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Abstract. We introduce a forcing that adds a □(ℵ2,ℵ0)-sequence with
countable conditions under CH. Assuming the consistency of a weakly
compact cardinal, we can find a forcing extension by our new poset in
which both □(ℵ2, <ℵ0) and □ℵ1,ℵ0 fail in the forcing extension.

1. Introduction

The tension between the stationary reflection principles of large cardinals
and the fine-structural combinatorics that hold in canonical inner models is a
prominent theme in set theory. In particular, variations of Jensen’s principle
□κ, which holds for all cardinals κ in Gödel’s Constructible Universe L,
have been studied widely. The construction of new models realizing some
compatibility between large cardinal properties and square properties can
help us develop a more vivid picture of the individual cardinals and their
relationships to one another.

The principle □κ and its relatives are known as square principles. Each
such principle asserts that there exists a coherent sequence C = ⟨Cα : α < λ⟩
where Cα is a set of closed unbounded sets in α, and that C does not have
a thread, meaning that there is no club D ⊆ λ such that D ∩ α ∈ Cα for all
limit points α ∈ D. Square principles of the form □µ,κ assert the existence
of such a C of length µ+ (notice the discrepancy in notation) in which the
members of the Cα’s have order-type bounded by µ, which serves as the
reason why there cannot be a thread. On the other hand, square principles
of the form □(µ+, κ) assert the existence of such a C of length µ+ where the
non-existence of the thread is simply declared outright. The consequences
of this distinction are significant for this paper.

Although a varieties of square principles have been studied thoroughly,
somewhat less is known about the varieties of forcing extensions in which
certain square principles hold. This paper will follow a strain of research hav-
ing to do with adding square sequences of length µ+ with forcings consisting
of conditions of cardinality < µ. The poset introduced here adds a□(ℵ2,ℵ0)-
sequence with countable conditions. This is different from the conventional
way of forcing □(µ+, κ)-sequences, which uses conditions of cardinality µ.
This approach was introduced by Jensen and studied thoroughly by Cum-
mings, Foreman, and Magidor. We will refer to this as Jensen’s method for
forcing square sequences, since we will have reason to compare and contrast
it with the approach used here, especially regarding the behavior of the
complementary threading forcing.

Key words and phrases. Forcing, large cardinals.
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2 M. LEVINE

The idea of the forcing described in this paper is roughly based on Baum-
gartner’s forcing to add a club to ℵ1 with finite sequences, except that we
use its generalization to ℵ2, and we crucially use a presentation that is due
to Abraham [1]. More precisely, one of the main hurdles for adding a new
object of size ℵ2 with countable conditions is finding a way to preserve
ℵ2 knowing that that new ℵ1-sequences will be added. In our case we use
elementary submodels to guarantee preservation of ℵ2. This use of elemen-
tary submodels is alluded to by Mitchell when he discusses the options for
adding a new closed unbounded set to ℵ2 in terms of possibilities for the
sizes of conditions [9]. It also distinguishes the forcing presented in this pa-
per from the Shelah-Stanley poset for adding □ℵ1 with countable conditions,
which uses a chain condition to preserve the cardinal that is turned in to ℵ2

[12]. (The Shelah-Stanley poset adds a strictly stronger square sequence as
well.) The technical difficulty comes mostly in showing that the new forcing
is countably closed, or to be more precise, that it has a dense countably
closed subset. This property also contrasts the new forcing with the forc-
ings for adding □ℵ1 using finite conditions originally used by Dolinar and
Džamonja [4] and later streamlined by Neeman [11] since those cannot be
countably closed. Above all, the motivation for the work here is to provide
a new and distinct model in which a much-studied combinatorial principle
holds.

Theorem 1. If V |= CH then there is a forcing S consisting of countable
conditions such that V [S] |= □(ℵ2,ℵ0). Moreover, if W |= “κ is weakly
compact”, then W [Col(ℵ1, < κ)][S] |= ¬□(ℵ2, < ℵ0) ∧ ¬□ℵ1,ℵ0.

We expect that the construction presented in this paper generalizes to
higher cardinals to get a □(κ++, κ)-sequence under the assumption that
2κ = κ+. The assumption of a weakly compact cardinal is optimal because
work of Jensen and Todorčević shows that this is required to make □(κ, 1)
fail for regular κ [13].

This paper is organized as follows: The remainder of the introduction
will cover background. We will introduce S in the second section and show
that it adds a □(ℵ2,ℵ0)-sequence. The third section will introduce the new
threading forcing T and show how it can be used with large cardinals to
make stronger square principles fail.

We assume familiarity with the technique of forcing [7]. As for our con-
ventions: Given a set of ordinals X, Lim(X) is the set of limit ordinals in
X, lim(X) = {α ∈ X : X ∩ α is unbounded}, lim+(X) = {α ≤ sup(X) :
X ∩α is unbounded}, and j[X] = {j(α) : α ∈ X} if j is a function. We also
let ot(X) denote the order-type ofX, andX∩cof(τ) = {α ∈ X : cf(α) = τ}.
If P is a forcing poset and p, q ∈ P, then p ≤ q means that p has more infor-
mation than q. If we say that P is κ-distributive for a regular κ, we mean
that P does not add new functions f : λ → ON for λ < κ, and when we say
that P is κ-closed, we mean that it is closed under ≤P-decreasing sequences
of length λ for all λ < κ. The notation V [P] will refer to an extension by an

unspecified generic. When depicting an iteration P0 ∗ Ṗ1, we will often drop
the dot and write P0 ∗ P1.
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1.1. Definitions of Squares. First we define square principles of the form
□(λ, κ). These are examples of incompactness principles, because they imply
the non-existence of an object that appears to be approximated, namely a
thread.1

Definition 2. Let κ and λ be regular cardinals such that κ < λ. Then ⟨Cα :
α ∈ Lim(λ)⟩ is a □(λ, κ)-sequence if the following hold for all α ∈ Lim(λ):

(1) Cα consists of clubs in α.
(2) 1 ≤ |Cα| ≤ κ.
(3) For all C ∈ Cα and all β ∈ lim(C), C ∩ β ∈ Cβ.
(4) There is no club D ⊂ λ such that for all α ∈ lim(D), D ∩ α ∈ Cα.
If there is a □(λ, κ)-sequence, then we say that □(λ, κ) holds. If V |= “C⃗

is a □(λ, κ) sequence” and W ⊃ V is a model containing some D such that

D ∩ α ∈ Cα for all α ∈ lim(D), then we say that D threads C⃗.

Definition 3. Let κ and µ be cardinals. Then ⟨Cα : α ∈ Lim(µ+)⟩ is a
□µ,κ-sequence if is a □(µ+, κ)-sequence, and moreover for all α ∈ Lim(µ+)
and C ∈ Cα, otC ≤ µ.

Remark 4. If C is a □µ,κ-sequence, then there is no D ⊂ µ+ such that for
all α ∈ lim(D), D∩α ∈ Cα. (Hence point (4) from the definition of □(λ, κ)-
sequences is implied.) This is because if γ where the (κ + ω)th point of D,
then D ∩ γ ∈ Cγ has an order-type larger than κ.

Definition 5. If C is a □(λ, κ)-sequence, we say that a poset P threads C
if P forces that there is a thread of C.

1.2. Elementary Submodels and Generic Conditions. In this sub-
section we will outline the basic arguments we use to preserve ℵ2. In this
regard, there are a couple of important conventions we will use:

• In the context of discussing a poset P, we will refer to a regular car-
dinal as “sufficiently large” when H(Θ) contains enough information
about P for the argument at hand. In this paper we mean that H(Θ)
contains P and all of its antichains. More generally, we will refer to a
structure K |= ZFC−Powerset as “sufficiently rich” when it contains
P and its antichains.

• Given a poset P and a sufficiently rich structureK, we will refer to an
elementary submodel M ≺ K as basic if P ∈ M , |M | = ℵ1, M∩ℵ2 ∈
ℵ2, and Mω ⊆ M , i.e. M is closed under countable sequences. This
usage is specific to this paper because we will use it frequently.

Proposition 6. Suppose CH holds, |X| = ℵ1, and K is a sufficiently rich
structure with X,ℵ2 ∈ K. Then there is a basic model M ≺ K such that
X ⊂ M .

Proof. Let M0 ≺ K be an elementary submodel of cardinality ℵ1 such that
X ⊂ M0. Then take a chain ⟨Mi : i < ℵ1⟩ of ℵ1-sized elementary submodels

1See a survey of Cummings for background on square principles of the form □µ,κ and
stationary reflection [2].
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of K such that for all i < ℵ1, sup(Mi ∩ ℵ2) ⊆ Mi+1, M
ω
i ⊆ Mi+1 (this

is where we use CH), and such that there is continuity in the sense that
Mi =

⋃
j<iMj for all limits i < ℵ1. Then let M =

⋃
i<ℵ1

Mi. □

Definition 7. Let P be a poset, let K be a sufficiently rich structure, and
let M ≺ K such that P ∈ M .

• A condition q is (M,P)-generic if for every maximal antichain A ∈
M (such that A ⊆ P), for all q′ ≤ q, there is some q′′ ≤ q′ such
that q′′ ≤ p for some p ∈ A ∩M . Equivalently, q is (M,P)-generic if
q ⊩ “Ġ ∩M is P ∩M -generic over M” [7].

• A condition q is strongly (M,P)-generic if for all q′ ≤ q, there is some
p ∈ P∩M such that for every p′ ≤ p with p′ ∈ P∩M , there is some
q′′ ≤ q′ such that q′′ ≤ p′. Equivalently, q is strongly (M,P)-generic
if q ⊩ “Ġ ∩M is P ∩M -generic over the ground model V ” [10].

It is clear that all strongly (M,P)-generic conditions are (M,P)-generic
for sufficiently rich structures. We distinguish between these two types of
generic conditions for the sake of some remarks that we will make below.

Proposition 8. Suppose P is a poset, K is a sufficiently rich structure, and
M ≺ K with P ∈ M . Suppose q is (M,P)-generic and G is P-generic over
V with q ∈ G. Then the following hold:

(1) M [G] ≺ K[G].
(2) V ∩M [G] = M .

(3) If ḟ ∈ M is such that ⊩P “ḟ : κ̌1 → κ̌2” where κ1 ⊂ M and κ2 ∈ M ,

then range(ḟ [G]) ⊂ M .

Proof. These are standard arguments,2 so we will prove only (3) since (1)
and (2) use the same trick. Work in V and let α ∈ κ1. Let A ∈ M be a

maximal antichain consisting of conditions deciding ḟ(α̌). By elementarity
there is such an A ∈ M . Given some q′ ≤ q, let q′′ ≤ q′ be below some p ∈
A∩M using the fact that q is an (M,P)-generic condition. By elementarity,

p ⊩ “ḟ(α̌) = β̌ for some β ∈ M , so the same information is forced by q′′. □

Definition 9. Suppose P ∈ M ≺ K for K sufficiently rich. We say that
M has generic conditions for P (resp. strongly generic conditions) if for all
p ∈ P∩M , there is some q ≤ p such that q is (M,P)-generic (resp. strongly
(M,P)-generic).

Proposition 10. Let M ≺ K be a basic elementary submodel of a suf-
ficiently rich structure such that M has generic conditions for P. Then P
preserves ℵ2.

Proof. Working in V , we have ℵ2 ∈ M by elementarity and ℵ1 ⊂ M by
Mω ⊂ M . M would contain a P-name ḟ for a supposed collapsing function
f : ℵV

1 → ℵV
2 by elementarity. Apply Proposition 8. □

2See the chapter on proper forcing in Jech [7].
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2. Defining the Main Poset

The goal of this section is to introduce our poset for adding a □(ℵ2,ℵ0)-
sequence with countable conditions.

Definition 11. Let S be the set of (⟨α, x⟩, [β, γ]) such that α < ℵ2 is a
limit ordinal, x ∈ ω, and [β, γ] is a closed interval of ordinals such that
−1 ≤ β ≤ γ < α.3 Define S to be the set of s ⊂ S such that the following
hold:

(1) The set s is countable.
(2) If (⟨α, x⟩, [β, γ]), (⟨α, x⟩, [β′, γ′]) ∈ s, then either β = β′ or [β, γ] ∩

[β′, γ′] = ∅.
(3) If cf(α) = ω1, then for all x, y ∈ ω and β, γ < α, (⟨α, x⟩, [β, γ]) ∈ s

if and only if (⟨α, y⟩, [β, γ]) ∈ s.
(4) If {(⟨α, x⟩, [βi, γi]) : i < ω} ⊆ s and β∗ = supi<ω βi < α, then it

follows that (⟨α, x⟩, [β∗, γ∗]) ∈ s for some γ∗.
(5) If {(⟨αi, xi⟩, [βi, γi]) : i < ω} ⊂ s and α∗ = supi<ω αi, then it follows

that (⟨α∗, y⟩, [β, γ]) ∈ s for some y, β, γ.
(6) If (⟨α, x⟩, [β̄, γ̄]) ∈ s and cf(α) = ω, then {β < α : ∃γ, (⟨α, x⟩, [β, γ]) ∈

s} is unbounded in α.
(7) If (⟨α, x⟩, [β, γ]) ∈ s and cf(β) = ω, then one of the following holds:

(a) there exists a sequence of ordinals ⟨βi : i < ω⟩ converging to β
such that ∀i < ω, ∃γi, (⟨α, x⟩, [βi, γi]) ∈ s.

(b) there is some β̄ < β and some sequence of ordinals ⟨γi : i < ω⟩
converging to β such that ∀i < ω, (⟨α, x⟩, [β̄, γi]) ∈ s.

(8) Suppose that (⟨α, x⟩, [β, γ]) ∈ s and either:
• cf(β) = ω1 or else
• cf(β) = ω and {β′ < β : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s} is unbounded
in β.

Then there is some y ∈ ω such that for all β′, γ′ < β, (⟨α, x⟩, [β′, γ′]) ∈
s if and only if (⟨β, y⟩, [β′, γ′]) ∈ s.

Suppose s ∈ S, β, α < ℵ2, and x, y ∈ ω. We write that Coh(s, α, x, β, y)
holds if both of the following hold:

(i) (⟨α, x⟩, [β, γ]) ∈ s and either
• cf(β) = ω1 or else
• cf(β) = ω and the set {β′ < β : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s} is
unbounded in β;

(ii) for all β′ ≤ γ′ < β, (⟨α, x⟩, [β′, γ′]) ∈ s if and only if (⟨β, y⟩, [β′, γ′]) ∈
s.

The ordering is defined so that s′ ≤S s holds if and only if:

(1) s′ ⊇ s.
(2) If Coh(s, α, x, β, y) holds then Coh(s′, α, x, β, y) holds.

The second clause of the definition of ≤S will be used in the verification
of Clause 8 for a condition constructed in the proof of Lemma 17.

We will also use the following conventions:

3We are abusing the term “ordinal” in the case that β = −1.
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• An element of S is called a bit.
• If s ∈ S, the set {α < ℵ2 : ∃x, β, γ, (⟨α, x⟩, [β, γ]) ∈ s} is called the
domain of s and is abbreviated dom(s).

• If s ∈ S, then dom(s) has a maximal element γ, which will be denoted
max(s).

• For ⟨α, x⟩ ∈ Lim(ℵ2)× ω, we let

Ċx
α := {(β̌, s) : β ≥ 0,∃γ, (⟨α, x⟩, [β, γ]) ∈ s ∈ S}.

• We sometimes use the terminology of coherence before we have ver-
ified that some s ⊂ S is in fact a condition in S. The second point
of the definition of ≤S states that s

′ ≤S s means that if s forces that
y witnesses coherence of Ċx

α at β, then so does s′.
• If δ ∈ (ℵ2∩cof(ω1))∪{ℵ2} and s ∈ S, we write s↾δ := {(⟨α, x⟩, [β, γ]) ∈
s : α < δ}, noting that s↾δ ∈ S.

• For s ∈ S, out s = {β ≥ 0 : ∃α, x, γ, (⟨α, x⟩, [β, γ]) ∈ s, s ̸⊩
“ ot(Ċx

α) = ω”}.
We can describe an intuition for Definition 11 here. If (⟨α, x⟩, [β, γ]) ∈

s ∈ S and β ≥ 0, then this indicates that s forces β to be a point in Ċx
α and

also forces “Ċx
α ∩ (β, γ] = ∅”. Note that x is just a placeholder label here.

Clause 1 and Clause 2 should be thought of in association with Abraham’s
presentation of Baumgartner’s forcing for adding a club in ℵ1 with finite
conditions [1], but generalized to ℵ2. Clause 3 asserts that if cf(α) = ω1,
then the set of Ċx

α for x ∈ ω is in fact a singleton. Clause 4 ensures that
the clubs in the □(ℵ2,ℵ0)-sequence are closed. Clause 5 ensures that we
will be able to extend any condition. Clause 6 ensures that the clubs in
ordinals α of countable cofinality are unbounded. Clause 7 in part ensures
that the question of whether β is a limit point of its club is determined
by the condition, so that in closure arguments we only need to deal with
freshly added limits of β’s. Finally, Clause 8 ensures that the generic object
added by S is a coherent sequence. The second point of the definition of ≤S
will be used in the proof of Lemma 17 below.

The next steps are to establish the facts about S that do not require
countable closure.

Proposition 12. Given s ∈ S, α ∈ dom s, and x ∈ ω, the following are
equivalent:

(1) s ⊩ “β ∈ lim Ċx
α”.

(2) Either:
(a) cf(β) = ω1 and (⟨α, x⟩, [β, γ]) ∈ s for some γ, or else
(b) there are sequences ⟨βi : i < ω⟩ and ⟨γi : i < ω⟩ converging to

β such that (⟨α, x⟩, [βi, γi]) ∈ s for all i < ω.

Proof. (2) =⇒ (1): The implication is clear if (b) holds, so assume that (a)
holds.

We consider the case cf(α) = ω. Suppose s′ ≤ s (we are now suppressing
the notation ≤S) and β̄ < β, where we want to show that there is some
s′′ ≤ s′ such that s′′ ⊩ “[β̄, β) ∩ Ċx

α ̸= ∅”.
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Let

β∗ = sup{β′ < β : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s′},

and

γ∗ = sup{γ′ < β : ∃β′, (⟨α, x⟩, [β′, γ′]) ∈ s′}.

so β∗ ≤ γ∗ < β by the fact that s′ is countable and cf(β) = ω1. Moreover,
β∗ ∈ dom(s′) by Clause 4 and Clause 8 together.

If β̄ ≤ β∗ then we are done. Suppose otherwise. Since our goal is to
obtain s′′ such that s′′ ⊩ “[β̄, β) ∩ Ċx

α ̸= ∅”, we can assume a larger value
of β̄ without loss of generality. Therefore, we assume that β̄ ≥ γ∗. Then we
let

s′′ = s′ ∪ {(⟨α, x⟩, [β̄ + 1, β̄ + 1])}
{(⟨α̃, y⟩, [β̄+1, β̄+1])) : Coh(s′, α̃, y, α, x) holds or Coh(s′, α, x, α̃, y) holds}.

Let us argue that s′′ is a condition by going through the clauses.
Clause 1: This is immediate since we are only adding countably many

bits.
Clause 2: We do not need to consider pairs of bits that are taken from s′.

The clause clearly holds if both bits under consideration are the newly-added
ones. The remaining cases are where one bit takes the form (⟨α, x⟩, [β′, γ′]) ∈
s′ and the other bit is one of the new ones, so the clause holds because we
know that β∗ ≤ γ∗ ≤ β̄.

Clause 3: This holds vacuously since cf(α) = ω.
Clause 4: Observe that if {(⟨α′, x′⟩, [βi, γi]) : i < ω} ⊆ s′′, then we can

verify the clause by considering each ⟨α′, x′⟩ as a sub-case and noting that
we have added finitely many bits for each such sub-case.

Clause 5: This holds for the same reason as Clause 4.
Clause 6: This holds because s′ is a condition and

{⟨α′, x′⟩ : ∃β, γ, (⟨α′, x′⟩, [β, γ]) ∈ s′} =

= {⟨α′, x′⟩ : ∃β, γ, (⟨α′, x′⟩, [β, γ]) ∈ s′′}.

Clause 7: The notable case is that in which we consider a bit of the
form (⟨α′, x′⟩, [β′, γ′]) ∈ s′′ and β′ = β̄ + 1, in which case the clause holds
vacuously. The other cases follow from the fact that s′ is a condition.

Clause 8: This clause holds because we dealt with all α̃, y for which
Coh(s′, α̃, y, α, x) holds, and we did not add new instances in which the
hypothesis of Clause 8 holds.

Given that s′′ is a condition, it is clear that s′′ ⊩ “[β̄, β) ∩ Ċx
α ̸= ∅”.

We also need to have s′′ ≤S s′. We have s′′ ⊇ s′, so we then need to
consider the coherence clause for ≤S. This holds for reasons similar to the
fact that Clause 8 holds in that there are no new instances where condition
(i) holds.

The only substantive difference in the case where cf(α) = ω1 is for Clause
3, which holds because it is explicitly taken care of for all y ∈ ω. Using the
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notation from the other case, we use

s′′ = s′ ∪ {(⟨α, x⟩, [β̄ + 1, β̄ + 1]) : x ∈ ω}
{(⟨α̃, y⟩, [β̄ + 1, β̄ + 1])) : x ∈ ω,Coh(s′, α̃, y, α, x) holds or

Coh(s′, α, x, α̃, y) holds}.

The argument that s′′ ≤S s
′ is also analogous in this case.

(1) =⇒ (2): Assume that β is a limit ordinal and that (2) does not hold.
First suppose that cf(α) = ω. Let

β∗ = sup{β′ : β′ < β, ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s′}

if this set is not empty, otherwise β∗ = 0. Then the assumption that (2)
does not hold implies that β∗ < β, either by Clause 4 or by cf(β) = ω1.

If there is no γ such that (⟨α, x⟩, [β, γ]) ∈ s, then we let

s′ = s ∪ {(⟨α, x⟩, [β∗, β])} ∪ {(⟨α̃, y⟩, [β∗, β]) : Coh(s′, α̃, y, α, x) holds or

Coh(s′, α, x, α̃, y) holds}.

The argument that s′ is a condition and that s′ ≤S s is similar to the
backwards direction of the proof of this proposition, but it is strictly easier
since we are only adding one bit. Then we see that s′ ⊩ “Ċx

α ∩ (β∗, β] = ∅”
and hence s′ ⊩ “β /∈ lim Ċx

α”.
If there is some γ such that (⟨α, x⟩, [β, γ]) ∈ s, then cf(β) = ω (since we

are assuming (2) does not hold). Then case (b) of Clause 7 holds, so there
is some β̄ < β and a sequence of γi’s such that (⟨α, x⟩, [β̄, γi]) ∈ s for all
i < ω. Hence s ⊩ “Ċx

α ∩ (β̄, β) = ∅” and therefore s ⊩ “β /∈ lim Ċx
α”.

An analogous argument applies for the case that cf(α) = ω1, i.e. in
the sense that we need only alter the argument to ensure that Clause 3
holds. □

Proposition 13. The name Ċx
α is forced to be a closed unbounded set in α

for all limit ordinals α < ℵ2 and all x < ω.

Proof. First we show that the Ċx
α’s are forced to be closed. (We will prove

nonemptiness when we prove unboundedness.) If there are β′ and γ′ with
(⟨α, x⟩, [β′, γ′]) ∈ s̄, then s̄ forces Ċx

α to be closed under countable sequences
by Clause 4. Closure under uncountable sequences follows from Proposi-
tion 12 since if s ∈ S forces β /∈ lim Ċx

α for some β with cf(β) = ω1, then s
forces β /∈ Ċx

α.
Most of the proof then consists of showing that the Ċx

α’s are forced to
be unbounded and in particular nonempty.

Consider the case of α with cf(α) = ω. Fix some s̄ ∈ S. If there are β and
γ with (⟨α, x⟩, [β, γ]) ∈ s̄, then s̄ forces Ċx

α to be unbounded by Clause 6.
Now suppose there are no β and γ with (⟨α, x⟩, [β, γ]) ∈ s̄. Take a se-

quence ⟨δi : i < ω⟩ converging to α where δ0 = 0 and δi is a successor
ordinal for i > 0. Then let s := s̄ ∪ {(⟨α, x⟩, [δi, δi+1 − 1]) : x ∈ X, i < ω}.
As long as we show that s is a condition such that s ≤S s̄, it is clear that s
forces Ċx

α to be unbounded and (vacuously) closed in α.
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We argue that s is a condition, going through the less trivial clauses:
Clause 2: The intervals [δi, δi+1 − 1] are pairwise disjoint.
Clause 4: This closure holds vacuously when the new bits are considered.
Clause 6: The δi’s are unbounded in α.
Clause 8: The only notable case is where s̄ ⊩ “α ∈ lim Ċx′

α′” for some
⟨α′, x′⟩, but in this case we would already have Coh(s̄, α′, x′, α, y) for some
y < ω.

The fact that s′ ≤S s is quite immediate given the argument for Clause 8.
Now we consider the case of α with cf(α) = ω1. Fix x < ω and β̄ < α

and some s̄ ∈ S such that for some β′, γ′, (⟨α, x⟩, [β′, γ′]) ∈ s̄.
Let

β∗ = sup{β′ < α : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s̄},
so β∗ < α by the fact that s′ is countable and cf(β) = ω1. If β

∗ ≥ β̄ then
we are done. (We can also allow the set to be empty and for β∗ to be 0.)
Otherwise, we let

γ∗ = sup{γ′ < α : ∃β′, (⟨α, x⟩, [β′, γ′]) ∈ s̄},
and we assume without loss of generality that γ∗ ≤ β̄.

Now let

s = s̄ ∪ {(⟨α, y⟩, [β̄ + 1, β̄ + 1]) : y < ω}∪
{(⟨α̃, x̃⟩, [β̄+1, β̄+1]) : Coh(s̄, α̃, x̃, α, y) holds or Coh(s̄, α, y, α̃, x̃) holds}.

The proof that s is a condition such that s ≤S s̄ is very similar to the
first part of the proof of Proposition 12. From there it is immediate that
s ⊩ “Ċx

α ∩ (β̄, α) ̸= ∅”. □

Now we will work towards proving that a dense subset of S is countably
closed. First we define the subset:

Definition 14. We say that s ∈ S is complete if the following holds:
If (⟨α, x⟩, [β, γ]) ∈ s and there are α′ < α and some x′ ∈ ω such that
(⟨α′, x′⟩, [β′, γ′]) ∈ s, then:

• there are β′′ ≤ α′ and γ′′ ≥ α′ such that (⟨α, x⟩, [β′′, γ′′]) ∈ s,
• there are β′′′ ≤ β′ and γ′′′ ≥ β′ such that (⟨α, x⟩, [β′′′, γ′′′]) ∈ s.

In other words s decides α′ ∈ Ċx
α and β′ ∈ Ċx

α either positively or negatively.

Proposition 15. The set of complete conditions is dense in S. More pre-
cisely, if s̄ ∈ S, then there is a complete s ≤S s̄ such that dom s = dom s̄.

Proof. Fix s̄ ∈ S. For all α ∈ dom s̄ and x < ω, define

B = {β : ∃α, x, γ, (⟨α, x⟩, [β, γ]) ∈ s̄} and A = dom s̄

and
B⟨α,x⟩ = {β : ∃γ, (⟨α, x⟩, [β, γ]) ∈ s̄}.

If γ ∈ A ∪ B and γ < α, let βγ
⟨α,x⟩ = sup(B⟨α,x⟩ ∩ γ). (In particular, there

is some γ′ such that (⟨α, x⟩, [βγ
⟨α,x⟩, γ

′]) ∈ s̄ and there are no β̃, γ̃’s with

βγ
⟨α,x⟩ < β̃ ≤ γ and (⟨α, x⟩, [β̃, γ̃]) ∈ s̄. It is also possible that βγ

⟨α,x⟩ = γ.)
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Let

s = s̄ ∪ {(⟨α, x⟩, [βγ
⟨α,x⟩, γ]) :∃β

′, γ′, (⟨α, x⟩, [β′, γ′]) ∈ s̄,

γ ∈ A ∪B, γ < α, α ∈ dom(s̄)}.
We can see that s is complete by construction. To the extent that we are

adding new information, we are only forcing ordinals not to be in the Ċx
α’s.

Now we verify that s is a condition.
Clause 1: Immediate.
Clause 2: Fix α and x for consideration. Suppose (⟨α, x⟩, [β, γ]) ∈ s and

(⟨α, x⟩, [β′, γ′]) ∈ s. If they are both in s̄ then we are done. If they are both
in s\ s̄ with β ≤ β′, then by definition there are no points in B⟨α,x⟩ between
β and γ, so either β = β′ or γ < β′. If without loss of generality the first
of these bits is in s̄ and the other is in s \ s̄ with β ≤ β′, then we know
that there are no elements of B⟨α,x⟩ in the interval (β, γ], so either β = β′

or γ < β′. If we assume that β′ ≤ β the argument is similar.
Clause 3: This property is inherited by s from s̄ because the same changes

are made to every Ċx
α for each x < ω.

Clause 4: We have for all α and x that

{β : ∃γ, (⟨α, x⟩, [β, γ]) ∈ s} = {β : ∃γ, (⟨α, x⟩, [β, γ]) ∈ s̄}
and therefore the fact that Clause 4 holds for s follows from the fact that
it holds for s̄.

Clause 5: This holds because dom s̄ = dom s and moreover the x’s for
which Ċx

α is defined are the same.
Clause 6: Holds for the same reason as Clause 5.
Clause 7: Holds for the same reason as Clause 4.
Clause 8: Fix ⟨α, x⟩. Suppose first that cf(β) = ω and that the set

{β′ : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s} is unbounded in β. Then it follows that {β′ :
∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s̄} is unbounded in β and therefore Coh(s̄, α, x, β, y)
holds for some y < ω. But if we write

B′ = {β′ < β : ∃γ′, (⟨β, y⟩, [β′, γ′]) ∈ s̄}
then B ∩ β = B′. Moreover, B⟨α,x⟩ ∩ β = B⟨β,y⟩. Therefore, given how the
bits in s̄ are defined, we have Coh(s, α, x, β, y). The case where cf(β) = ω1

is analogous.
Finally, see that s ≤S s̄, which follows because clearly s ⊇ s̄ and by an

argument analogous to the argument for Clause 8. □

The proof that the set of complete conditions in S is countably closed
is similar to the analogous proof for Jensen’s method of forcing square se-
quences in the sense that ω-sequences can vacuously top off lower bounds
of countable sequences. However, it is different in the sense that new limit
points of the Ċx

α’s are added. Because of this complication, we introduce
some additional terminology.

Definition 16. Let s⃗ = ⟨si : i < ω⟩ be an ≤S-decreasing sequence of
conditions.

• Let ed(s⃗) =
⋃

i<ω dom(si) be the existing domain.
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• Let fd(s⃗) = lim+(ed(s⃗)) \ ed(s⃗) be the fresh domain.
• Let the existing points ep(s⃗) consist of β ∈ ℵ2 such that for some
α ∈ ed, some x ∈ ω, there is some i < ω such that si ⊩ β ∈ limCx

α.
• Suppose β ∈ lim(ℵ2) and α ∈ ed(s⃗) as witnessed by (⟨α, x⟩, [β′, γ′]).
Suppose that:

– β < α and there is no i < ω such that si ⊩ β ∈ limCx
α,

– there are sequences ⟨βn : n < ω⟩ and ⟨γn : n < ω⟩ with supre-
mum β such that ∀n < ω, (⟨α, x⟩, [βn, γn]) ∈

⋃
i<ω si.

Then we let β ∈ fp(s⃗), the set of fresh points, and we say that ⟨α, x⟩
witnesses β ∈ fp(s⃗).

If s̄ is a lower bound of s⃗, then we say that s̄ is parsimonious if:

• dom(s̄) = ed(s⃗) ∪ fd(s⃗) ∪ fp(s⃗);
• for all α ∈ Lim(ℵ2) and x ∈ ω, (⟨α, x⟩, [β, γ]) ∈ s̄ implies either
β ∈ ep(s⃗) ∪ fp(s⃗) or s̄ ⊩ “ ot(Ċx

α) = ω”.

We drop the notation for s⃗ when the context is clear.

Lemma 17. The set of complete conditions in S is countably closed. More-
over, every ≤S-decreasing sequence ⟨si : i < ω⟩ of complete conditions has
a parsimonious lower bound.

Before proving the lemma, we establish the basic relationships between
the sets of points described above.

Proposition 18. Let s⃗ = ⟨si : i < ω⟩ be an ≤S-decreasing sequence of
complete conditions in S.

(1) fd(s⃗), fp(s⃗) ⊂ ℵ2 ∩ cof(ω).
(2) fp(s⃗) ∩ ep(s⃗) = ∅.
(3) If β ∈ fp(s⃗), then there is no i < ω such that si ⊩ β /∈ limCx

α.
(4) fp(s⃗) ∩ ed(s⃗) = ∅.

Proof. (1) and (2) are immediate.
To prove (3), suppose that β ∈ fp(s⃗) is witnessed by ⟨α, x⟩ and ⟨βi :

i < ω⟩ and ⟨γi : i < ω⟩. Suppose for contradiction that there is some
i < ω such that si ⊩ β /∈ limCx

α. Then there are γ1 < β ≤ γ2 such that
(⟨α, x⟩, [γ1, γ2]) ∈ dom si. Suppose that i is large enough that γ1 < βi. Then
this is a contradiction.

The argument that fp(s⃗) ∩ ed(s⃗) = ∅ is analogous: Again, suppose that
β ∈ fp(s⃗) is witnessed by ⟨α, x⟩ and that β ∈ ed(s⃗). But by complete-
ness of si and the fact that β < α, we have some β′ and γ′ such that
(⟨α, x⟩, [β′, γ′]) ∈ si and β′ ≤ β ≤ γ′. But then this contradicts β ∈
fp(s⃗). □

Proof of Lemma 17. Let ⟨si : i < ω⟩ be an ≤S-decreasing sequence of com-
plete conditions in S and fix ed, fd, ep, and fp as in Definition 16. Let
S0 :=

⋃
i<ω si. For each β ∈ fp, let Xβ be the set of pairs ⟨α, x⟩ witnessing

that β ∈ fp. We let

S1 := {(⟨α, x⟩, [β, β]) : α ∈ ed, β ∈ fp, ⟨α, x⟩ ∈ Xβ}.
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For each β ∈ fp, let fβ : ω → Xβ be a surjection. Let

S2 := {(⟨β, x⟩, [β′, γ′]) :β ∈ fp, fβ(x) = ⟨α, y⟩ ∈ Xβ,

(⟨α, y⟩, [β′, γ′]) ∈ S0, γ
′ < β, x ∈ ω}.

Also let

S3 := {(⟨β, x⟩, [β′, β′]) : β′ < β, fp ⊇ {β, β′}, fβ(x) = ⟨α, y⟩ ∈ Xβ ∩Xβ′}.4

For each α ∈ fd \ fp, choose a sequence ⟨δαn : n < ω⟩ of ordinals converging
to α where δα0 = 0 and δαn is a successor ordinal for all n > 0. Let

S4 := {(⟨α, x⟩, [δαn , δαn+1 − 1]) : α ∈ fd \ fp, x ∈ ω, n < ω}.
The lower bound we seek is s := S0 ∪ S1 ∪ S2 ∪ S3 ∪ S4. It is clear that s

is parsimonious as long as it is a lower bound. It remains to argue that s is
a condition and that s ≤S si for all i < ω.

Assuming that s is in fact a condition, it is relatively straightforward
to argue that it is a lower bound: Since we have s ⊇ si for all i < ω, the
first point in the definition of ≤S holds. For the second point, suppose that
Coh(si, α, x, β, y) holds. Then α, β ∈ ed. Since Clause 8 holds for si we
do not need to worry about bits from S0, for which Clause 8 is witnessed
by other bits from S0, and so we only need to consider bits from S1 since
this is the only one of the Sk’s with bits of the form (⟨α∗, x∗⟩, [β∗, γ∗]) with
α∗ ∈ ed. Suppose that (⟨α, x⟩, [β′, β′]) ∈ S1 with β′ < β, i.e. β′ ∈ fp∩β, and
⟨α, x⟩ ∈ Xβ′ . Then ⟨β, y⟩ ∈ Xβ′ as well, so (⟨β, y⟩, [β′, β′]) ∈ S1. The reverse
reasoning in which we start by considering (⟨β, y⟩, [β′, β′]) ∈ S1 also holds.

For proving that s is a condition, we first observe that if (⟨α, x⟩, [β, γ]) ∈
s, then exactly one of the following holds: α ∈ ed, α ∈ fd \ fp, or α ∈ fp.
This is because it follows from the definitions that either α ∈ ed or α ∈ fp,
and we have that α ∈ ed∩ fp = ∅ by Proposition 18. Moreover, exactly one
of the following holds: β ∈ ep or β ∈ fp, also by Proposition 18.

Clause 1: This follows because the Sk’s are each defined from countably
many parameters.

Clause 2: Fix ⟨α, x⟩, [β, γ], and [β′, γ′]. We consider the possible cases:

α ∈ ed, β, β′ ∈ ep: If i is large enough that (⟨α, x⟩, [β, γ]) and (⟨α, x⟩, [β′, γ′])
are in si, then this follows from the fact si is a condition.
α ∈ ed, β ∈ ep, β′ ∈ fp: Then γ′ = β′, so we can assume β < β′ and we
want to show that γ < β′. If this were not the case, then because of the
fact that we have some i < ω with (⟨α, x⟩, [β, γ]) ∈ si, and because ⟨α, x⟩
would witness β′ ∈ fp in this case, it follows that β′ ≤ γ would imply that
β′ /∈ fp, a contradiction.
α ∈ ed, β′, β ∈ fp: Then γ′ = β′ and γ = β, so there is nothing to deal with.
α ∈ fd\fp: Then the clause follows from the fact that the intervals [δαn , δ

α
n+1−

1] are disjoint.
α ∈ fp, β, β′ ∈ ep: Then there is some x̃ ∈ ω and α̃ ∈ ep such that fα(x) =
⟨α̃, x̃⟩. Then (⟨α, x⟩, [β, γ]), (⟨α, x⟩, [β′, γ′]) ∈ S2, and so the fact that we

4This means that if ⟨α, x⟩ witnesses that both β ∈ fp and β′ ∈ fp where β′ < β, we

make sure to put the point β′ in Ċx
β where we will show that Coh(s, α, y, β, x) holds.
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have (⟨α̃, x̃⟩, [β, γ]), (⟨α̃, x̃⟩, [β′, γ′]) ∈ si for large enough i gives us the
clause for this case.
α ∈ fp, β ∈ ep, β′ ∈ fp: We can assume β < β′ since for β ≥ β′, [β′, β′]
is taken. It must be the case that (⟨α, x⟩, [β′, β′]) ∈ S3 as witnessed by
some ⟨α̃, x̃⟩ with fα(x) = ⟨α̃, x̃⟩ and moreover that ⟨α̃, x̃⟩ ∈ Xβ′ . Also
(⟨α, x⟩, [β, γ]) ∈ S2, so there is some i < ω such that (⟨α̃, x̃⟩, [β, γ]) ∈ si.
Then if it were the case that β′ ≤ γ, it would not be the case that ⟨α̃, x̃⟩ ∈
Xβ′ .
α ∈ fp, β, β′ ∈ fp: This is analogous to the case α ∈ ed, β, β′ ∈ fp in the
sense that we only need to consider whether or not β = β′.

Clause 3: If cf(α) = ω1 and α ∈ dom(s̄), then α ∈ ed. Then s̄ inherits
Clause 3 from the fact that the si’s have Clause 3.

Clause 4: If α ∈ fd \ fp this clause holds vacuously. For the other cases,
suppose that {(⟨α, x⟩, [βn, γn]) : n < ω} ⊆ s and β∗ = supn<ω βn < α. We
will subdivide the cases based on the minimal value k for which infinitely
many of these bits are taken from Sk.

Inf. many from S0: Choose i < ω large enough so that (⟨α, x⟩, [βn, γn]) ∈ si
for some n in our infinite set. Then (⟨α, x⟩, [βn, γn]) ∈ si will hold for
infinitely many n. Therefore we can see that either β∗ ∈ ep or β∗ ∈ fp. If
β∗ ∈ ep then we are done. If β∗ ∈ fp, then this is witnessed by ⟨α, x⟩, so
we have (⟨α, x⟩, [β∗, β∗]) ∈ S1 ⊆ s.
Inf. many from S1: Then we have infinitely many (⟨α, x⟩, [βn, βn]) where
⟨α, x⟩ ∈ Xβn . So for each such n < ω there is a sequence βj

n, γ
j
n converging

to βn such that (⟨α, x⟩, [βj
n, γ

j
n]) ∈ S0, so it follows that β∗ ∈ fp and that

⟨α, x⟩ ∈ Xβ∗ . Therefore (⟨α, x⟩, [β∗, β∗]) ∈ S1 ⊆ s.
Inf. many from S2: Then let ⟨α̃, x̃⟩ be such that fα(x) = ⟨α̃, x̃⟩. Then we are
saying that we have infinitely many n < ω such that (⟨α̃, x̃⟩, [βn, γn]) ∈ S0.
Therefore β∗ ∈ fp, as witnessed by ⟨α̃, x̃⟩, and hence (⟨α, x⟩, [β∗, β∗]) ∈
S3 ⊆ s.
Inf. many from S3: Again choose ⟨α̃, x̃⟩ such that fα(x) = ⟨α̃, x̃⟩. We are
saying that we have infinitely many n < ω such that (⟨α̃, x̃⟩, [βn, βn]) ∈ S3

where ⟨α̃, x̃⟩ also witnesses that each βn is in fp. This implies that ⟨α̃, x̃⟩
witnesses that β∗ is in fp. Hence (⟨α, x⟩, [β∗, β∗]) ∈ S3 ⊆ s.
Inf. many from S4: We considered this case at the beginning of our discus-
sion of Clause 4.

Clause 5: Suppose {(⟨αi, xi⟩, [βi, γi]) : i < ω} ⊂ s and α∗ = supi<ω αi.
All possibilities are among the following:

α∗ ∈ ed: Then there is some i < ω such that α∗ ∈ dom si, hence α
∗ ∈ dom s.

α∗ ∈ fd \ fp: Then for all n < ω we have (⟨α∗, x⟩, [δαn , δαn+1 − 1]) ∈ S4 ⊆ s
and so we have α∗ ∈ dom s.
α∗ ∈ fp: Then there is some ⟨α, y⟩ witnessing α∗ ∈ fp and some x such
that fα∗(x) = ⟨α, y⟩. Choose some (⟨α, y⟩, [β, γ]) ∈ S0 with γ < α∗. Then
(⟨α∗, x⟩, [β, γ]) ∈ S2 ⊆ s.

Clause 6: This is clear by inspection.
Clause 7: If α ∈ fd \ fp then the clause holds vacuously.
For the other cases, suppose that (⟨α, x⟩, [β, γ]) ∈ s and cf(β) = ω.
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α ∈ ed, β ∈ ep: Then the clause holds because (⟨α, x⟩, [β, γ]) ∈ si for large
i and si is a condition.
α ∈ ed, β ∈ fp: Then we have (⟨α, x⟩, [β, γ]) ∈ S1 where β = γ and ⟨α, x⟩
witnesses β ∈ fp. Then it follows that case (a) holds.
α ∈ fp, β ∈ ep: In this case we have (⟨α, x⟩, [β, γ]) ∈ S2, meaning that
fα(x) = ⟨α̃, x̃⟩ for some ⟨α̃, x̃⟩ ∈ Xα, and that (⟨α̃, x̃⟩, [β, γ]) ∈ S0. Hence if
i < ω is large enough that (⟨α̃, x̃⟩, [β, γ]) ∈ si, then the clause is witnessed
by the fact that si is a condition and Coh(si, α̃, x̃, α, x) holds.
α ∈ fp, β ∈ fp: In this case we have (⟨α, x⟩, [β, γ]) ∈ S2, meaning that
β = γ, fα(x) = ⟨α̃, x̃⟩, and ⟨α̃, x̃⟩ also witnesses β ∈ fp. Hence there are
βi, γi converging to β such that (⟨α̃, x̃⟩, [βi, γi]) ∈ S0 for i < ω. Therefore
(⟨α, x⟩, [βi, γi]) ∈ S2 for i < ω. This implies that case (a) holds.

Clause 8: Referring to the statement in Definition 11, fix ⟨α, x⟩ and β
such that the hypothesis holds for (⟨α, x⟩, [β, γ]) ∈ s for some γ.

α ∈ fd\fp: Then coherence holds vacuously because there are no limit points
to consider.
α ∈ ed, β ∈ ep: Since β ∈ ep, there is some i < ω such that si ⊩ “β ∈
lim Ċx

α”. Therefore there is some y witnessing that Coh(si, α, x, β, y) holds.
Coh(si′ , α, x, β, y) also holds for i′ ≥ i by the definition of ≤S. This means
that if (⟨α, x⟩, [β′, γ′]) ∈ s for γ′ < β, then there are two possibilities. The
first is that β′ ∈ ep, and hence (⟨α, x⟩, [β′, γ′]) ∈ sj for some j ≥ i, in
which Coh(sj, α, x, β, y) implies that (⟨β, y⟩, [β′, γ′]) ∈ sj ⊆ s. The second
possibility is that β′ ∈ fp. Then it must be the case that (⟨α, x⟩, [β′, γ′]) ∈
S1, meaning that β′ = γ′ and that ⟨α, x⟩ ∈ Xβ′ . Then this plus the fact
that Coh(si, α, x, β, y) holds for large i implies that ⟨β, y⟩ ∈ Xβ′ . Therefore
(⟨β, y⟩, [β′, β′]) ∈ S1.
Now suppose (⟨β, y⟩, [β′, γ′]) ∈ s and consider the same two possibil-

ities. If β′ ∈ ep, then if i is large enough that si ⊩ “β ∈ lim Ċx
α” and

(⟨β, y⟩, [β′, γ′]) ∈ si, then Coh(si, α, x, β, y) implies (⟨α, x⟩, [β′, γ′]) ∈ si. If
β′ ∈ fp then (⟨β, y⟩, [β′, γ′]) ∈ S1, implying β′ = γ′ and ⟨β, y⟩ ∈ Xβ′ , so
⟨α, x⟩ ∈ Xβ′ , hence (⟨α, x⟩, [β′, γ′]) ∈ S1.
α ∈ ed, β ∈ fp: Then ⟨α, x⟩ witnesses β ∈ fp, so let y be such that fβ(y) =
⟨α, x⟩. Then we can argue that Coh(s, α, x, β, y) holds. If (⟨α, x⟩, [β′, γ′]) ∈
s and β′ ∈ ep, then (⟨α, x⟩, [β′, γ′]) ∈ S0, and hence (⟨β, y⟩, [β′, γ′]) ∈ S2.
If (⟨α, x⟩, [β′, γ′]) ∈ s and β′ ∈ fp, then γ′ = β′ and ⟨α, x⟩ ∈ Xβ′ , so
(⟨β, y⟩, [β′, γ′]) ∈ S3. The other inclusion follows the same reasoning.
α ∈ fp, β ∈ ep: Then there is some ⟨α̃, x̃⟩ witnessing α ∈ fp with fα(x) =
⟨α̃, x̃⟩. All bits (⟨α, x⟩, [β, γ]) ∈ s such that β ∈ ep are in S2 and witnessed
by (⟨α̃, x̃⟩, [β, γ]) ∈ S0. Therefore there is some i < ω with si ⊩ “β ∈
lim Ċ x̃

α̃”. Let y be such that Coh(si, α̃, x̃, β, y) holds. We can then argue
that Coh(s, α, x, β, y) holds. Suppose that β′, γ′ < β and (⟨α, x⟩, [β′, γ′]) ∈
s with β′ ∈ ep. Then (⟨α̃, x̃⟩, [β′, γ′]) ∈ S0, so (⟨β, y⟩, [β′, γ′]) ∈ S0. If
instead β′ ∈ fp, then (⟨α, x⟩, [β′, β′]) ∈ S3 and ⟨α̃, x̃⟩ ∈ Xβ′ , which implies
⟨β, y⟩ ∈ Xβ′ , so (⟨β, y⟩, [β′, β′]) ∈ S3. Again, the reverse reasoning applies
if we start with the premise that (⟨β, y⟩, [β′, γ′]) ∈ s.
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α ∈ fp, β ∈ fp: Then (⟨α, x⟩, [β, β]) ∈ S3, so there is some ⟨α̃, x̃⟩ ∈ Xα ∩Xβ

such that fα(x) = ⟨α̃, x̃⟩. Let y be such that fβ(y) = ⟨α̃, x̃⟩. We argue
that Coh(s, α, x, β, y) holds. Suppose (⟨α, x⟩, [β′, γ′]) ∈ s. If β′ ∈ ep, then
(⟨α, x⟩, [β′, γ′]) ∈ S2, so (⟨α̃, x̃⟩, [β′, γ′]) ∈ S0, so (⟨β, y⟩, [β, γ′]) ∈ S2. If
β′ ∈ fp, then β′ = γ′ and (⟨α, x⟩, [β′, β′]) ∈ S3, implying ⟨α̃, x̃⟩ ∈ Xβ′ ∩Xα,
i.e. ⟨α̃, x̃⟩ ∈ Xβ′ ∩Xβ ∩Xα, implying (⟨β, y⟩, [β′, β′]) ∈ S3 also. Once more,
we can reverse the reasoning.

This finishes the proof of Lemma 17. □

The next task is to prove that S preserves ℵ2.

Lemma 19. If s ∈ S and M ≺ K is a basic model with s,S ∈ M , then s is
strongly (M, S)-generic.

Therefore Proposition 6 implies:

Corollary 20. Under CH, S preserves ℵ2.

Proof of Lemma 19. Let δ = M ∩ ℵ2. Suppose s′ ≤ s and let s∗ consist of
all (⟨α, x⟩, [β, γ]) ∈ s′ such that α, β, γ < δ. Then s∗ ∈ M by the countable
closure of M . We can see that s∗ ∈ S since it is an initial segment of s′, the
supremum of whose domain is a limit ordinal. Let s∗∗ ≤ s∗ where s∗∗ ∈ M .
We will construct s′′ such that s′′ ≤ s′, s∗∗.

For each α ∈ dom(s′)\ δ, x ∈ ω, let X⟨α,x⟩ be the set of ⟨β, y⟩ with β < δ

such that s′ ⊩ “β ∈ lim Ċx
α ∩ δ”, and such that Coh(s′, α, x, β, y) holds. Let

S0 be the set

{(⟨α, x⟩, [β′, γ′]) : α ∈ dom(s′) \ δ, x ∈ ω,∃⟨β, y⟩ ∈ X⟨α,x⟩,

(⟨β, y⟩, [β′, γ′]) ∈ s∗∗}.
We then argue that s′′ := s∗∗ ∪ s′ ∪ S0 is a condition by verifying the more
substantial clauses from Definition 11.

Clause 2: Fix (⟨α, x⟩, [β, γ]) and (⟨α, x⟩, [β′, γ′]) for which we will prove
the clause. The clause follows from the fact that s∗∗ and s′ are conditions
in S if α < δ or if both bits are in s′. Suppose that (⟨α, x⟩, [β, γ]) ∈ s′

and (⟨α, x⟩, [β′, γ′]) ∈ S0 \ s′ as witnessed by ⟨β̄, y⟩ ∈ X⟨α,x⟩. Since γ′ <
β̄, we can assume without loss of generality that β < β̄, from which it
follows that γ < β̄ since s′ ⊩ “β̄ ∈ lim Ċx

α”. Then (⟨β̄, y⟩, [β, γ]) ∈ s∗ and
(⟨β̄, y⟩, [β′, γ′]) ∈ s∗∗, meaning that both bits are in s∗∗. Hence it must be
that either β = β′ or [β, γ]∩ [β′, γ′] = ∅. The remaining case, in which both
(⟨α, x⟩, [β, γ]) and (⟨α, x⟩, [β′, γ′]) are both in S0 \ s′, is similar.

Clause 8: Fix ⟨α, x⟩ and β as in the statement of Clause 8 in Defini-
tion 11. If α < δ, then if (⟨α, x⟩, [β′, γ′]) ∈ s∗∗∪ s′∪S0 for some x, β, γ, then
(⟨α, x⟩, [β′, γ′]) ∈ s∗∗, so we have what we need because s∗∗ ∈ S and satisfies
Clause 8. If α ∈ ℵ2 \ δ and β ≥ δ, then we have what we need because
s′ ∈ S. Observe that if β < δ, α ∈ ℵ2 \ δ, and s′ ⊩ “β ∈ lim Ċα”, then we
have β ∈ dom(s∗∗), so the clause holds for the remaining case due to bits
in S0. □

Lemma 21. S adds a □(ℵ2,ℵ0)-sequence.
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Proof. Suppose G is S-generic over V . We know from Lemma 17 and Corol-
lary 20 that S preserves cardinals and cofinalities up to and including ℵ2. In
V [G] we let C⃗ = ⟨Cα : α ∈ Lim(ℵ2)⟩ be defined so that Cα = {Cx

α : x ∈ ω}
and Cx

α = Ċx
α[G]. That the Cx

α’s are clubs was handled by Proposition 13.

First, we show that C⃗ is coherent. Suppose that s ∈ S forces that β is
a limit point of Ċx

α, and suppose for contradiction that there is no y ∈ ω
and no s′ ≤ s forcing that “Ċx

α ∩ β = Ċy
β”. Then we find an ≤S-decreasing

sequence ⟨si : i < ω⟩ of complete conditions such that si ⊩ “Ċx
α ∩ β ̸= Ċi

β”,
and we find a lower bound s̄ of this sequence using the countable closure of
S. Then s̄ violates Clause 8.

Next, we show that C⃗ does not have a thread in V [S], using the usual
genericity argument. Suppose s forces that Ḋ is a closed unbounded subset
of ℵ2. Let ᾱ and s′ ≤ s be such that s′ forces ᾱ to be the ωth point of Ḋ.
Build an S-decreasing sequence of complete conditions ⟨si : i < ω⟩ below s′

and an increasing sequence of ordinals ⟨αi : i < ω⟩ above ᾱ as follows: Let
α0 = ᾱ and s0 = s′. Given si and αi, si+1 ≤ si and αi+1 will be chosen such
that si+1 ⊩ “αi+1 ∈ lim Ḋ” and such that αi+1 > max si and max si+1 > αi.
Then let α∗ be the supremum of the αi’s and let s∗ be a lower bound of the
si’s forcing that Ċα∗ consists only of ω-sequences—this is specifically possible
from the argument in Lemma 17, where α∗ would be in fd \ (ed∪ fp) in that
argument. Therefore s∗ ⊩ “Ḋ ∩ α∗ /∈ Ċα∗”. □

3. Threads

Next we introduce the threading forcing T. Of course, a□(ℵ2,ℵ0)-sequence
is defined as such because it has no thread, but our ability to force a thread
allows us to make use of large cardinals from the ground model. This is also
how the threading forcing for Jensen’s method works. The goal of this sec-
tion is to show that we can use our own T to lift weakly compact embeddings
of the form j : M → N .

Definition 22. Let GS be S-generic over V and work in V [GS]. For all
α ∈ Lim(ℵ2) and x ∈ ω, let Cx

α = Ċx
α[GS].

Define T to be the set of closed intervals [β, γ] such that −1 ≤ β ≤ γ <
ℵ2. Then we define a poset of T of conditions t ⊂ T such that the following
holds:

(1) The set t is countable.
(2) If [β, γ], [β′, γ′] ∈ t, then either β = β′ or [β, γ] ∩ [β′, γ′] = ∅.
(3) If {[βi, γi] : i < ω} ⊆ t and β∗ = supi<ω βi, then it follows that

[β∗, γ∗] ∈ t for some γ∗.
(4) If [β, γ] ∈ t, then one of the following holds:

(a) cf(β) = ω1.
(b) β = β′ + 1 and there is some β̄ ≤ β′ such that [β̄, β′] ∈ t.
(c) cf(β) = ω and there exists a sequence of ordinals ⟨βi : i < ω⟩

converging to β such that ∀i < ω, ∃γi, [βi, γi] ∈ t.
(d) cf(β) = ω and there is some β̄ < β and some sequence of

ordinals ⟨γi : i < ω⟩ converging to β such that ∀i < ω, [β̄, γi] ∈ t.
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(5) There is some α < ℵ2 such that [α, α] ∈ t and such that for all
β > α, there is no γ such that [β, γ] ∈ t. Either cf(α) = ω1 or there
is some ⟨βn : n < ω⟩ cofinal in α such that for all n < ω, [βn, γ] ∈ t
for some γ.

(6) Suppose that [β, γ] ∈ t and either cf(β) = ω1 or else {β′ < β :
∃γ′, [β′, γ′] ∈ t} is unbounded in β. Then there some x ∈ ω such
that for all β′ ≤ γ′ < β, [β′, γ′] ∈ t implies both β′ ∈ Cx

β and
Cx

β ∩ (β′, γ′] = ∅.
We have t′ ≤T t if and only if:

(1) t′ ⊇ t;
(2) If ⟨α, x⟩ is such that for β, γ < α, [β, γ] ∈ t implies β ∈ Cx

α and
Cx

α ∩ (β, γ] = ∅, then for β, γ < α, [β, γ] ∈ t′ implies β ∈ Cx
α and

Cx
α ∩ (β, γ] = ∅.

We use the following conventions for t ∈ T:
• pos(t) = {β ≥ 0 : ∃γ, [β, γ] ∈ t}.
• max(t) is the largest element of pos(t).

Definition 23. If s ∈ S, let
thr(s) = {({[α, α]} ∪ {[β, γ] : (⟨α, x⟩, [β, γ]) ∈ s}) : α ∈ dom(s), x ∈ ω}.

We say that ⟨α, x⟩ witnesses that t ∈ thr(s) if [α, α] ∈ t and for β, γ < α,
[β, γ] ∈ t if and only if (⟨α, x⟩, [β, γ]) ∈ s.

Now we can connect the notion of thr(s) for s ∈ S with T if we are
working in V .

Proposition 24. The following are true given s ∈ S:
(1) If t ∈ thr(s) is witnessed by ⟨α, x⟩ then s ⊩ “t ∈ Ṫ”.
(2) If s ⊩ “ṫ ∈ Ṫ”, then there is some s′ ≤ s and some t′ ∈ thr(s′) such

that s′ ⊩ “t′ ≤ ṫ”.

Proof. (1) is clear, with the appropriate α ∈ dom s and x ∈ ω witnessing
Clause 6 from Definition 22. (2) works as follows: Let s∗ ≤ s, α, and x ∈ ω be
such that s∗ ⊩ “α = max(ṫ) and ⟨α, x⟩ witnesses Clause 6 of Definition 22”.
Then use the countable closure of S to find s′ ≤ s∗ such that s′ ⊩ “ṫ = t+ ∈
V ” and such that for all [β, γ] ∈ t+, either (⟨α, x⟩, [β, γ]) ∈ s′ or else there is
some (⟨α, x⟩, [β′, γ′]) ∈ s′ such that β ̸= β′ and [β, γ] ∩ [β′, γ′] ̸= ∅. Then it
must be the case that if [β, γ] ∈ t+ then (⟨α, x⟩, [β, γ]) ∈ s′ because otherwise
the definition of ≤Ṫ would be violated. Then let t′ be such that [α, α] ∈ t′

and such that for all β, γ < α, [β, γ] ∈ t′ if and only if (⟨α, x⟩, [β, γ]) ∈ s′.
Then s′ and t′ witness (2). □

The next step is to introduce our version of the two-step iterations that
appear in Jensen’s method of forcing squares.

Definition 25. We let D(S ∗ T) refer to the set of pairs (s, ṫ) ∈ S ∗ T such
that:

(1) s ⊩ “ṫ = ť” for some t ∈ thr(s).
(2) s ⊩ “max(ṫ) = max(s) ≥ sup(out(s))”.
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(3) s is complete.

If (s, ť) ∈ D(S ∗ T), we will most often write (s, ť) as (s, t).

Lemma 26. The set D(S ∗ T) is dense in S ∗ T and countably closed.
Moreover, if a sequence ⟨(si, ti) : i < ω⟩ is ≤S∗T-decreasing, then it has a
lower bound (s̄, t̄) such that s̄ is a parsimonious lower bound of ⟨si : i < ω⟩.

Proof. We will prove each claim separately. The “moreover” part of the
statement will be clear from the proof.

Claim 27. D(S ∗ T) is dense in S ∗ T.

Suppose (s, ṫ) ∈ S ∗ T. Let s′ and t′ witness Proposition 24 with respect
to (s, ṫ). Then choose s′′ ≤ s′, t′′ ∈ thr(s′′), and a large enough α∗ such that
(s′′, ť′′) ≤ (s′, ť′) and such that α∗ = max(t′′) = max(s′′) ≥ sup(out(s′′))
as follows: Let β∗ = sup{γ + 1 : ∃β, [β, γ] ∈ t′} and choose α∗ such that
max(s′)∪sup(out(s′)) < α∗. Let ⟨αn : n < ω⟩ be a sequence with supremum
α∗ such that α0 = β∗ and αn is a successor ordinal for n > 0. Let s′′ be

s′∪{(⟨α∗, x⟩, [αn, αn+1−1]) : x, n ∈ ω}∪{(⟨α∗, x⟩, [β, γ]) : [β, γ] ∈ t′, x ∈ ω}.
Let t′′ be such that [α∗, α∗] ∈ t′′ and such that for all β, γ < α∗, [β, γ] ∈ t′′

if and only if (⟨α∗, x⟩, [β, γ]) ∈ s′′ for all x ∈ ω.

Claim 28. D(S ∗ T) is countably closed.

Let ⟨(si, ti) : i < ω⟩ be ≤S∗T-decreasing in D(S ∗ T). Let s∗ be a parsi-
monious lower bound of s⃗ = ⟨si : i < ω⟩. We use some definitions with the
goal of eventually constructing t̄:

• T0 =
⋃

i<ω ti,
• ep(t) = {β : ∃γ, [β, γ] ∈ T0},
• fp(t) = lim+(ep(t)) \ ep(t),
• t∗ = T0 ∪ {[β, β] : β ∈ fp(t)}.

Now let ᾱ be the supremum of ep(t) ∪ fp(t). If there is some i such
that ᾱ ∈ dom(si), in other words ᾱ ∈ ep(t), then it will be the case that
pos(t∗) = pos(t̃) for some t̃ ∈ thr(s̄). Then we can let s̄ = s∗ and let t̄
be t̃. Let us therefore assume for the rest of the proof that for all i < ω,
ᾱ /∈ dom si. Then we will define a lower bound (s̄, t̄) of ⟨(si, ti) : i < ω⟩ by
modifying s∗ (we will not necessarily have that s̄ and s∗ are comparable)
and we will argue that (s̄, t̄) ∈ D(S ∗ T).

We will define the modification s̄ as follows:

• If α ̸= ᾱ, then (⟨α, x⟩, [β, γ]) ∈ s̄ if and only if (⟨α, x⟩, [β, γ]) ∈ s∗.
• (⟨ᾱ, x+ 1⟩, [β, γ]) ∈ s̄ if and only if (⟨ᾱ, x⟩, [β, γ]) ∈ s∗.
• (⟨ᾱ, 0⟩, [β, γ]) ∈ s̄ if [β, γ] ∈ t∗ and γ < ᾱ.

We need to argue that s̄ ∈ S. It suffices to show that Clause 8, i.e.
coherence, from Definition 11 holds for bits of the form (⟨ᾱ, 0⟩, [β′, γ′]) i.e.
for coherence of Ċ0

ᾱ. Let β be such that either cf(β) = ω1 or else cf(β) = ω
and {β′ < β : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s} is unbounded in β. Observe that
there is some β∗ ∈ (β, α) such that β∗ ∈ ep(t) and either Case (a) or Case (c)
of Clause 4 of Definition 22 holds for β∗. Let x be such that ⟨β∗, x⟩ witnesses
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Clause 6 of Definition 22. Then β∗ ∈ dom s∗ and s∗ ⊩ “β ∈ lim Ċx
β∗”, so

let y witness coherence of Ċx
β∗ at β. Then y witnesses coherence of Ċ0

ᾱ at β.

Coherence for Ċ0
x with x > 0 is given by the “shift” in the definition of s̄.

Observe that s̄ is a lower bound of the si’s: This is because max dom si <
ᾱ for all i < ω. In other words, this follows from the facts that s̄ is identical
to s∗ below ᾱ and p0 ≤S p1 only depends on bits that are already in p1.

We let t̄ be defined so that [ᾱ, ᾱ] ∈ t̄ and so that for all β, γ < ᾱ,
[β, γ] ∈ t̄ if and only if (⟨ᾱ, 0⟩, [β, γ]) ∈ s̄. We claim that (s̄, t̄) ∈ D(S ∗ T).
It can be checked that s̄ is a lower bound of ⟨si : i < ω⟩: Observe that
ᾱ = max(s̄) = max(s∗) because s∗ was chosen to be parsimonious and
because Clause 2 and Clause 1 from Definition 25 hold for (si, ti) for all
i < ω. In particular, the fact that sup(out(si)) ≤ max(si) for all i < ω
implies that fp(s⃗) ⊆ max(s∗). We only needed to guarantee that we would
have t̄ ∈ thr(s̄). □

We therefore see that T preserves ℵ1 over V [S] since it is a factor of a
countably distributive iteration. Moreover, we can expand the proof from
Lemma 19 to see:

Proposition 29. S ∗ T preserves ℵ2 over V .

Proof. Specifically, suppose that s ∈ S, t ∈ T, and M ≺ K is a basic model
with s,S ∗T ∈ M , and δ = M ∩ℵ2. Then it can be argued that (s, t∪ [δ, δ])
is strongly (M, S ∗ T)-generic. Then apply Proposition 6. □

Although T preserves cardinals, it does not preserve the canonical□(ℵ2,ℵ0)-
sequence added by S. This is the primary function of T in some sense, despite
its usefulness for lifting embeddings (which will be established shortly).

Proposition 30. If GS ∗ GT is S ∗ T-generic over V , and D = {β < ℵ2 :
∃γ, [β, γ] ∈ GT}, then D is a thread of the □(ℵ2,ℵ0)-sequence C derived
from GS.

The following lemma shows how we will use a weakly compact cardinal
together with S by lifting embeddings, using T in a crucial way. In the
context of Jensen’s method for forcing squares, we would use a generic
condition argument for j(S). However, when we have lifted j : M[Col(ℵ1, <
κ)] → N [Col(ℵ1, < j(κ))] and are working in V [Col(ℵ1, < j(κ)], we have
|S| = ℵ1, yet the conditions in both S and j(S) are countable. Therefore we
use a factorization argument instead.

Lemma 31. Suppose the following:

• C = Col(ℵ1, < κ) is the Lévy collapse and GC is C-generic over V̄ .
• j : M → N is a weakly compact embedding with critical point κ.
• j : M[GC] → N [j(GC)] is the usual lifted embedding given by ẋGC

7→
j(ẋ)j(GC).

• V [j(GC)] contains generics GS and GT for S and T respectively.

Then in V [j(GC)], j(S) is forcing equivalent to S ∗ T ∗ S′ where S′ is a
countably closed forcing over V [j(GC)].
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Observe that the fourth premise can be fulfilled using the Absorption
Lemma.

Proof. First we describe S′ and some relevant dense subsets of S and j(S).
Working in V [Gj(C)], j(S) (where S is from Definition 11) is of course equal
to the set of bits (⟨α, x⟩, [β, γ]) such that α < j(κ), x ∈ ω, β ≤ γ < j(κ). Let
Cx

α = Ċx
α[GS] for all ⟨α, x⟩ ∈ Lim(ℵ2)×ω and let D = {β < ℵ2 : ∃γ, [β, γ] ∈

GT}.
Now let S′ consist of s ⊆ j(S) \S such that Clause 1 through Clause 7

from Definition 11 hold, such that its ordering is defined like ≤S, and more-
over two additional clauses hold, the first of which is a modification of
Clause 8 from Definition 11:

(10) Suppose that (⟨α, x⟩, [β, γ]) ∈ s and either cf(β) = ω1 or else {β′ <
β : ∃γ′, (⟨α, x⟩, [β′, γ′]) ∈ s} is unbounded in β. Then:
(a) If β > κ, then there is some y ∈ ω such that for all β′ ≤ γ′ < β,

(⟨α, x⟩, [β′, γ′]) ∈ s if and only if (⟨β, y⟩, [β′, γ′]) ∈ s.
(b) If β < κ, then there is some y ∈ ω such that for all β′ ≤ γ′ < β,

if (⟨α, x⟩, [β′, γ′]) ∈ s then β′ ∈ Cy
β and Cy

β ∩ (β′, γ′] = ∅.
(c) If β = κ, then for all β′, γ′ < β, if (⟨α, x⟩, [β′, γ′]) ∈ s, then

β′ ∈ D and D ∩ (β′, γ′] = ∅.
(11) For all limit ordinals α and all x ∈ ω such that ∃β̃, γ̃, (⟨α, x⟩, [β̃, γ̃]) ∈

s, one of the following holds:
(a) (⟨α, x⟩, [κ, γ]) ∈ s for some γ.
(b) There exists a non-empty finite sequence β0 < β1 < . . . < βk

such that the following hold:
(i) For all ℓ ∈ {0, 1, . . . , k}, (⟨α, x⟩, [βℓ, γ]) ∈ s for some γ;
(ii) Either cf(β0) = ω1 or there are sequences ⟨βn : n < ω⟩,

⟨γn : n < ω⟩ with supn<ω βn = β and (⟨α, x⟩, [βn, γn]) ∈ s
for all n < ω;

(iii) For all βℓ with ℓ > 0, either βℓ = βℓ−1+1, or βℓ = β̄+1 and
(⟨α, x⟩, [βℓ−1, β̄]) ∈ s, or there is a sequence ⟨γn : n < ω⟩
with supn<ω γn = βℓ and (⟨α, x⟩, [βℓ−1, γn]) ∈ s for all
n < ω.

(iv) (⟨α, x⟩, [βℓ, γ]) ∈ s for some γ ≥ κ.

Let D(j(S)) be the dense subset of s ∈ j(S) such that Clause 11 holds for
s. Now we give the isomorphism Ψ : {(s, t, s′) : s ∈ S, (s, t) ∈ D(S ∗ T), s′ ∈
S′} → D(j(S)). Specifically,

Ψ(s, t, s′) = s ∪ s′ ∪ {(⟨κ, x⟩, [β, γ]) : x ∈ ω, [β, γ] ∈ t}.
Observe that the definition of Ψ is where we use Clause 3 from Definition 11.
We are also using the fact that V [Gj(C)] |= “κ ∈ j(κ) ∩ cof(ω1)”. It is
immediate that Ψ is order-preserving. Moreover, Ψ is a bijection because it
has a natural inverse.

Now we will show that S′ is countably closed in V [Gj(C)]. Suppose s⃗ =
⟨si : i < ω⟩ is a descending sequence in S′. Define ed, fd, ep, fp as in
Definition 16, and let s̄ be a parsimonious lower bound of s⃗ defined exactly
as in Lemma 17. So s̄ ∈ j(S). We know that s̄ satisfies Clause 1 through
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Clause 7 from Definition 11. We will prove Clause 10 after Clause 11, since
the former depends on the proof of the latter.

Clause 11: The case where α ∈ fd \ (ep ∪ fp) is trivial. Given α ∈ ed,
x ∈ ω, there is some i such that α ∈ dom(si). Then the fact that si satisfies
Clause 11 is enough to imply that s̄ satisfies Clause 11. If α ∈ fp, then there
is some ⟨α′, x′⟩ witnessing α ∈ fp, and we get Clause 11 from the si for i
large enough that α′ ∈ dom(si).

Clause 10: For the purpose of verifying this clause, when we say that y
witnesses coherence of Ċx

α at β for β ≤ κ, we are referring to the y mentioned
in Case (b) or Case (c) of the clause.

Now fix α ∈ Lim(j(κ) \ (κ + 1)) and x ∈ ω as in the statement of
Clause 10. We have already handled the case where β > κ in Lemma 17.
Therefore we can assume that β < κ for the rest of the proof. We break the
proof into cases.

α ∈ ep, β ∈ ep, for large i Case (a) of Clause 11 holds for si w.r.t.
⟨α, x⟩: We have that β ∈ limD, so there is some y ∈ ω such that D ∩ β =
Cy

β . Then y witnesses coherence of Ċα
x at β.

α ∈ ep, β ∈ fp, for large i Case (a) of Clause 11 holds for si w.r.t.
⟨α, x⟩: Observe that since S ∗ T has a countably closed dense subset, it
follows that T is countably distributive, so GT is countably closed, hence
β ∈ limD. This then follows the reasoning of the previous case.
α ∈ ep, β ∈ ep, for large i Case (b) of Clause 11 holds for si w.r.t.
⟨α, x⟩: This means that there is some β+ such that for large i, si ⊩ “β+ =
max(lim Ċx

α∩κ)”, and that β ≤ β+. If β = β+ and y witnesses coherence of
Ċx

α at β+, then we are done with this case. If β < β+, y witnesses coherence

of Ċx
α at β+, and y′ is such that Cy

β+ ∩ β = Cy′

β (since β ∈ limCy
β+), then

y′ witnesses coherence of Ċx
α at β.

α ∈ ep, β ∈ fp, for large i Case (b) of Clause 11 holds for si w.r.t.
⟨α, x⟩: This is like the previous case, noting that if β < β+ as written
there, then we would still have β ∈ limCy

β+ .

⟨α̃, x̃⟩ witnesses α ∈ fp, β ∈ ep, for lg. i Case (a) of Clause 11 holds
for si, ⟨α̃, x̃⟩: We have β ∈ limD, so there is some y ∈ ω such that
D ∩ β = Cy

β . So y witnesses coherence of Ċ x̃
α̃ at β, hence it witnesses

coherence of Cx
α at β.

The remaining cases all consider α ∈ fp and take ⟨α̃, x̃⟩ witnessing this.
The reasoning depends on whether Case (a) or Case (b) holds for si with
respect to ⟨α̃, x̃⟩ for large i. The arguments are analogous to the cases
already discussed. □

Now we can use T to show that stronger squares do not hold. Since
the bulk of the work was done with Lemma 31, and the remaining lemmas
are variations of standard arguments, we will handle the rest with a light
amount of detail.

Lemma 32. If W is a ground model and C is a □(ℵ2, < ℵ0)-sequence in
W [S], then T does not thread C.
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Proof. This lemma has analogs for Jensen-style posets (see [8], Lemma 4.5).
Let Ḋ be a name for a thread for C added over W [S] by T and work in
W . Build a descending sequence ⟨si : i < ω⟩ of conditions in S, sequences
⟨tji : j < ω⟩ in T for i < ω, and an increasing sequence of ordinals ⟨γi : i < ω⟩
such that the following hold:

• (si, t
j
i ) ∈ D(S ∗ T) for all i, j < ω.

• tji = tj0 for all j < i.

• For all i, j < ω, max tj0 = max tji .

• (si+1, t
i+1
0 ) and (si+1, t

i+1
i+1) decide “γi ∈ Ḋ” differently.

Then let s̄ be a lower bound of ⟨si : i < ω⟩ and let t̄i be a lower bound
of ⟨tji : j < ω⟩ for all i < ω, and also let γ̄ be a lower bound of ⟨γi : i < ω⟩.
Then each (s̄, t̄i) gives a different possibility for C ∈ Cγ̄, contradicting the
fact that C is a □(ℵ2, < ℵ0)-sequence. □

Lemma 33. If C is a □(λ,ℵ0)-sequence and P is countably closed, then P
does not thread C.

Proof. Stronger versions of this lemma appear elsewhere ([6]), but we sketch
an argument for completeness.

Let Ḋ be a name for a thread supposedly added by P. Build a tree
⟨px : x ∈ 2<ω⟩ and a collection of ordinals ⟨γx : x ∈ 2<ω⟩ such that:

• x ⊑ y implies py ≤ px,

• px⌢0 and px⌢1 decide “γx ∈ Ḋ” differently for some γx above sup|y|<x γy.

Then for all X ∈ 2ω, let pX be the lower bound of ⟨pX↾n : n < ω⟩. Let
γ = supx∈2ω . Then the pX ’s give 2ω-many possibilities for C ∈ Cγ, which is
a contradiction of the fact that C is a □(λ,ℵ0)-sequence. □

Proposition 34. If C is a □µ,κ-sequence and P preserves µ+, then P does
not thread C.

Proof. This is basically a restatement of Remark 4. □

Corollary 35. If κ is weakly compact, then V [Col(ℵ1, < κ)][S] |= ¬□(ℵ2, <
ℵ0).

Proof. Let M be a κ-sized transitive model containing S and a supposed
Col(ℵ1, < κ) ∗ S-name Ċ for a □(ℵ2, < ℵ0)-sequence. Let j : M → N be
a weakly compact embedding with critical point κ, and let GC ∗ GS ∗ GT
be Col(ℵ1, < κ) ∗ S ∗ T-generic over V . Since S ∗ T is countably closed,
the quotient R := Col(ℵ1, < j(κ))/GC ∗ GS ∗ GT), is forcing-equivalent to
a countably closed forcing (see the section on absorption in [3]). Let GR

be generic for R and work in V [GC ∗ GS ∗ GT ∗ GR] to use Lemma 31 to
lift j to j : M [GC][GS] → N [j(GC)][j(GS)] by forcing with a S′-generic
GS′ . Use the lift to define a thread D for C := Ċ[GC ∗ GS] by taking an
element from the κth level of j(C). Lemma 32 shows that T could not have
added D, and Lemma 33 show that neither R nor S′ could have added D.
Therefore the thread D already exists in V [GC∗GS], and so C is not actually
a □(ℵ2, < ℵ0)-sequence. □
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Corollary 36. If κ is weakly compact then V [Col(ℵ1, < κ)][S] |= ¬□ℵ1,ℵ0.

Proof. A Mahlo cardinal would be sufficient (see [8], Theorem 4.4). But
assume we have a weakly compact cardinal and define a thread D as in
Corollary 35. Then Proposition 34 and Proposition 29 together imply that
T could not have added D. Then Lemma 33 shows that the rest of the
extension could not have added D. □

Hence we have finished proving Theorem 1.
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