Exercise sheet 03 from 08.11.2024

Lecturer: Maxwell Levine

Assistant: Hannes Jakob

Due at the beginning of the exercise session on 15.11.2024 at 12:00. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

- **1.** Let κ be a regular cardinal $> \omega$. Show that if $f: \kappa \to \kappa$, then $\{\alpha < \kappa : \forall \xi < \alpha, f(\xi) < \alpha\}$ is closed and unbounded in κ .
- 2. We define the following variants of the axiom of choice:
 - (a) AC_{ω} (the axiom of countable choice) states that whenever f is a function on ω such that f(n) is a nonempty set for each $n \in \omega$, there is a function g on ω such that $g(n) \in f(n)$ for every $n \in \omega$.
 - (b) DC_{ω} (the axiom of countable dependent choice) states that whenever X is a set and $R \subseteq X \times X$ has the property that for any $x \in X$ there is $y \in X$ with $(x, y) \in R$, then there is a function f on ω such that $((f(n), f(n+1)) \in R$ for every $n \in \omega$.

Answer (with proofs) the following questions (in ZF):

- (a) Does the axiom of choice imply DC_{ω} ?
- (b) Does DC_{ω} imply AC_{ω} ?

Hint: Given a function f on ω , let X consist of all pairs (n,x) where $x \in f(n)$. Define a relation $R \subseteq X \times X$ by letting $((n,x),(n+1,y)) \in R$ (for all possible x,y). By DC_{ω} there is a function f with $(f(n),f(n+1)) \in R$ for all $n \in \omega$. Is f already as required? If not, how can you modify f so that it is as required?

For two cardinals κ and λ we let $\lambda^{<\kappa}$ be the size of the set of all functions $f: \alpha \to \lambda$ where $\alpha < \kappa$.

- **3.** Show that if κ is regular then $2^{<\kappa} = \kappa^{<\kappa}$.
- **4.** Show that if GCH holds then $\kappa^{<\kappa} = \kappa$ if and only if κ is regular.