Exercise sheet 10 from 10.01.2025

Due at the beginning of the exercise session on 17.01.2025 at 12:05. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

- **1.** (3+3 Points) Let M be a ctm, let $\mathbb{P}, \mathbb{Q} \in M$ be partial orders and $\pi \colon \mathbb{P} \to \mathbb{Q}$ an isomorphism with $\pi \in M$.
 - (a) Show that if G is \mathbb{P} -generic over M, then $\pi[G]$ is \mathbb{Q} -generic over M and $M[G] = M[\pi[G]]$.
 - (b) Let π_* be the lift of π to the class of \mathbb{P} -names. Show that whenever $\phi(v_1, \ldots, v_n)$ is a formula, $\dot{x}_1, \ldots, \dot{x}_n$ are \mathbb{P} -names and $p \in \mathbb{P}$, then

$$p \Vdash \phi(\dot{x}_1, \dots, \dot{x}_n) \Rightarrow \pi(p) \Vdash \phi(\pi_*(\dot{x}_1), \dots, \pi_*(\dot{x}_n))$$

Hint: Please use the Forcing Theorem.

- **2.** (3+3 Points) Let \mathbb{P} be a partial order. We say that \mathbb{P} is *almost homogeneous* if for any $p, q \in \mathbb{P}$ there exists an automorphism π of \mathbb{P} such that $\pi(p)$ and q are compatible.
 - (a) Show that $Add(\omega, \omega)$ is almost homogeneous.
 - (b) Suppose that M is a ctm, $\mathbb{P} \in M$ is almost homogeneous, $x_1, \ldots, x_n \in M$ and $p \in \mathbb{P}$. Show that if $p \Vdash \phi(\check{x}_1, \ldots, \check{x}_n)$, then $1 \Vdash \phi(\check{x}_1, \ldots, \check{x}_n)$. Deduce that for any formula ϕ , either $1 \Vdash \phi(\check{x}_1, \ldots, \check{x}_n)$ or $1 \Vdash \neg \phi(\check{x}_1, \ldots, \check{x}_n)$.
- **3.** (4 Points) We say that a poset \mathbb{P} is κ -closed (elsewhere this might be called $\langle \kappa$ -closed) if for any descending sequence $(p_{\alpha})_{\alpha < \mu}$ (where $\mu < \kappa$) there is $p \in \mathbb{P}$ such that $p \leq p_{\alpha}$ for any $\alpha < \mu$.

Suppose κ is a singular cardinal and \mathbb{P} is a κ -closed poset. Show that \mathbb{P} is κ^+ -closed.