Übungen zur Funktionentheorie — Blatt 10

Aufgabe 1 Berechnen Sie die Laurent-Entwicklungen folgender Funktionen:

- a) $f(z)=rac{1}{z^4+1}$ in den Kreisringen $A_{0,r}(1)$, $A_{r,R}(1)$ sowie $A_{R,\infty}(1)$, wobei r= $\sqrt{2-\sqrt{2}}$ und $R=\sqrt{2+\sqrt{2}}$
- b) $g(z) = \exp(\frac{1}{z})$ in $A_{0,\infty}(0)$, und
- c) $h(z) = \frac{\sin(z)}{z}$ in $A_{0,\infty(0)}$.

Aufgabe 2 Bestimmen und klassifizieren Sie die Singularitäten folgender Funktionen:

- a) Seien P,Q Polynome. Betrachten Sie die rationale Funktion f(z)=P(z)/Q(z).
- b) $g(z) = \cot \pi z = \frac{\cos \pi z}{\sin \pi z}$, und c) $h(z) = \frac{1}{\exp z 1}$.

Aufgabe 3 Sei U eine Umgebung von z_0 und $f:U\setminus\{z_0\}\to\mathbf{C}$ habe eine isolierte Singularität in z_0 .

- a) Sei P ein beliebiges Polynom. Bestimmen Sie Typ und ggf. Ordnung der Singularität von $P \circ f$ in z_0 in Abhängigkeit vom Typ und Ordnung der Singularität von f.
- b) Zeigen Sie: Ist z_0 nicht hebbar, so hat $\exp \circ f$ eine wesentliche Singularität bei

b). Dann ist $z \pm \omega \in S$ für alle $z \in S$. Eine ω -periodische Funktion auf S ist eine Funktion $f: S \to \mathbf{C}$, so dass $f(z + \omega) = f(z)$ für alle $z \in S$.

> Zeigen Sie, dass jede holomorphe, ω -periodische Funktion auf S durch ihre Fourierreihe dargestellt werden kann, d.h. dass

$$f(z) = \sum_{k=-\infty}^{\infty} a_k \exp(2\pi i k z/\omega) \quad \text{mit} \quad a_k = \frac{1}{\omega} \int_{[z_0, z_0 + \omega]} f(z) \exp(-2\pi i k z/\omega) dz$$

für ein $z_0 \in S$. Zeigen Sie insbesondere, dass die Reihe lokal gleichmäßig in Skonvergiert.

Hinweis: Die Abbildung $z\mapsto \exp(2\pi iz/\omega)$ bildet S auf einen Kreisring $A:=A_{r,R}(0)$ ab. Mit Hilfe dieser Abbildung erkläre man durch f eine Funktion auf A.

Abgabe: Donnerstag, den 09.07.2009 vor der Vorlesung