Exercise sheet 12 from 24.01.2025

Due at the beginning of the exercise session on 31.01.2025 at 12:05. Typically, any problem is worth 4 points. A total of at least 50% of all available points is required for the "Studienleistung". This is the last sheet.

1. Let M be a ctm and $\mathbb{P}, \mathbb{Q} \in M$ posets. Let $\iota : \mathbb{P} \to \mathbb{Q}$ be a *dense embedding* in M, i.e. ι is injective, $p' \leq p$ if and only if $\iota(p') \leq \iota(p)$ and $\iota[\mathbb{P}]$ is a dense subset of \mathbb{Q} .

Show that whenever G is \mathbb{P} -generic over M, the set $\uparrow (\iota[G]) := \{q \in \mathbb{Q} \mid \exists r \in \iota[G] \ r \leq q\}$ is \mathbb{Q} -generic over M and whenever H is \mathbb{Q} -generic over M, the set $\iota^{-1}[H]$ is \mathbb{P} -generic over M. Conclude that any forcing extension by \mathbb{P} is also a forcing extension by \mathbb{Q} and vice versa.

Hint: A filter is generic if and only if it intersects every open dense set.

- **2.** Let M be a ctm and $\mathbb{P} \in M$ a poset. Assume \mathbb{P} contains elements p and q which are incompatible. Show that the collection of all $\tau \in M$ such that $p \Vdash \tau = \emptyset$ is not a set in M.
- **3.** Let M be a ctm and $\mathbb{P} \in M$ a poset. Assume $\dot{\mathbb{Q}} \in M$ is a \mathbb{P} -name for a poset and κ is a cardinal.
 - (a) Show that if \mathbb{P} is κ -Knaster and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is κ -Knaster, then $\mathbb{P} * \dot{\mathbb{Q}}$ is κ -Knaster.
 - (b) Show that if \mathbb{P} is $<\kappa$ -distributive and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is $<\kappa$ -distributive, then $\mathbb{P} * \dot{\mathbb{Q}}$ is $<\kappa$ -distributive.
- **4.** Let M be a ctm and $\mathbb{P}, \mathbb{Q} \in M$ posets. such that \mathbb{P} and \mathbb{Q} are κ -cc. Show that $\mathbb{P} \times \mathbb{Q}$ is κ -cc if and only if $\Vdash_{\mathbb{P}} \check{\mathbb{Q}}$ is κ -cc.