Exercise sheet 07 from 06.12.2024

Due at the beginning of the exercise session on 13.12.2024 at 12:00. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

1. Show that the canonical well-ordering of L, restricted to the set $\omega^{\omega} \cap L$ (i.e. the set of all constructible reals) has ordertype ω_1^L .

Hint: $\omega^{\omega} \cap L \subseteq L_{\omega_1^L}$.

In what follows, we let M be a countable transitive model of enough ZFC and $(\mathbb{P}, \leq) \in M$ a nonempty partial order.

2. (...)

- **3.** Let G be a filter on \mathbb{P} .
 - (a) Show that G is \mathbb{P} -generic over M if and only if $G \cap D \neq \emptyset$ for every open¹ dense subset of \mathbb{P} lying in M.
 - (b) We call a set $E \subseteq \mathbb{P}$ predense if for every $p \in \mathbb{P}$ there is $e \in \mathbb{P}$ such that e and p are compatible. Show that G is \mathbb{P} -generic over M if and only if $G \cap E \neq \emptyset$ for every predense subset of \mathbb{P} lying in M.
- **4.** Assume $p, q, r \in \mathbb{P}$ are different. Define the \mathbb{P} -name τ by

$$\tau := \{ \langle \emptyset, p \rangle, \langle \{ \langle \emptyset, q \rangle \}, r \rangle \} \}$$

Let G be a filter which is P-generic over M. Compute all 8 different values of $val(\tau, G)$ depending on which of p, q, r are in G.

¹We say that $E \subseteq \mathbb{P}$ is open if for all $p \in E$, if $q \leq p$ then $q \in E$.