Exercise sheet 04 from 15.11.2024

Due at the beginning of the exercise session on 22.11.2024 at 12:00. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

1. (2 Points) Show that for any regular cardinal $\kappa \geq \omega_1$, the set

$$E_{\omega}^{\kappa} := \{ \alpha \in \kappa \mid \operatorname{cf}(\alpha) = \omega \}$$

is stationary in κ .

- **2.** Let B be a boolean algebra. An element $a \in B^+$ is called an *atom* if there is no $x \in B$ with 0 < x < a (we let c < d if $c \leq d$ and $c \neq d$).
 - (a) Show that if B is finite, then below every $b \in B$ there is an atom $a \in B$ with $a \leq b$.
 - (b) Again assume that B is finite. Denote by $A := \{a_1, \ldots, a_n\}$ the set of all atoms in B. Find an isomorphism between B and the powerset algebra on A (see example 26 in the lecture notes).
- **3.** (8 Points) Denote by V_{ω} the ω th stage of the von Neumann Hierarchy. Which axioms of ZFC does the structure (V_{ω}, \in) satisfy?
- 4. (2 Points) Let $x := \{2, \{3\}\}$. Does the structure (x, \in) satisfy the axiom of extensionality?