∗ K̄1 ∗ K̄2 ∗ K̄3 where
K̄3 is just a remainder. The quotient preserves ℵ1 since the whole forcing does.

To lift the embedding further, we use a master condition argument. Specifically,
we want to show that ∪H̄0 ∪{λ̄} is a condition in C. This follows because λ̄ /∈ S(x)

as evaluated in N[G0]: Since M̄<λ̄ ⊆ M̄ and I � λ̄ has the λ̄-chain condition, the
evaluation 〈xβ : β < λ̄〉 is equal to the countable subsets of λ̄ in M̄[Ḡ0]. Therefore
Pµ(λ̄) \ 〈xβ : β < λ̄〉 will be nonstationary because of the club added by P(Y ).
Hence we choose H0 to be a generic containing ∪H̄0 ∪ {λ̄}. �

Suppose then that z ∈M ∗ Ċ(x) forces that approachability holds. By the claim,
there is an embedding M̄[Ḡ][H̄] → N[G][H] such that V [G ∗ H] is an extension
over V [Ḡ][H̄][K̄0][K̄1][K̄2] that preserves ℵ1 where K̄0 ∗ K̄1 ∗ K̄2 is generic for
πM(Add(ω) ∗ P(Y ) ∗ B(Y )). Since we are supposing that approachability holds,
there is in N[G][H] a club C ⊆ ℵ2 such that all of its points of cofinality ℵ1 are
approachable. By elementarity it follows that λ̄ ∈ C, so it is enough to show that
λ̄ cannot actually be an approachable point.

We need to show that Ȳ does not have a cofinal branch. The set Ȳ is al-
ready in V [Ḡ][H̄], and it is an Aronszajn tree in this model because V [Ḡ][H̄] |=
“λ̄ = ℵ2”. By the weak ω1-approximation property, Ȳ is still an Aronszajn tree
in V [Ḡ][H̄][K̄0][K̄1], and moreover it has cardinality ℵ1 in that model. The forc-
ing K̄2 adds a specializing function, therefore it remains an Aronszajn tree in any
ℵ1-preserving extension, so in particular this is true for V [G][H]. �

Remark 42. This master condition argument can also be used to show that C(x) is
distributive over V [I].

Now we are finished with the proof of Theorem 3.

Acknowledgement. Many thanks to Hannes Jakob for finding errors in the orig-
inal version of this paper.
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4. Further directions

We propose some other considerations along the lines of the question: Why did
we have to do more work to get Theorem 2 after obtaining Theorem 1? Or rather,
is the assumption 2µ = µ+ necessary for Fact 6?

Question 1. Is it consistent for µ regular that exactly one of DSS(µ+) and “inter-
nally club and internally unbounded are distinct for [H(µ+)]µ” holds?

On a similar note, the assumption that 2µ = |H(µ+)| is also used in a folklore
result that assuming 2µ = µ+, the distinction between internally unbounded and
internally approachable for [µ+]µ requires a Mahlo cardinal.

Question 2. What is the exact equiconsistency strength of the separation of inter-
nally approachable and internally unbounded for [H(µ+)]µ for regular µ?

References

[1] Uri Abraham. Aronszajn trees on ℵ2 and ℵ3. Ann. Pure Appl. Logic, 24(3):213–230, 1983.

[2] Sean D. Cox. Forcing axioms, approachability, and stationary set reflection. J. Symb. Log.,

86(2):499–530, 2021.
[3] Sy-David Friedman and John Krueger. Thin stationary sets and disjoint club sequences.

Trans. Amer. Math. Soc., 359(5):2407–2420, 2007.

[4] Thomas Gilton and John Krueger. A note on the eightfold way. Proc. Amer. Math. Soc.,
148(3):1283–1293, 2020.

[5] Thomas Gilton, Maxwell Levine, and Šárka Stejskalová. Trees and stationary reflection at
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