Exercise sheet 08 from 13.12.2024

Due at the beginning of the exercise session on 20.12.2024 at 12:00. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

1. (8 Points) Let M be a ctm. Denote by \aleph_1^M the unique ordinal in M such that $M \models \aleph_1^M = \aleph_0^+$. We will show that there exists a generic extension of M in which \aleph_1^M is countable. In M, let \mathbb{P} be the partial order consisting of functions $p: A \to B$ where $A \subseteq \aleph_0$ and $B \subseteq \aleph_1^M$ are finite. We order \mathbb{P} by $p \leq q$ if and only if $p \supseteq q$.

For any G which is a \mathbb{P} -generic filter over M we define $f_G := \bigcup_{p \in G} p$.

Show the following:

- (a) Whenever G is a \mathbb{P} -generic filter over M, f_G is an element of M[G].
- (b) There exists a \mathbb{P} -name τ such that for any \mathbb{P} -generic filter G over M we have $\operatorname{val}(\tau, G) = f_G$.

Now fix a \mathbb{P} -generic filter G over M. Show the following (by constructing suitable dense sets):

- (c) $M[G] \models f_G$ is a function.
- (d) $M[G] \models \operatorname{dom}(f_G) = \aleph_0$.
- (e) $M[G] \models \operatorname{rge}(f_G) = \aleph_1^M$.
- (f) Since M[G] is a model of enough ZFC there will be an ordinal $\aleph_1^{M[G]}$ in M[G] such that $M[G] \models \aleph_1^{M[G]} = \aleph_0^+$. By proposition 5.2.12, $\aleph_1^{M[G]} \in M$. Is $\aleph_1^{M[G]} > \aleph_1^M$, $\aleph_1^{M[G]} = \aleph_1^M$ or $\aleph_1^{M[G]} < \aleph_1^M$? Can the last case occur in any generic extension?
- **2.** (8 Points) Let \mathbb{P} be a partial order.
 - (a) Assume that \mathbb{P} does not contain an atom. Show that \mathbb{P} contains an infinite antichain.
 - (b) Assume that for any natural number n, \mathbb{P} has an antichain of size n. Show that \mathbb{P} contains an infinite antichain.

Hint: Assuming that \mathbb{P} has arbitrarily large finite antichains, can the set of atoms be dense in \mathbb{P} ? Check two cases, depending on if the set of atoms is dense in \mathbb{P} or not.

(c) (hard) Let M be a ctm and P a partial order in M that does not contain any atoms. Show that (in the ambient universe V) there are 2^{ℵ0} many P-generic filters over M.
Hint: Combine the technique of item (a) with the proof of Proposition 5.1.3 in the lecture notes.