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Abstract. Cummings, Foreman, and Magidor proved that Jensen’s square

principle is non-compact at ℵω , meaning that it is consistent that �ℵn holds for

all n < ω while �ℵω fails. We investigate the natural question of whether this
phenomenon generalizes to singulars of uncountable cofinality. Surprisingly,

we show that under some mild hypotheses, the weak square principle �∗κ is in
fact compact at singulars of uncountable cofinality, and that an even stronger

version of these hypotheses is not enough for compactness of weak square at

ℵω .

1. Introduction and Background

The properties of singulars of uncountable cofinality are notoriously different
from those of countable cofinality. A prime example is Silver’s theorem that GCH
cannot fail for the first time at a singular of uncountable cofinality. In contrast,
Magidor showed that GCH can fail for the first time at ℵω. There is therefore a
natural question of whether this phenomenon generalizes to more complex struc-
tures.1

Here we focus on the combinatorial properties of inner models, notably square
principles. Jensen originally distilled the principle �κ (where κ is some given car-
dinal) to study the properties of Gödel’s Constructible Universe L [10]. Many vari-
ations of �κ have been studied since then. (Precise definitions will be given below,
but Cummings-Foreman-Magidor [3] is the canonical reference for this area.) There
is in general a tension between square principles and large cardinals, one instance
of which is that �κ fails if κ is larger than a supercompact cardinal. Moreover,
the failure of �κ at a singular cardinal κ requires considerable consistency strength
from large cardinals [16]. The models of interest in this area realize some compati-
bility of both square principles and the compactness properties exhibited by large
cardinals.

In this paper we will address the compactness of square principles themselves:
whether or not �κ necessarily holds for some cardinal κ if �δ holds for sufficiently
many cardinals δ < κ. Cummings, Foreman, and Magidor proved that it is consis-
tent that �ℵn holds for 1 ≤ n < ω but that �ℵω fails [4]. Later, Krueger improved
the result by obtaining a bad scale on ℵω in a similar model [11]. But such results
can also go in the other direction: Cummings, Foreman, and Magidor also proved
that if �ℵn holds for all n < ω, there is an object that to some extent resembles
a �ℵω -sequence but with a weaker coherence property [5]. The main result of this
paper is along these lines:

1See [12] and [13] for recent examples.
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Theorem 1.1. Suppose that κ is a singular strong limit of cofinality λ > ω such
that for some stationary set S ⊆ κ, �∗δ holds for all δ ∈ S and

∏
δ∈S δ

+ carries a
good scale. Then �∗κ holds.

This represents some progress on a question raised by Golshani online regarding
a supposed Silver’s Theorem for special Aronszajn trees [9]: at any cardinal δ, �∗δ
is equivalent to the existence of a special δ+-Aronszajn tree [1].

The difference between the results of Cummings-Foreman-Magidor and Theo-
rem 1.1 is that the resulting sequence is fully coherent—not just coherent at points
of uncountable cofinality. In other words, we are able to obtain some compactness
for a canonical object by obtaining exactly that canonical object in the end. We
nonetheless depend on the goodness of scales, as do Cummings-Foreman-Magidor.

Note that the use of stationarity in Theorem 1.1 is necessary. Starting from
V |= “κ supercompact”, we could work in V [Col(ℵ1, < κ)] and force with product
of square-adding posets

∏
α<ω1

Sℵα+1
to get to a model W . This model would have

a bad scale carried by ℵω1
for the following reason: the added squares could be

threaded by a product
∏
α<ω1

Tℵα+2,ℵα+1
(where the threads added to the squares

originally of length ℵα+2 have length ℵα+1). This will preserve regularity of ℵWω1

using the fact that if τ is a regular cardinal such that P has size ≤ τ and Q is
τ+-distributive, then 
P “Q is τ+-distributive”. Standard lifting arguments then
show that there is a bad scale on ℵWω1

in the extension by the product of threads,
but this implies that there is already a bad scale in W , and hence that �∗ℵω1

fails.

Theorem 1.1 also contrasts with the following supporting result:

Theorem 1.2. Assuming the consistency of a supercompact cardinal, there is a
model in which ℵω is a strong limit, there is a good scale on ℵω, �ℵn holds for all
n < ω, and �∗ℵω fails—specifically, there is also a bad scale on ℵω.

This shows that the uncountable cofinality of κ in Theorem 1.1 distinguishes
it from the countable case in a pronounced way. The proof of this theorem will
use techniques similar to those used for the non-compactness results mentioned
above (i.e. [4, 11]). We note that if κ0 = ℵ0 and 〈κn : 1 < n < ω〉 is a se-
quence of supercompact cardinals in some ground model, then in an extension by∏
n<ω Col(κ0, < κn), we have that all scales on ℵω are good, �∗ℵω fails, and �∗ℵn

holds for all n < ω.2 However, getting �ℵn to hold for n < ω makes a stronger
point as a contrast with Theorem 1.1.

For the remainder of the introduction, we will focus on definitions. In Section 2
we will prove Theorem 1.1, and in Section 3 we will prove Theorem 1.2.

1.1. Definitions. We define square sequences in terms of a hierarchy introduced
by Schimmerling [17].

Definition 1.3. We say that 〈Cα | α ∈ lim(κ+)〉 is a �κ,λ-sequence if for all limit
α < κ+:

(1) each C ∈ Cα is a club subset of α with ot(C) ≤ κ;
(2) for every C ∈ Cα, if β ∈ lim(C), then C ∩ β ∈ Cβ ;
(3) 1 ≤ |Cα| ≤ λ.

2The reasons these properties hold follow: Magidor and Shelah showed that all scales on ℵω
are good in this model [14], �∗ℵω fails because the strong reflection property holds (see Section 4

of [3]), and �∗ℵn holds for all n < ω because of GCH by a theorem of Specker.
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The principle �κ,1 is the original �κ, and �κ,κ is the weak square, denoted �∗κ.

Definition 1.4. If µ is a cardinal and S ⊂ lim(µ+) is stationary, then we say that
〈Cα : α ∈ S〉 is a partial square sequence if for all α ∈ S:

(1) Cα is closed and unbounded in α;
(2) ot(Cα) ≤ µ;
(3) if β ∈ S and γ ∈ limCα ∩ limCβ , then Cα ∩ γ = Cβ ∩ γ.

Definition 1.5.

(1) If τ is a cardinal and f, g : τ → ON, then f <∗ g if there is some j < τ
such that f(i) < g(i) for all i ≥ j. The analogous definitions hold for >∗

and =∗.
(2) Given a singular cardinal κ, we say that a strictly increasing sequence

~κ = 〈µi : i < cf κ〉 of regular cardinals converging to κ is a product when
we regard

∏
i<cf κ µi as a space.

(3) Given a product ~κ =
∏
i<cf κ µi, a sequence 〈fα : α < κ+〉 is a scale on ~κ if:

(a) for all α < κ+, fα ∈ ~κ, i.e. fα(i) < µi for all i < cf κ;
(b) for all β < α < κ+, fα <

∗ fβ ;
(c) for all g ∈ ~κ, there is some α < κ+ such that g <∗ fα (i.e. 〈fα : α < κ+〉

is cofinal in the product ~κ).

We also say that the product ~κ carries ~f .
(4) We will use the term pseudo-scale for an object resembling a scale that is

not necessarily cofinal in its product ~κ, i.e. it satisfies (a) and (b) of the
previous item.

(5) Given a scale (or pseudo-scale) ~f = 〈fα : α < κ+〉, α < κ+ is good if there
is some unbounded A ⊂ α with otA = cf α and some j < cf κ such that for
all i ≥ j, 〈fβ(i) : β ∈ A〉 is strictly increasing.

(6) If there is a club D ⊂ κ+ such that every α ∈ D with cf α > cf κ is a good

point of ~f , then ~f is a good scale. An analogous definition applies for good
pseudo-scales.

The reason for defining pseudo-scales is that the cofinality clause of the definition
of a scale will be largely irrelevant for our purposes. The next fact is what we use
to obtain failure of �∗κ in Theorem 1.2.

Fact 1.6. If κ is singular, then �∗κ implies that all pseudo-scales on κ are good.3

2. ZFC Results

In this section we will prove the main results of the paper. We clarify notions
of continuity in Subsection 2.1, then we prove Theorem 1.1 in Subsection 2.2, and
then we sketch an analogous theorem for partial squares in Subsection 2.3.

2.1. Continuity. Our goal in this section is to obtain a strong concept of the con-
tinuity used by Cummings, Foreman, and Magidor for scales on a singular cardinal
κ of cofinality λ. The material concerning points α such that cf(α) > λ is the same
as theirs, but we want to consider some issues that arise when cf(α) ≤ λ. Specifi-
cally, continuity is trivial if cf(α) < λ, and we would like to modify the concept of
continuity for the situation where cf(α) = λ so that the square sequences we define
are coherent.

3This is in Cummings’ survey [1], but without the distinction involving pseudo-scales.
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Fix a singular κ of cofinality λ > ω. We will consider some fixed stationary
S ⊆ λ and a product ~κ =

∏
i∈S µi. This formulation will be important when we

are considering α ∈ κ+ ∩ cof(λ). Fix a pseudo-scale ~f on ~κ.

Proposition 2.1. If cf α > cf κ and α is a good point, then for any cofinal B ⊂ α
with otB = cf α, there is some B∗ ⊆ B such that B∗ witnesses goodness of α.

This follows from what is known as “The Sandwich Argument.”

Proof. Suppose A ⊂ α witnesses goodness. Let τ = cf α and enumerate A′ :=
〈αξ : ξ < τ〉 ⊂ A and B′ := 〈βξ : ξ < τ〉 ⊂ B in such a way that for all
ξ < τ , fαξ ≤∗ fβξ <∗ fαξ+1

. Observe that A′ also witnesses goodness of α with
respect to some j′. For each ξ < τ , let jξ ≥ j′ be such that i ≥ jξ implies
fαξ(i) ≤ fβξ(i) < fαξ+1

(i). Then there is some unbounded X ⊂ τ and some
j < λ such that for all ξ < τ , jξ = j. Since j also witnesses goodness with
respect to A′, this means that if ξ, η ∈ X and ξ < η, then for all i ≥ j, we
have fβξ(i) < fαξ+1

(i) ≤ fαη (i) ≤ fβη (i). We have proved the proposition with
B∗ = 〈βξ : ξ ∈ X〉. �

Modulo a short argument, this implies:

Proposition 2.2. If a product ~κ carries a good scale ~f , then there is a scale ~g such
that every α with cf α > cf κ is a good point of ~g.

Definition 2.3. Suppose ~f = 〈fα : β < α〉 is a <∗-increasing sequence on the
product ~κ =

∏
i∈S µi, and that A ⊂ α is unbounded for some α < κ+ with otA =

cf α.

• ~fA denotes the function i 7→ supβ∈A fβ(i);

• if cf α = cf κ and A = 〈βi : i < cf κ〉, ~f∆
A denotes the function i 7→

supj<i fβj (i).

Definition 2.4. If f and g are functions on a product ~κ, we write f =∗∆ g if there
is a club C ⊆ λ such that for all i ∈ C ∩ S, f(i) = g(i). The definition for f <∗∆ g
is analogous.

Definition 2.5. A scale ~f = 〈fα : α < κ+〉 is totally continuous if the following
hold:

• if cf α < cf κ, then for all cofinal A ⊂ α with otA = cf α, (~f � α)A =∗ fα;
• if cf α = cf κ, then for all clubs A ⊂ α such that otA = cf α, we have

fα =∗∆ (~f � α)∆
A ;

• if cf α > cf κ, then α is a good point, fα is an exact upper bound of
〈fβ : β < α〉, and for all cofinal A ⊂ α witnessing goodness of α, we have

(~f � α)A =∗ fα.

Even though these cases are different, we will say by continuity if we invoke any
of them.

Now we work towards:

Lemma 2.6. If cf κ = λ > ω, S ⊂ λ is stationary, and ~κ =
∏
i∈S µi is a product of

regular cardinals on κ that carries a good scale, then it carries a totally continuous
good scale.
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Fix a <∗-increasing sequence ~f = 〈fα : β < α〉 on a product
∏
i<cf κ µi. The

following is straightforward:

Proposition 2.7. Suppose α < κ+, cf α < cf κ, A,B ⊂ α are unbounded and

otA = otB = cf α. Then ~fA =∗ ~fB.

Proposition 2.8. If cf α > cf κ and A ⊂ α witnesses goodness, then ~fA is an exact
upper bound of 〈fβ : β ∈ A〉.

Proof. It is straightforward that ~fA is an upper bound. For exactness, suppose that

g <∗ ~fA. Let j < λ witness goodness with respect to A as well as g <∗ ~fA, and for
all i with j ≤ i < λ, let βi ∈ A be such that g(i) < fβi(i). If β = supj≤i<λ βi, then
by goodness we have g <∗ fβ . �

Remark. If cf α ≤ cf κ, then 〈fβ : β < α〉 has no exact upper bound: Let 〈βξ : ξ <
cf α〉 be increasing and cofinal in α and let 〈Sξ : ξ < cf α〉 be a partition of cf κ
into disjoint unbounded sets. Define g such that g(i) = fβξ(i) if and only if i ∈ Sξ.
Then g <∗ fα, but there is no β < α such that g <∗ fβ .

Proposition 2.9. If cf α > cf κ, A ⊂ α witnesses goodness of α, and A′ ⊂ A is

unbounded in α, then ~fA =∗ ~fA′ .

Proof. It is immediate that ~fA′ ≤∗ ~fA. Suppose for contradiction that ~fA′ <
∗ ~fA as

witnessed by j < λ. Assume that j is also large enough to witnesses goodness with
respect to A, which implies that it witnesses goodness with respect to A′ as well.

Then for all i with j ≤ i < λ, there is some βi ∈ A such that ~fA′(i) < fβi(i) <
~fA(i).

Let β be an element of A′ greater or equal to supj≤i<λ βi < α. By goodness of

A′, i ≥ j implies that fβi(i) ≤ fβ(i), and so we have fβ(i) ≤ ~fA′(i) < fβ(i), a
contradiction. �

Proposition 2.10. Suppose α < κ+, cf α > cf κ and A,B ⊂ α both witness

goodness of α. Then ~fA =∗ ~fB.

Proof. Assume that j is large enough to witness goodness with respect to both
A and B. Use the Sandwich Argument from Proposition 2.1 to find A′ ⊂ A and

B′ ⊂ B such that ~fA′ =∗ ~fB′ . Our result then follows from Proposition 2.9. �

Proposition 2.11. Suppose α < κ+, cf α = cf κ, and C,D are both clubs in α
such that otC = otD = cf α. Then f∆

C =∗∆ f∆
D .

Proof. Suppose otherwise. Enumerate C = 〈βi : i < cf κ〉 and D = 〈γi : i < cf κ〉.
Then without loss of generality, {i < cf κ : ~f∆

C (i) < ~f∆
D (i)} is stationary in cf κ. Let

E be the club {i < cf κ : ∀j1, j2 < i,∃j∗ < i witnessing fγj1 <
∗ fγj2 }. Observe that

if i ∈ limE, then 〈fγj (i) : j < i〉 is strictly increasing, so for all δ < supj<i fγj (i),

there is some j′ < i such that δ < fγj′ (i). Let S := limE ∩ {i < cf κ : ~f∆
C (i) <

~f∆
D (i)}.

Then for all i ∈ S, there is some j < i such that ~f∆
C (i) < fγj (i). By Fodor’s

Lemma, there is a stationary T ⊂ S and some k < cf κ such that for all i ∈ T ,
~f∆
C (i) < fγk(i). If ` is large enough that γk < β`, then there is some m such

that for all i ≥ m, fγk(i) < fβ`(i). If i > m, `, then fγk(i) < fβ`(i) ≤ ~f∆
C (i).

But T is of course unbounded, so this implies that we can find an i such that

fγk(i) < ~f∆
C (i) < fγk(i), a contradiction. �
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Proof of Lemma 2.6. We are working with a product ~κ :=
∏
i<λ µi. Let ~g = 〈gα :

α < κ+〉 be a good scale on this product. Then we define a totally continuous

scale ~f = 〈fα : α < κ+〉 by induction as follows using the propositions from this
section: If α = β + 1, choose γ < κ+ large enough that fβ <

∗ gγ . Then let fα be
such that gγ <

∗ fα. If α is a limit and cf α < λ, choose any A, a cofinal subset

of α of order-type cf α. Then let fα := ~fA. (Proposition 2.7.) If α is a limit and

cf α = λ, choose A to be any club subset of α of order-type cf α. Then let fα := ~f∆
A .

(Proposition 2.11.) Lastly, suppose α is a limit and cf α > λ. Then α is a good
point in terms of 〈fβ : β < α〉 because it is cofinally interleaved with 〈gβ : β < α〉.
Hence we can choose any cofinal A ⊂ α and let fα := ~fA. (Proposition 2.8 and
Proposition 2.10.) �

2.2. The Construction for Weak Square. Commencing with the proof of The-
orem 1.1, fix a singular κ with cofinality λ > ω such that S∗ := {δ < κ : �∗δ holds}
is stationary (and of order-type λ). It will be sufficient to assume that for all τ < κ,
τλ < κ, and to assume that

∏
δ∈S∗ δ

+ carries a good pseudo-scale.

Proposition 2.12. There is a club E ⊂ κ consisting of singular cardinals.

Proof. If E ⊂ κ is any club of order-type λ, then all ordinals in E′ := lim(E)\(λ+1)
are greater than λ and have cofinality less than λ, so they are singular. Moreover,
we can argue that there is a club E′′ ⊂ E′ of cardinals. Otherwise, there is a
stationary T ⊂ E′ and a regressive function δ 7→ |δ| < δ on T . This function is
constant with value υ on a stationary subset T ′ ⊂ T , but this contradicts that fact
that T ′ is unbounded in κ. �

Using Proposition 2.12, let 〈κi : i < λ〉 be a continuous, cofinal, and strictly
increasing sequence of singular cardinals in κ. It follows that S := {i < λ : κi ∈
lim(S∗)} is stationary in λ. Note that

∏
i∈S κ

+
i also carries a good pseudo-scale, so

we can use Lemma 2.6 to find a totally continuous pseudo-scale ~f = 〈fα : α < κ+〉
on the same product.

Let ~Ci = 〈Ciξ : ξ < κ+
i 〉 witness �∗κi for all i ∈ S. Since κi is a limit cardinal for

all i, we can assume that for all such i these �∗κi-sequences have the property that

otC < κi for all C ∈ Ciξ, ξ < κ+
i (see [1]). If α < κ+, we define Fα as follows:

• If cf(α) 6= λ, we let Fα be the set of functions F such that domF = S and
such that ∀i ∈ S, F (i) ∈ Cifα(i).

• If cf(α) = λ, we let Fα be the set of functions F such that domF = S and
such that for some h =∗∆ fα, ∀i ∈ S, F (i) ∈ Cih(i).

Regardless of whether or not cf(α) = λ, we will say that some h ∈
∏
i∈S κ

+
i

witnesses F ∈ Fα if for all i ∈ S, F (i) ∈ Cih(i).

For each α < κ+ and F ∈ Fα, we define CF ⊂ α as follows:

• If β < α and cf β 6= λ, then β ∈ CF if and only if there is some j < λ such
that for all i ∈ S \ j, fβ(i) ∈ limF (i).
• If β < α and cf β = λ, then β ∈ CF if and only if there the set of limit

ordinals γ ∈ CF with cf(γ) < λ is unbounded in β.

Now we define our �∗κ-sequence at α depending on the cofinality:

• If cf α < λ, then Cα := {CF : F ∈ Fα and CF is unbounded in α} ∪ {C ⊂
α : C is a club in α and otC < λ}.
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• If cf α = λ, choose a club C ⊂ α such that otC = λ and let Cα := {CF :
F ∈ Fα and CF is unbounded in α} ∪ {C}.
• If cf α > λ, let Cα := {CF : F ∈ Fα}.

Lemma 2.13. For all α ∈ lim(κ+) and C ∈ Cα, C is closed.

Proof. It is enough to show that for all α ∈ lim(κ+) and F ∈ Fα, CF is closed. The
proof of this lemma does not depend on whether or not cf(α) = λ; that is, it does
not depend on whether F ∈ Fα is witnessed specifically by fα or some h =∗∆ fα.
Let 〈βξ : ξ < τ〉 ⊆ CF be a strictly increasing sequence with supremum β < α
where τ is regular. For each ξ < τ , let jξ witness that βξ ∈ CF , i.e. for all i ≥ j,
fβξ(i) ∈ limF (i).

Case 1: τ < λ. If j′ = supξ<τ jξ, then for all i ≥ j′, we have supξ<τ fβξ(i) ∈
limF (i). By continuity, there is also some j′′ such that for all i ≥ j′′, fβ(i) =
supξ<τ fβξ(i). Hence, if j is larger than j′ and j′′, then j witnesses that β ∈ CF by
closure of F (i) for i ∈ S.

Case 2: τ > λ. By the Pigeonhole Principle there is some unbounded Z ⊂ τ
and some j′ < λ such that jξ = j′ for all ξ ∈ Z. By Proposition 2.1, there is some
j′′ and some Z ′ ⊂ Z such that {βξ : ξ ∈ Z ′} and j′′ witness goodness. It then
follows by continuity that for all i ≥ j′′, fβ(i) = supξ∈Z′ fβξ(i). If j ≥ j′, j′′, then
j witnesses that β ∈ CF as in the previous case.

Case 3: τ = λ. By Case 2, we can assume that cf(βξ) < λ for all ξ < λ. Then
closure follows by definition. �

Lemma 2.14. For all α ∈ lim(κ+), C ∈ Cα is unbounded in α.

Proof. It is sufficient to show that if cf α > cf κ, then CF is unbounded in α for an
arbitrary F ∈ Fα. We will use the fact that F ∈ Fα can only be witnessed by fα.
Consider some ᾱ < α. We will find an element of CF larger than ᾱ. By induction
we define a sequence of ordinals 〈αn : n < ω〉 in the interval (ᾱ, α), a <∗-increasing
sequence of functions 〈gn : n < ω〉 in

∏
i∈S κ

+
i , and an undirected list of ordinals

〈jn : n < ω〉 in λ.
Suppose that αn and gn are defined. Let gn+1 be defined so that for all i < cf κ,

gn+1(i) an element of F (i) larger than fαn(i). Using the facts that gn+1 <
∗ fα and

that fα is an exact upper bound of 〈fβ : β < α〉, find αn+1 so that gn+1 <
∗ fαn+1 ,

and let jn+1 < λ witness this.
Let β = supn<ω αn, which in particular is larger than ᾱ. We claim that β ∈ CF

as witnessed by j := supn<ω jn < λ. For each i < λ such that i ≥ j, 〈gn(i) : i < ω〉
and 〈fαn(i) : n < ω〉 interleave each other, so supn<ω fαn(i) ∈ limF (i) for such i.
For sufficiently large i, fβ(i) = supn<ω fαn(i) by continuity, so this completes the
proof. �

Lemma 2.15. For all α ∈ lim(κ+) and C ∈ Cα, if β ∈ limC, then C ∩ β ∈ Cβ.

Proof. The lemma is only substantial if C = CF for some F ∈ Fα, and it does
not depend on whether cf(α) = λ. By assumption CF is unbounded in β, so
Lemma 2.13 implies that β ∈ CF .

Case 1: cf β 6= λ: Let j < λ witness β ∈ CF , meaning that if i ≥ j then

fβ(i) ∈ limF (i). By the coherence of ~Ci for i ∈ S, it follows that F (i)∩fβ(i) ∈ Cifβ(i)

for such i. Let F ′ be a function with domain S such that F ′(i) ∈ Cifβ(i) for all i ∈ S
and such that F ′(i) = F (i) ∩ fβ(i) for i ≥ j in particular. Then F ′ ∈ Fβ and CF ′
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is unbounded in β, so CF ′ ∈ Cβ . If γ < β, let j′ < λ witness fγ <
∗ fβ . Then if

i ≥ j, j′, it follows that fγ(i) ∈ F (i) if and only if fγ(i) ∈ F ′(i). We conclude that
CF ∩ β = CF ′ .

Case 2: cf β = λ: Choose a sequence 〈βi : i < λ〉 ⊂ CF ∩ β; by closure
(Lemma 2.13, Case 1) we can assume that 〈βi : i < λ〉 is closed and unbounded
in λ, and that cf(βi) < λ for all i < λ. By Proposition 2.11, we can also assume

that fβ =∗∆ (~f � β)∆
〈βi:i<λ〉, i.e. that there is a club E ⊂ λ such that for all i ∈ E,

fβ(i) = supj<i fβj (i). Let D be a club such that D ⊆ E and such that for all
i ∈ D, j < i, there is some j′ < i witnessing that βj ∈ CF , and moreoever such that
for all i ∈ D, j1, j2 < i, there is some j < i witnessing that fβj1 <

∗ fβj2 . It follows

that for all i ∈ D and j < i, fβj (i) ∈ limF (i), and therefore that for all i ∈ D,
fβ(i) ∈ limF (i). Then let F ′ be defined so that F ′(i) = F (i) ∩ fβ(i) for i ∈ D ∩ S
and F ′(i) = F (i) for i ∈ S \D. Then it follows that CF ∩β = CF ′ : in particular, if
γ ∈ CF ′ , then fγ is dominated by fβ on a club, so it must be the case that γ < β.
Hence we find that F ′ ∈ Fβ is witnessed by h such that h(i) = fβ(i) for i ∈ D
and h(i) = h′(i) for the h′ witnessing F ∈ Fα (hence h =∗∆ fβ). Therefore we have
shown that CF ∩ β ∈ Cβ . �

Lemma 2.16. For all α ∈ lim(κ+) and C ∈ Cα, otC < κ.

Proof. It is sufficent to show that otCF < κ for all F ∈ Fα and all α < κ+

(independently of whether cf(λ) = α). Recall that we assumed that the �∗κi-
sequences 〈Ciξ : i < κ+

i 〉 were defined so that for all for all i < λ, ξ < κ+
i , C ∈ Ciξ,

otC < κi.
Fix α < κ+. For every i ∈ S, there is some j < i such that otF (i) < κj .

This means that there is a stationary T ⊆ S and some k such that for all i ∈ T ,
otF (i) < κk. If β ∈ CF and i ∈ T , let gβ(i) = ot(F (i) ∩ fβ(i)) for all i such that
fβ(i) ∈ F (i) and 0 otherwise. The set {gβ : β ∈ CF } has size κλk < κ (we assumed
this bit of cardinal arithmetic), so it is enough to observe that if β, β′ ∈ CF and
β < β′, then gβ and gβ′ are distinct. �

Lemma 2.17. For all α ∈ lim(κ+), |Cα| ≤ κ.

Proof. Our assumption that τλ < κ for all τ < κ implies that |{C ⊂ α : otC <
λ}| = κ, so it is enough to show that |{CF : F ∈ Fα}| ≤ κ for all α ∈ lim(κ+).

Fix α ∈ lim(κ+). We first argue for the case in which cf(α) 6= λ. For all i ∈ S′
enumerate Cifα(i) = 〈Ciζ : ζ < κi〉. For stationary sets T ⊂ S′ and ζ < κ, let

Xk
T = {F ∈ Fα : ∀i ∈ T, ∃ζ < κk such that F (i) = Ciζ and ot(Ciζ) < κk}.

We claim that for all F ∈ Fα, there are T ⊂ S′ and k < λ such that CF ∈ Xk
T . Let

F ∈ Fα. For each F and i ∈ S′, there is some j < i such that we have F (i) = Ciζ for

some ζ < κj and ot(Ciζ) < κj as well. It follows that there is a stationary T ⊂ S′

and k < λ such that for all i ∈ T , F (i) = Ciζ and ot(Ciζ) < κk for some ζ < κk.

Because 2λ = λλ < κ, there are at most κ-many Xk
T ’s. Therefore it remains

to show that for all such T, k, that |{CF : F ∈ Xk
T }| ≤ κ. Let GF be the set of

functions gβ = fβ � T for all β ∈ CF . If β 6= β′, then gβ 6= gβ′ , so if F ′ 6= F
then GF 6= GF ′ . Now, for i ∈ T , let RkT (i) =

⋃
ζ<κk

Ciζ . Then for all F ∈ F kT ,

GF ⊆
∏
i∈T R

k
T (i). Moreover,

∏
i∈T R

k
T (i) has cardinality κλk < κ. It follows that

|{CF : F ∈ Xk
T }| ≤ κ.
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Now we comment on the case in which cf(α) = λ. For all F ∈ Fα, there is some
S′ ⊂ S be a stationary set such that for all i ∈ S′, F (i) ∈ Cifα(i). The argument

above can be done for all F ∈ Fα such that there is an h witnessing F ∈ Fα where
h � S′ = fα � S′. Since 2λ < κ, and we only need to consider 2λ-many possible S′,
this is sufficient. �

This finishes the proof of Theorem 1.1.

2.3. Sketching the Construction for Partial Square. We observe that a result
similar to Theorem 1.1 holds for partial squares:

Theorem 2.18. Let κ be a singular strong limit cardinal of cofinality λ > ω.
Suppose there is a stationary set S ⊂ κ such that �δ holds for all δ ∈ S and
such that

∏
δ∈S δ

+ carries a good scale. Then there is a partial square sequence on
κ+ ∩ cof(> λ).

This can be proved with the same techniques as the previous theorem, and
the setup is basically the same: We fix a singular strong limit κ with cofinality
λ > ω such that {δ < κ : �δ holds} is stationary (and of order-type λ). Let
〈κi : i < λ〉 be continuous, cofinal, and strictly increasing in κ. We find that S :=
{i < λ : �κi holds} is stationary in λ, and we can construct a totally continuous

scale ~f = 〈gα : α < κ+〉 on
∏
i∈S κ

+
i . Let Ci = 〈Ciξ : ξ < κ+

i 〉 witness �κi
for all i ∈ S. By Proposition 2.12, we can again assume that otCiξ < κi for all

ξ < κ+
i , i < λ. Now we can define the clubs of which our square sequence will

consist. For each α ∈ κ+ ∩ cof(> λ), let:

Xα := 〈β < α : {i < λ : fβ(i) ∈ limCifα(i)} is co-bounded in S〉.
Then we have an analog of Lemma 2.13:

Lemma 2.19. For all α ∈ lim(κ+), if 〈βξ : ξ < τ〉 ⊂ Xα’s and τ 6= λ, then
supξ<τ βξ ∈ Xα.

Then let Cα be the closure of Xα inside α. The partial square sequence will be
the sequence 〈Cα : α ∈ κ+∩cof(> λ)〉. Proofs of the various lemmas are analogous.
Coherence for the case cf(β) = λ is easier since no witness needs to be constructed.

3. The Consistency Result

In this section we prove Theorem 1.2 using techniques of Cummings, Foreman,
and Magidor [4], and of Krueger [11]. The construction of the model begins with a
preparation like the one used to force the consistency of Martin’s Maximum. Here
we force with a product to obtain �ℵn for n < ω as well as a good scale carried
by

∏
m even ℵm. Then we use a supercompact embedding to show that there is

a bad scale on
∏
m odd ℵm. (This idea of using good and bad scales on different

products sometimes appears in the context of Prikry extensions, most notably in
Gitik-Sharon [8].) The preparation pays off in the way a Namba forcing is used to
lift the embedding past the posets adding the �ℵn ’s and the good scale.

First we define the Namba forcing used for the construction in Subsection 3.1
and handle the ways in which it needs to be distinct from the ones used in the
analogous constructions. Then we define a simple poset for adding a good scale in
Subsection 3.2 which will be necessary for our construction. Then we show that
everything fits together in Subsection 3.3.
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3.1. The Namba Forcing.

Definition 3.1. Fix a bijection d : ω → ω \ {0, 1} such that:

(1) For all m ≥ 2, there are infinitely many n such that d(n) = m;
(2) If n is the least number such that d(n) = m, then for all k < n, d(k) < m.

Let Peven be the the set of n < ω such that n is minimal such that d(n) = m
and m is even. Let Podd be the analogous set where m is odd.

The poset P will consist of trees T such that the following hold:

(1) T is a tree consisting of finite sequences t.
(2) For all t ∈ T and n ∈ dom(t), t(n) ∈ ℵd(n).
(3) Let t ∈ T be the unique node maximal in the ordering of T such that for all

s ∈ T , either t ⊆ s or s ⊆ t. Then t is called the stem of T and is denoted
stem(T ). The following hold for t ∈ T with t ⊇ stem(T ):
(a) If n = dom(t) and n ∈ Peven. Then {η : t_η ∈ T} is a stationary

subset of ℵd(n).
(b) If n = dom(t) and n′ is the largest element of ω such that n′ ∈ Peven

and n′ ≤ n, then {η : t′_η ∈ T} has cardinality ≥ min{ℵd(n′),ℵd(n)}.
The ordering on P is given by inclusion: T1 ≤ T2 (i.e. T1 contains more informa-

tion than T2) if and only if T1 ⊆ T2.
If T ∈ P, we write n(T ) := | stem(T )|. If S, T ∈ P and n < ω, we write S ≤n T

if S ≤ T , stem(S) = stem(T ), and for all t with |t| ≤ n(S) + n, t ∈ S if and only if
t ∈ T .

The following is immediate from sub-item (b) of item 3 in Definition 3.1:

Proposition 3.2. For all m < ω and t ∈ T , there are infinitely many n with
d(m) = n such that for some t′ ⊇ t, {η : t′_η ∈ T} has cardinality ℵm.

Because the forcing we use is meant to provide a master condition for the forcings
adding the �ℵn ’s (which is not needed in Cummings-Magidor [6]), we must make
some adjustments to their arguments. They use the concept of badness mentioned
here, but we need to stretch out the fusion sequences.

Lemma 3.3. Let T ∈ P and suppose n(T ) = n where n ∈ Peven. If α̇ is a name
for an ordinal below some δ with δ < ℵd(n), then there is some T ′ ≤0 T deciding α̇.

Proof. Like Cummings and Magidor [6], we say that T ∈ P is bad if the lemma
fails, meaning that for some unfixed n, we have n(T ) = n ∈ Peven, yet there is no
T ′ ≤0 T deciding α̇. We claim that for any bad T with n(T ) = n ∈ Peven, the set
X of η < ℵd(n) such that T � t_η is bad is stationary. Otherwise, Fodor’s Lemma
implies that there is some stationary X ′ ⊂ X and some β < µ such that for all
η ∈ X, there is some Tη � t_η forcing “α̇ = β”. Then consider T ′ =

⋃
η∈X′ Tα

where T ′ ≤0 T , which contradicts the assumption of badness.
Supposing that some T ∈ P is bad, we work towards a contradiction by defining a

fusion sequence 〈Tn : n < ω〉 below T as follows: Let T0 = T and let 〈k(n) : n < ω〉
enumerate Pprod \n(T ). If Tn is defined, then for all t ∈ Tn such that dom t = k(n),
we choose a collection Yt of nodes t′ ⊇ t of length < k(n + 1) such that for all
t′ ∈ Yt, t′ has min{ℵd(k(n)),ℵdom(t′)}-many immediate successors in Yt. Then for
each t′ ∈ Yt with dom(t′) = k(n + 1), let Xt′ be the stationary set of points η
such that Tn � (t′_η) is bad. Then let Tn+1 = {Tn � u(t)_η : t ∈ T, dom t =
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k(n), t′ ∈ Yt, η ∈ Xt′}. Then let T ′ be the fusion limit of 〈Tn : n < ω〉. Observe
that sub-item (b) of item 3 in Definition 3.1 still holds for T ′.

Then let T ′′ ≤ T ′ decide α̇. Let t′′ ⊇ stem(T ′′) be such that |t′′| ∈ Peven. Then
T ′′ � t′′ ≤0 Tn � t′ for some Tn, t

′ ∈ Yt from the construction, and T ′′ � t′′ decides
α̇, which contradicts badness of Tn � t′ in the construction. �

Lemma 3.4. Let T ∈ P and suppose n(T ) = n where n ∈ Peven. If α̇ is any name
for an ordinal, then there are T ′ ≤0 T and i < ω such that every i-step extension
of T ′ decides a value for α̇.

Proof. We argue again with analogy to Cummings-Magidor. For this lemma we say
that T is bad if there is no T ′ ≤0 T and no i < ω such that every i-step extension
decides α̇. We first claim that if T is bad and n(T ) = n with n ∈ Peven, then
there are non-stationarily many η ∈ ℵd(n) such that n(T ) � stem(T )_η is bad. The
argument uses Fodor’s Theorem as in Lemma 3.3. We then do a fusion argument
where the only differences with the Cummings-Magidor argument are the use of the
Yt’s as in Lemma 3.3 and the fact that at the end we need to find a contradiction
using a stem of length n ∈ Peven. �

Now we can collect some properties of our Namba forcing for which existing
arguments suffice without alteration.

Facts 3.5. The following are true for P relative to a ground model V :

(1) For all n < ω, P forces that cf(ℵVn ) = ω.
(2) P forces that ℵVω+1 is an ordinal of cardinality and cofinality ≥ ℵ1.
(3) P preserves stationary subsets of ℵ1.
(4) If n ∈ Peven ∪ Podd and T ∈ P, then the set of nodes t ∈ T such that

dom t ≤ n has cardinality strictly less than ℵd(n).

Sketch of Proofs. Point (1) comes from the fact that there are infinitely many k
such that d(k) = n and Proposition 3.2: A genericity argument defines a cofinal
function whose domain consists of these k’s. Point (2) comes from a fusion argument
using Lemma 3.4, where we build T ′ ≤ T with at most |T | = ℵω-many possible
decisions for α̇. Point (3) is a variation of the arguments presented by Cummings-
Magidor [6] and Krueger [11] using an open game; it is enough that the splitting
nodes all split into sets of size > ℵ1. Point (4) comes from sub-item (b) of item 3
in Definition 3.1. �

Our focus here is on the distinction between a boundedness lemma and an
unboundedness lemma. The former deals with the good scale on

∏
m even ℵm and

the latter deals with the bad scale on
∏
m odd ℵm.

Lemma 3.6. [6] If V is a ground model with a scale ~f = 〈fα : α < ℵω+1〉 on the
product

∏
m even ℵm, then the generic function b added by P is an exact upper bound

of ~f .

Proof. To fact that for all b dominates all h ∈
∏
m even ℵm follows from a straight-

forward genericity argument. On the other hand, suppose that T ∈ P and T 

“h <∗ ḃ” with n(T ) ∈ Peven. We define a fusion sequence 〈Tn : n < ω〉 as
follows: Let T0 = T and let 〈k(n) : n < ω〉 enumerate Peven \ n(T ). Suppose
we are given Tn. For all t ∈ Tn with dom t = k(n + 1), for all η such that

t_η ∈ T , use Lemma 3.3 to choose Uη ≤0 T � (t_η) deciding ḣ(k(n + 1)). Since
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T 
 “ḣ <∗ ḃ”, it follows without generality (for large n) that for a stationary

set Xt ⊂ ℵk(n+1) and all η ∈ Xt, Uη 
 “ḣ(k(n + 1)) = β(t)” for some β(t). Let
Tn+1 =

⋃
{Uη : η ∈ Xt, t ∈ Tn,dom(t) = k(n+1)}. Let T ′ be the fusion of the Tn’s.

For each n, let g(n) = sup{β(t) : t ∈ Tn,dom(t) = k(n)}, where g(n) < ℵd(n) by

item 4 of Facts 3.5. Let α be large enough that g <∗ fα. Then T ′ 
 “ḣ <∗ fα”. �

Lemma 3.7. If V is a ground model and ḣ is a P-name for a function in the
product

∏
m odd ℵVm, then there is some g ∈ V such that ḣ <∗ g.

Proof. Suppose T ∈ P and T 
 “ḣ ∈
∏
m odd ℵVm”. Let 〈ke(n) : n < ω〉 enumerate

Peven \n(T ) and let 〈ko(n) : n < ω〉 enumerate Podd \n(T ). Assume without loss of
generality that for all n < ω, ke(n) < ko(n). Define a fusion sequence 〈Tn : n < ω〉
as follows: Let T0 = T . Suppose we are given Tn. Then for all t ∈ Tn with
dom t = ke(n), choose a collection Yt of nodes t′ ⊇ t of length < ke(n + 1) such
that for all t′ ∈ Yt, t

′ has min{ℵd(n),ℵdom(t′)}-many immediate successors in Yt.
Then for all such t and t′ ∈ Yt such that dom(t′) = ke(n + 1), use Lemma 3.3

to choose Ut ≤0 Tn � t forcing ḣ(ko(n)) = β(t′). Then let Tn+1 =
⋃
{Ut′ : t′ ∈

Yt, t ∈ Tn,dom(t) = ke(n)}. Let T ′ be the fusion limit of the Tn’s. For each n let

g(n) = sup{β(t′) : t′ ∈ Yt, t ∈ Tn,dom(t) = ke(n)}. Then T ′ 
 “ḣ <∗ g”. �

3.2. A Poset for Forcing a Good Scale. Fix a singular κ of cofinality λ. We
define a poset for forcing a good scale.

Definition 3.8. Given some ~κ =
∏
i<λ µi, let G(~κ) be a partial order whose

conditions have the form 〈fβ : β ≤ α〉 for some α < κ+ such that for all β ≤ α:

(1) fβ ∈
∏
i<λ µi;

(2) for all γ < β, fγ <
∗ fβ ;

(3) if cf(β) > λ, then β is a good point with respect to 〈fγ : γ < β〉.
Ordering is by end-extension: if p, q ∈ G(~κ), then p ≤ q if and only if p � dom q =

q. We drop the notation for ~κ when the context is clear.

Proposition 3.9. G(~κ) is λ+-directed closed.

Proof. G(~κ) is tree-like, meaning that p, q ∈ G(~κ) are compatible if and only if
p ≤ q or q ≤ p. Therefore it is enough to show that G(~κ) is λ+-closed. This follows
from the facts that points β with cf(β) < κ are automatically good and that we do
not require points β with cf(β) = κ to be good. �

Proposition 3.10. G(~κ) is (κ+ 1)-strongly strategically closed.

Proof. The play will take the form of a decreasing sequence 〈pξ : ξ ≤ κ〉 in G(~κ).
We will let γξ denote max dom pξ. Let j be large enough that µ < κj .

Player II will play in such a way that for all even successors ξ1 < ξ2 < µ,
pξ1(γξ1)(i) < pξ2(γξ2)(i) for all i ≥ j. If ξ is an even successor and ξ = η + 2
then Player II will choose pξ = pη+1

_〈γη+1 + 1, h〉 such that pη+1(γξ) <
∗ h and

pη(γη)(i) < h(i) for all i ≥ j. If ξ is a limit and cf ξ ≤ cf α, then there is nothing
to prove because G is κ+-closed. If ξ is a limit and cf ξ > cf α and γξ = supη<ξ γη,
then we need to show that γξ is a good point of

⋃
η<ξ pη. This follows from the

Sandwich Argument (Proposition 2.1). If ξ = κ, then we can find a lower bound
by Proposition 3.9. �

Proposition 3.11. G(~κ) preserves cardinals and cofinalities through κ+.
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Proposition 3.12. G(~κ) adds a good scale to ~κ.

Proof. It is clear that the generic object added by G(~κ) is a good pseudo-scale. A
genericity argument shows that it is in fact a scale. �

3.3. The Proof. We will shortly describe a preparatory forcing. It resembles the
one used by Cummings, Foreman, and Magidor for the non-compactness of square
[4] insofar as it follows the proof of the consistency of Martin’s Maximum [7].

First we recall Jensen’s poset for adding �δ.

Definition 3.13. Sδ is the set of conditions p such that:

• dom p = {α ≤ δ : α a limit} for some limit δ < δ+;
• p(α) is a club of order type less than or equal to δ;
• ∀α ∈ dom p, ∀β ∈ lim p(α), p(α) ∩ β ∈ p(β).

For the ordering, p ≤ q if p end-extends q, meaning that max p ≥ max q and
p � (max dom q + 1) = q.

Fact 3.14. Sδ is (δ + 1)-strategically closed.

Fix d : ω → ω \ {0, 1} as in Definition 3.1. Let S :=
∏
n<ω Sℵn and let G =

G(
∏
m even ℵm). We will consider an extension by S×G over the prepared model,

and we will use this product for the preparation.
The preparation works as follows: Let κ be supercompact and fix a Laver function

` : κ → κ such that for every x and ν ≥ | tc(x)|, there is a ν-supercompact
embedding j : V →M with critical point κ such that j(`)(κ) = x.

Now define an iteration I = 〈Iα, J̇α : α < κ〉 with revised countable support as
follows:

(1) Jα is trivial if α is accessible or if 6
Iα “α = ℵ2”.
(2) If Case 1 does not holds and `(α) is an Iα-name for a semi-proper poset of

the form (S×G) ∗Col(ℵ1, (α
+ω+1)V ), or for a poset of the form Col(ℵ1, ν)

where ν > α is regular, then let J̇α = `(α).

(3) If neither Case 1 nor Case 2 hold, then let J̇α be a name for Col(ℵ1,ℵ2).

This iteration is semiproper and has the κ-chain condition. Moreover, a poset
in V [I] is semiproper if and only if it preserves stationary subsets of ω1 (this is by
Lemma 3 from the Martin’s Maximum paper [7]). Now let W = V [I].

Proposition 3.15. For all n < ω, �ℵn holds in W [S×G].

Proof. Easton’s Lemma (which works when closure is replaced by strategic closure)
shows that S preserves cardinals and cofinalities, and it is clear that it adds �ℵn -
sequences for all n < ω. The fact that these remain �ℵn -sequences in the extension
by G follows from the ℵω+1-distributivity of G. �

Proposition 3.16. In W [S×G], there is a good scale on
∏
m even ℵm.

Proof. This follows by Proposition 3.10 and Proposition 3.12. �

Most of the work here consists of the following:

Lemma 3.17. In W [S×G], there is a bad (pseudo-)scale on
∏
m odd ℵm.

Proof. Fix a κ+ω+1-supercompact embedding j : V → M . Let I be I-generic over
V , let G1 be S-generic over V , and let G2 be G-generic over V [I][G1]. For the first
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part of the proof, we will show that there is an extension of W [S × G] in which
j : V →M can be lifted to j : V [I][S×G]→M [j(I)][j(S)× j(G)].

We perform the lift in stages, and the first is to get a lift with domain V [I].
We know that V [I] |= “(S×G) ∗ P is semiproper” (in this model this is equivalent
to preserving stationary subsets of ω1). Therefore, by elementarity, we can see
that j(I) factors as I ∗ (S × G) ∗ P ∗ Col(ℵ1,ℵWω+1) ∗ I′ where I′ is semiproper. Let
(G1×G2)∗H∗K1∗K2 be a generic for j(I)/I (so K1 is the generic with the indicated
Lévy collapse component). Silver’s classical lifting argument (see [2]) gives us an
embedding j : V [I]→M [I ∗ (G1 ×G2) ∗H ∗K1 ∗K2] = M [j(I)].

To lift j to have domain V [I][G1], we use a master condition argument. Since
M [j(I)] |= “ cf(ℵWn ) = ω” for all n < ω, there are cofinal sets An ⊂ j”ℵWn in
M [j(I)] of order-type ω. We define s̄ : n 7→ (

⋃
s∈G1

j”s(n))_〈j”ℵWn , An〉, and we
can see that s̄ is a condition because the coherence clause of Definition 3.13 holds
vacuously. This gives us j : V [I][G1]→M [j(I)][j(G1)].

Finally, we need to lift j to have domain V [I][G1][G2]. Here we use a similar mas-
ter condition argument. Let ν = (κ+ω+1)V and let ρ = sup j”ν. Observe that ρ is an
ordinal of cardinality and cofinality ℵ1 in the modelM [I][G1][G2][H][K1][K2][L1][L2]
because H ∗K1 ∗K2 ∗ L1 ∗ L2 is a generic for a semi-proper forcing and we have
M [I][G1][G2][H][K1] |= “|ν| = ℵ1, cf(ν) = ℵ1”, and this is preserved when adjoin-

ing K2. Let p̄ =
⋃
p∈G2

j”p = j(~f). By Lemma 3.6, the generic function b added

by P is an exact upper bound of ~f , therefore {j(ξ) : ξ ∈ b} is an exact upper bound

of j(~f) � ρ, so ρ is a good point of j(~f), hence p̄ is a master condition for j”G2.
This completes the lifting argument.

Now that we have lifted the embedding, we will use it to show that there is a bad
pseudo-scale—in fact, that any pseudo-scale on

∏
m odd ℵVm is bad in V [I][G1][G2].

In this model, let ~f be a pseudo-scale on
∏
m odd ℵVm and let C be a club in ℵω+1.

We have ρ ∈ j(C) by elementarity. We will show that M [j(I)][j(G1)][j(G2)] |= “ρ

is a bad point of j(~f)”, from which the lemma will follow by elementarity.
We use the argument from the crux of Krueger’s construction. In the model

M [I][G1][G2][H][K1], we let A ⊆ ρ be a cofinal set of order-type ℵ1. Choose sets
Sn cofinal in ℵWn of order-type ω that are added by the generic object of P. By
Lemma 3.7, every function h ∈ M [I][G1][G2][H] in

∏
m odd Sm is bounded by a

function in ~f , and the converse also holds by a genericity argument. In other

words, ~f is cofinally interleaved with functions from
∏
m odd Sm. This remains

true in M [I][G1][G2][H][K1] by countable closure of the Lévy collapse. Working in
M [I][G1][G2][H][K1], let A′ ⊂ A be cofinal such that for all α, β ∈ A′ with α < β,

there is some h ∈
∏
m odd Sm with f∗α <

∗ h <∗ f∗β . If ρ were a good point of j(~f)

in M [j(I)][j(G1)][j(G2)], we could apply Proposition 2.1 to A′ to find a cofinal
B ⊆ j”A′ witnessing goodness, which means that if A′′ = {α : j(α) ∈ B}, then
〈fα(i) : α ∈ A′′〉 is strictly increasing for large i. But this contradicts the fact that
the Sn’s are countable and cofinally interleaved with the fα’s. �

This finishes the proof of Theorem 1.2. We conclude with the following:

Question 1. Suppose that κ is a singular strong limit of uncountable cofinality λ
such that S := {δ < κ : �∗δ holds} is stationary and of order-type λ. Does

∏
δ∈S δ

+

carry a good pseudo-scale?
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By Theorem 1.1, this question is almost equivalent (modulo a generalization and
a strong limit assumption) to the question of Golshani mentioned above: a positive
answer would mean that these hypotheses imply �∗κ, and a negative answer would
mean that �∗κ consistently fails in conjunction with these hypotheses.
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