Exercise sheet 11 from 17.01.2025

Due at the beginning of the exercise session on 24.01.2025 at 12:05. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung".

1. Assume \mathbb{P} is atomless. Show that for any filter $G \subseteq \mathbb{P}$ (even outside M), $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic over M.

Hint: Either use the Product Lemma or directly define a dense subset of $\mathbb{P} \times \mathbb{P}$ which is not intersected by $G \times G$.

- **2.** Suppose \mathbb{P} is ccc. and \mathbb{Q} is \aleph_1 -Knaster. Show that $\mathbb{P} \times \mathbb{Q}$ is ccc..
- **3.** Let M be a ctm. Can you find a filter $G \subseteq Add(\omega)$ which is generic over M and an automorphism π of $Add(\omega)$ such that $\pi[G]$ is not generic over M?

Hint: By Exercise 1 on sheet 10 π is necessarily outside of M. Define π (using G) such that $\pi[G] \in M$.

4. Let M be a ctm. Suppose \mathbb{P} is ccc. and G is \mathbb{P} -generic over M. Let $S \in M$ be such that $M \models S$ is a stationary subset of ω_1 . Show that $M[G] \models S$ is a stationary subset of ω_1 .

Sketch: By the Forcing Theorem, otherwise there is a \mathbb{P} -name τ and a condition $p \in G$ which forces τ to be a club subset of $\check{\omega}_1$ and disjoint from \check{S} . Show that $C := \{\alpha \in \omega_1 \mid p \Vdash \check{\alpha} \in \tau\}$ is club in ω_1 (it clearly lies in M). For unboundedness, use the ccc. of \mathbb{P} to define (starting from an arbitrary α_0) an increasing sequence $(\alpha_n)_{n \in \omega}$ such that for each $n, p \Vdash \exists \beta \in \tau(\alpha_n < \beta < \alpha_{n+1})$. Show that $\sup_n \alpha_n \in C$. From the preceding facts, derive a contradiction.