
A VERSION OF κ-MILLER FORCING

HEIKE MILDENBERGER AND SAHARON SHELAH

Abstract. Let κ be an uncountable cardinal such that 2<κ = κ or just
cf(κ) > ω, 22<κ = 2κ, and ([κ]κ,⊇) collapses 2κ to ω. We show under
these assumptions the κ-Miller forcing with club many splitting nodes
collapses 2κ to ω and adds a κ-Cohen real.

1. Introduction

Many of the tree forcings on the classical Baire space have various ana-
logues for higher cardinals. Here we are concerned with Miller forcing [4].
For a κ-version of Miller forcing, in addition to superperfectness one usually
requires (see, e.g., [2, Section 5.2]) limits of length < κ of splitting nodes be
splitting nodes as well and that splitting mean splitting into a club. In this
paper we investigate a version of κ-Miller forcing where this latter require-
ment is waived. We show: If cf(κ) > ω, cf(κ) = κ or cf(κ) < 2cf(κ) ≤ κ,
22<κ = 2κ, and there is a κ-mad family of size 2κ, then this variant of Miller
forcing is related to the forcing ([κ]κ,⊇) and collapses 2κ to ω. In particular,
if ω < κ<κ = κ, then our four premises are fulfilled.

Throughout the paper we let κ be an uncountable cardinal. We write E
for end extension of functions whose domains are ordinals. If dom(t), i are
ordinals, we write t̂ 〈i〉 for the concatenation of t with the singleton function
{(0, i)}, i.e., t̂ 〈i〉 = t ∪ {(dom(t), i)}. We denote forcing orders in the form
(P,≤P) and let p ≤P q mean that q ist stronger than p. We write λ>κ for
the set of functions f : α → κ for some α < λ. The domain α of f is also
called the length of f . The set of subsets of κ of size κ is denoted by [κ]κ.

Definition 1.1. (1) Q1
κ is the forcing ([κ]κ,⊇).

(2) Q2
κ is the following version of κ-Miller forcing: Conditions are trees

T ⊆ κ>κ that are κ superperfect: for each s ∈ T there is s E t such that
t is a κ-splitting node of T (short t ∈ spl(T )). A node t ∈ T is called a
κ-splitting node if

setp(t) = {i < κ : t̂ 〈i〉 ∈ T}
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has size κ. We furthermore require that the limit of an increasing in
the tree order sequence of length less than κ of κ-splitting nodes is a
κ-splitting node if it has length less than κ.

For p, q ∈ Q2
κ we write p ≤Q2

κ
q if q ⊆ p. So subtrees are stronger

conditions.
(3) For p ∈ Q2

κ and η ∈ p we let sucp(η) = {η′ ∈ κ>κ : (∃i ∈ κ)(η′ =
η 〈̂i〉 ∈ p)}.

(4) Let η ∈ p ∈ Q2
κ. We let p〈η〉 = {ν ∈ p : ν E η ∨ η E ν}.

(5) For a, b ⊆ κ we write a ⊆∗κ b if |a \ b| < κ.

Each of the two forcing orders P has a weakest element, denoted by 0P.
Namely, Q1

κ has as a weakest element 0Q1
κ

= κ, and Q2
κ has as a weakest

element the full tree κ>κ. We write P  ϕ if the weakest condition 0P forces
ϕ.

2. Results about Q1
κ

We will apply the following result for χ = 2κ.

Theorem 2.1. ([5, Theorem 0.5])
(1) Under the assumption of an antichain of size χ in Q1

κ, Q1
κ collapses χ

to ℵ0 if ℵ0 < cf(κ) = κ or if ℵ0 < cf(κ) < 2cf(κ) ≤ κ.
(2) Under the assumption of an antichain of size χ in Q1

κ, Q1
κ collapses χ

to ℵ1 in the case of ℵ0 = cf(κ).

Definition 2.2. A family A ⊆ [κ]κ is called a κ-almost disjoint family if for
A 6= B ∈ A, |A ∩ B| < κ. A κ-almost disjoint family of size at least κ that
is maximal is called a κ-mad family.

Observation 2.3. If 2<κ = κ, there is a κ-mad family A ⊆ [κ]κ of size 2κ.

Proof. We let f : κ>2 → κ be an injection. We assign to each branch b of
κ>2 a set ab = {f(s) : s ∈ b}. Then we complete the resulting family
{ab : b branch of κ>2} to a maximal κ-almost disjoint family. �

Observation 2.4. If Q1
κ collapses 2κ to ω, then there is a κ-mad family A

of size 2κ.

Proof. Q1
κ cannot have the 2κ-c.c. Hence there is an antichain of size 2κ.

This is a κ-ad family, and we extend it to a κ-mad family. �

For further use, we indicate the hypothesis for each technical step.

Lemma 2.5. Suppose that Q1
κ collapses 2κ to ω. Then there is a Q1

κ-name
τ
˜

: ℵ0 → 2κ for a surjection, and there is a labelled tree T = 〈(aη, nη, %η) :
η ∈ ω>(2κ)〉 with the following properties
(a) a〈〉 = κ and for any η ∈ ω>(2κ), aη ∈ [κ]κ.
(b) η1 / η2 implies aη1 ⊇ aη2.
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(c) nη ∈ [lg(η) + 1, ω).
(d) If a ∈ [κ]κ then there is some η ∈ ω>(2κ) such that a ⊇ aη.
(e) If η 〈̂β〉 ∈ T then aη 〈̂β〉 forces τ˜

� nη = %η 〈̂β〉 for some %η 〈̂β〉 ∈ nη(2κ),
such that the %η 〈̂β〉, β ∈ 2κ, are pairwise different. Hence for any
η ∈ ω>(2κ), the family {aη 〈̂α〉 : α < 2κ} is a κ-ad family in [aη]κ.

Proof. Let τ
˜
be a Q1

κ-name such that Q1
κ  τ˜

: ℵ0 → 2κ is onto. For α < 2κ
let APα be the set of objects m̄ satisfying
(∗)1(1.1) m̄ = (T, ā, n̄, %̄) = (Tm̄, ām̄, n̄m̄, %̄m̄).

(1.2) T is a subtree of (ω>(2κ), /) of cardinality ≤ |α|+ κ and 〈〉 ∈ T .
(1.3) ā = 〈aη : η ∈ T 〉 fulfils η / ν → aν ⊆ aη and a〈〉 = κ and aη ∈ [κ]κ.
(1.4) n̄ = 〈nη : η ∈ T 〉 fulfils dom(%η 〈̂β〉) = nη > lg(η) for any η 〈̂β〉 ∈

T .
(1.5) If η 〈̂β〉 ∈ T , then aη 〈̂β〉 forces a value to τ

˜
� nη called %η 〈̂β〉 and

for β 6= γ we have %η 〈̂β〉 6= %η 〈̂γ〉. Hence for any η 〈̂β〉, η 〈̂γ〉 ∈ Tm̄,
β 6= γ implies aη 〈̂β〉 ∩ aη 〈̂γ〉 ∈ [κ]<κ.

(1.6) For η ∈ Tm̄, we let
Pos(aη, nη) = {% ∈ nη(2κ) : aη 6Q1

κ
τ
˜
� nη 6= %},

and require that the latter has cardinality 2κ.
In the next items we state some properties of APα that are derived

from (∗)1.
(∗)2 AP =

⋃
{APα : α < 2κ} is ordered naturally by ≤AP , which means

end extension.
(∗)3 (a) APα is not empty and increasing in α.

(b) For infinite α, APα is closed under unions of increasing sequences
of length < |α|+.

(∗)4 Let γ < 2κ. If m̄ ∈ APγ and η ∈ Tm̄ and η 〈̂α〉 6∈ Tm̄ then there is
m̄′ ∈ APγ such that m̄ ≤AP m̄′ and Tm̄′ = Tm̄ ∪ {η 〈̂α〉}.

Proof: For η ∈ Tm̄,
U = Pos(aη, nη) = {% ∈ nη(2κ) : aη 6Q1

κ
τ
˜
� nη 6= %} has size 2κ,

whereas
Λη = {%η 〈̂β〉 � nη : β ∈ 2κ ∧ η 〈̂β〉 ∈ Tm̄}

is of size ≤ |Tm̄| ≤ |γ| + κ. Hence we can choose %∗ ∈ U \ Λη and
b∗ ∈ [aη]κ such that b∗ Q1

κ
%∗ = τ

˜
� nη. We let %η 〈̂α〉 = %∗. Since

b∗ forces a value of τ � nη that is incompatible with the one forced by
aη 〈̂β〉 for any η 〈̂β〉 ∈ Tm̄, the set b∗ is κ-almost disjoint from aη 〈̂β〉 for
any η 〈̂β〉 ∈ Tm̄. We take b∗ = am̄′,η 〈̂α〉 ⊆ am̄,η.

Since cf(2κ) > ℵ0 and since
|{range(%) : % ∈ ω>(2κ) ∧ b∗ 6Q1

κ
τ
˜
� n 6= %}| = 2κ,
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there is an n such that

Pos(b∗, n) = {% ∈ n(2κ) : b∗ 6Q1
κ
τ
˜
� n 6= %}

has cardinality 2κ. We take the minimal one and let it be nη 〈̂α〉.
(∗)5 If m̄ ∈ APα and a ∈ [κ]κ then there is some m̄′ ≥ m̄, such that there is

η ∈ Tm̄′ with am̄′,η ⊆ a.
Let

Ua = {% ∈ ω>(2κ) : a 6Q1
κ
% 6 / τ

˜
},

i.e.
Ua = {% ∈ ω>(2κ) : (∃b ≥Q1

κ
a)(b Q1

κ
% / τ

˜
)}.

This set has cardinality 2κ because Q1
κ  τ˜

: ω → 2κ is onto. We take
n minimal such that

Ua,n = {% ∈ n(2κ) : (∃b ≥Q1
κ
a)(b Q1

κ
% / τ

˜
)}

has size 2κ. We let

set+
n (m̄) = {%η : η ∈ Tm̄, lg(%η) ≥ n}.

Clearly | set+
n (m̄)| ≤ |Tm̄| ≤ |γ| + κ. Thus we can take %a ∈ Ua,n that

is incompatible with every element of set+
n (m̄). We take some ba ∈ [a]κ

such that ba Q1
κ
%a E τ˜

. The set

Λa = {η ∈ Tm̄ : ba ⊆∗κ aη}

is /-linearly ordered by (∗)1 clauses 1.3 and 1.5 and 〈〉 ∈ Λa. Since ba
does not pin down τ

˜
, Λa has a /-maximal member ηa. Now we take

α∗ = min{β : ηa 〈̂β〉 6∈ Tm̄}. For any ηa 〈̂β〉 ∈ Tm̄ we have %ηa 〈̂β〉 and
%a are incompatible, and hence aηa 〈̂β〉 ∩ ba ∈ [κ]<κ. Now we choose
b1a ∈ [ba]κ and %∗a such that b1a Q1

κ
%∗a / τ˜

and lg(%∗a) ≥ nm̄,ηa > lg(ηa).
We let

Tm̄′ = Tm̄ ∪ {ηa 〈̂α∗〉},
aηa 〈̂α∗〉 = b1a,

We let nηa 〈̂α∗〉 be the minimal n such that |Pos(b1a, n)| ≥ 2κ. So (∗)5
holds.

Now we are ready to construct T as in the statement of the lemma. We do
this by recursion on α ≤ 2κ. First we enumerate [κ]κ as 〈cα : α < 2κ〉, and
we enumerate ω>(2κ) as 〈ηα : α < 2κ〉 such that ηα / ηβ implies α < β. We
choose an increasing sequence m̄α by induction on α < 2κ. We start with
the tree {〈〉}, a〈〉 = κ, %〈〉 = ∅, n〈〉 be minimal such that |Pos(κ, n)| = 2κ. In
the odd successor steps we take m̄2α+1 ≥AP m̄α so that aη ⊆ cα for some
η ∈ T2α+1. This is done according to (∗)5. In the even successor steps we
take m̄2α+2 ≥AP m̄2α+1 such that ηα ∈ T2α+2. Since all initial segments of
ηα appeared among the ηβ, β < α, m̄2α+2 is found according to (∗)4. In
the limit steps we take unions. Then T that is given by the the last three
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components of m̄2κ has properties (a) to (e). �

Since τ = τ
˜

[G] is not in V, for any T as in Lemma 2.5 no sequence of
first components of a branch, i.e., no 〈af�n : n ∈ ω〉, f ∈ ω(2κ) ∩V, has a
⊆∗κ-lower bound.

3. Transfer to Q2
κ

In this section we use the tree T from Lemma 2.5 for finding Q2
κ-names.

Definition 3.1. Let µ, λ be cardinals. For ν, ν ′ ∈ λ>µ we write ν ⊥ ν ′ if
ν 6E ν ′ and ν ′ 6E ν.

Typical pairs (λ, µ) are (ω, 2κ) and (κ, κ).
An important tool for the analysis of Q2

κ is the following particular kind
of fusion sequence 〈pα : α < κ<κ〉 in Q2

κ. Since we do not suppose κ<κ = κ,
a fusion sequence can be longer than κ. An important property is that for
each ν ∈ κ>κ there is at most one α < κ<κ such that setpα(ν) ) setpα+1(ν).

Lemma 3.2. Let 〈να : α < κ<κ〉 be an injective enumeration of κ<κ such
that
(3.1) να / νβ → α < β.

Let 〈pα, να, cα : α < κ<κ〉 be a sequence such that for any α ≤ λ the
following holds:
(a) p0 ∈ Q2

κ.
(b1) If α = β + 1 < κ<κ and νβ ∈ sp(pβ), then

cβ ∈ [sucpβ (νβ)]κ and

pα = pβ(νβ, cβ) :=
⋃
{p〈νβ 〈̂i〉〉β : i ∈ cβ} ∪

⋃
{p〈η〉β : η 6E νβ ∧ νβ 6E η}

(b2) If α = β + 1 < κ<κ and νβ 6∈ spl(pβ) then pα = pβ.
(c) pα =

⋂
{pβ : β < α} for limit α ≤ κ<κ.

Then for any λ ≤ κ<κ, pλ ∈ Q2
κ and ∀β < λ, pβ ≤Q2

κ
pλ.

Proof. We go by induction on λ. The case λ = 0 and the successor steps
are obvious. So we assume that λ ≤ κ<κ is a limit ordinal and pα ∈ Q2

κ for
α < λ. Since ∅ ∈ pλ, pλ is not empty, and pλ clearly is a tree. Let t ∈ pλ.
We show that there is t′ D t that is a splitting node in pλ. We fix the
smallest α such that να Dp0 t is a splitting node in p0. Then in p0 there are
no splitting nodes in {s : t E s / να}. Hence να ∈ spl(pβ) for any β ∈ [0, λ].

Now we show that the limit of splitting nodes in pλ is a splitting node.
Let γ < λ and let 〈νi : i < γ〉 be an /-increasing sequence of splitting nodes
of pλ with union ν ∈ κ<κ. Then ν is a splitting node of each pα, α < λ,
and also in pλ since 〈setpα(ν) : α < λ〉 has at most two entries and their
intersection has size κ. �

We need yet another type of fusion sequence.
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Definition 3.3. Let p ∈ Q2
κ and let ν ∈ spl(p).

(1) Let i ∈ setp(ν). We say η is the shortest splitting node above ν 〈̂i〉 in
p and write η = nextp(ν î) if η is the shortest splitting point in p such
that η ⊇ ν 〈̂i〉. Equality is allowed.

(2) We say F ⊆ p is the front of next splitting nodes above ν in p, if
F = {η′ ∈ spl(p) : ∃(η ∈ sucp(ν))(η′ = nextp(η))}.

Lemma 3.4. Let 〈να : α < κ<κ〉 be an injective enumeration of κ<κ such
that
(3.2) να / νβ → α < β.

Let 〈pα, να, cα, Fα : α < κ<κ〉 be a sequence such that for any α ≤ λ the
following holds:
(a) p0 ∈ Q2

κ.
(b1) If α = β+1 < κ<κ and νβ ∈ sp(pβ), then cβ ∈ [sucpβ (νβ)]κ, Fβ contains

for each i ∈ cβ exactly one η ∈ spl(p〈νβ 〈̂i〉〉β ), and

pα = pβ(νβ, cβ, Fβ) :=
⋃
{p〈η〉β : i ∈ cβ, η ∈ Fβ}

∪
⋃
{p〈η〉β : η 6E νβ ∧ νβ 6E η}.

Note that this implies that Fβ is the front of next splitting nodes of pα
above νβ.

(b2) If α = β + 1 < κ<κ and νβ 6∈ spl(pβ) then pα = pβ.
(c) pα =

⋂
{pβ : β < α} for limit α ≤ κ<κ.

Then for any λ ≤ κ<κ, pλ ∈ Q2
κ and ∀β < λ, pβ ≤Q2

κ
pλ.

Proof. We go by induction on λ. The case λ = 0 and the successor steps
are obvious. So we assume that λ ≤ κ<κ is a limit ordinal and pα ∈ Q2

κ for
α < λ. Since ∅ ∈ pλ, pλ is not empty, and pλ clearly is a tree. Let t ∈ pλ.
We show that there is t′ D t that is a splitting node in pλ. We fix the
smallest α such that να Dp0 t is a splitting node in p0. Then in p0 there are
no splitting nodes in {s : t E s / να}. Hence να ∈ spl(pβ) for any β ∈ [0, λ].

Now we show that the limit of splitting nodes in pλ is a splitting node.
Let γ < λ and let 〈νi : i < γ〉 be an /-increasing sequence of splitting nodes
of pλ with union ν ∈ κ<κ. Then ν is a splitting node of each pα, α < λ,
and also in pλ since 〈setpα(ν) : α < λ〉 has at most two entries and their
intersection has size κ. �

In the special case Fβ = {νβ 〈̂j〉 : j ∈ cβ}, the construction of Lemma 3.4
coincides with the simpler construction from Lemma 3.2.

Definition 3.5. We assumeQ1
κ collapses 2κ to ω. Let τ

˜
and T = 〈(aη, nη, %) :

η ∈ ω>(2κ)〉 be as in Lemma 2.5. Now let QT be the set of κ-Miller trees p
such that for every ν ∈ spl(p) there is ηp,ν = ην ∈ ω>(2κ) such that
(3.3) setp(ν) = {ε ∈ κ : ν 〈̂ε〉 ∈ p} = aην .
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By the properties of T , the node ηp,ν is unique.

Lemma 3.6. Assume that Q1
κ collapses 2κ to ω, let T be chosen as in

Lemma 2.5, and let QT be defined from T as above. Then QT is dense in
Q2
κ.

Proof. Let p0 = T ∈ Q2
κ. Let 〈να : α < κ<κ〉 be an injective enumeration of

κ<κ with property (3.2). We now define fusion sequence 〈pα, να, cα : α ≤
κκ〉 according to the pattern in Lemma 3.2 in order to find pκ<κ ≥ T such
that pκ<κ ∈ QT .

Suppose that pα and να are given. If να is not in pα or is not a splitting
node in pα, then we let pα+1 = pα. If να ∈ spl(pα), then according to
Lemma 2.5 clause (d) there is η ∈ ω>(2κ) such that sucpα(να) ⊇ aη. We
choose such an η of minimal length and call it η(α).

Then we strengthen pα to

pα+1 =
⋃
{p〈ν′〉α : ν ′ = να 〈̂i〉 ∧ i ∈ aη(α)}∪⋃
{p〈η〉α : η 6E να ∧ να 6E η}.

(3.4)

Now we have that

ηpα+1,να = η(α), cα = aη(α).

For limit ordinals λ ≤ κ<κ, we let pλ =
⋂
{pβ : β < λ}. Since the sequence

〈pα, να, cα : α ≤ κ<κ〉 matches the pattern in Lemma 3.2, we have pκ<κ ∈
Q2
κ. By construction, for any α < κ<κ for any δ ∈ [α+ 1, κ<κ), να ∈ spl(pδ)

implies
setpα+1(να) = setpδ(να) = aη(α).

Hence the condition p = pκ<κ fulfils Equation (3.3) in its splitting node
να with witness ηp,να = η(α). Since all nodes are enumerated, we have
pκ<κ ∈ QT . �

We use only the inclusion setp(ν) ⊆ aην from Definition 3.5.

Definition 3.7. We assume that Q1
κ collapses 2κ to ω and the T is as in

Lemma 2.5. For T ∈ QT and a splitting node ν of T we set %T,ν := %ηT,ν ∈
ω>(2κ). Recall ηT,ν is defined in Def. 3.5, and % is a component of T .

For p ∈ QT , the relation ν E ν ′ ∈ p does neither imply ην E ην′ nor
%ν E %ν′ . However, ην / ην′ implies aην ⊃ aην′ and %ν / %ν′ .

Observation 3.8. We assume that Q1
κ collapses 2κ to ω. Let p1, p2 ∈ QT .

If p1 ≤Q2
κ
p2 then for ν ∈ spl(p2) we have ν ∈ spl(p1) and %p1,ν E %p2,ν .

We introduce dense sets:

Definition 3.9. We assume that Q1
κ collapses 2κ to ω. Let n ∈ ω.

Dn =
{
p ∈ QT : (∀ν ∈ spl(p))(lg(%p,ν) > n)}.
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Dn is open dense in QT and the intersection of the Dn is empty. The
following technical lemma is the first step of a transformation of a Q1

κ-name
of a surjection from ω onto 2κ into a Q2

κ-name of such a surjection.

Lemma 3.10. We assume that Q1
κ collapses 2κ to ω, cf(κ) > ω and 2(κ<κ) =

2κ. Let 〈Tα : α < 2κ〉 enumerate Q2
κ such that each Miller tree appears 2κ

times. There is 〈(pα, nα, γ̄α) : α < 2κ〉 such that
(a) nα < ω,
(b) pα ∈ Dnα and pα ≥ Tα.
(c) If β < α and nβ ≥ nα then pβ ⊥ pα.
(d) γ̄α = 〈γα,ν : ν ∈ spl(pα)〉.
(e) (∀ν ∈ spl(pα))(aηpα,ν Q1

κ
γα,ν ∈ range(%pα,ν)).

(f) γα,ν ∈ 2κ \W<α,ν with

W<α,ν =
⋃
{range(%pβ ,ν) : β < α, ν ∈ spl(pβ)}.

Proof. Assume that 〈(pβ, nβ, γ̄β) : β < α〉 has been defined and we are to
define (pα, nα, γ̄α). Note that the pβ need not be increasing in strength.

(⊕)1 The choice of the aη in Lemma 2.5 and the choice QT and of ηpβ ,ν for
ν ∈ spl(pβ), β < α, imply that the set W<α,ν is well defined and of
cardinality ≤ |α|+ ℵ0 < 2κ. Hence we can choose γα,ν ∈ 2κ \W<α,ν .

(⊕)2 With the fusion Lemma 3.2 we choose qα ≥ Tα, qα ∈ QT , such that
(∀ν ∈ spl(qα))(aηqα,ν Q1

κ
γα,ν ∈ range(%qα,ν)).

(⊕)3 Let q ∈ Q2
κ. For n ∈ ω and ν ∈ spl(q) we let

Uα,ν,n(q) = {β < α : nβ = n, ν ∈ spl(pβ) ∧ | setq(ν) ∩ setpβ (ν)| = κ}.

Uα,ν(q) =
⋃
{Uα,ν,n(q) : n ∈ ω}.

(⊕)4 (a) If n ∈ ω and ν ∈ spl(qα) then
β ∈ Uα,ν(qα)→ %pβ ,ν E %qα,ν .

This is seen as follows. We let a = setpβ (ν) ∩ setqα(ν). Since
β ∈ Uα,ν(qα), a ∈ [κ]κ. Clearly a Q1

κ
τ
˜
. %pβ ,ν , %qα,ν . So either

%pβ ,ν / %qα,ν or %pβ ,ν D %qα,ν . However, since γα,ν ∈ range(%qα,ν) \
W<α,ν , only %qα,ν . %pβ ,ν is possible.

(b) So for ν ∈ spl(qα), the set {%pβ ,ν : β ∈ Uα,ν(qα)} has at most
lg(%qα,ν) elements.

(c) The assigment β 7→ %pβ ,ν is is defined between Uα,ν(qα) and {%pβ ,ν :
β ∈ Uα,ν(qα)}. According to properties (e) and (f) in the induction
hypothesis, the assigment is injective, and hence
|Uα,ν(qα)| ≤ lg(%qα,ν).

(d) We state for further use that Uα,ν(qα) is finite and for any q ≥ qα,
Uα,ν(q) ⊆ Uα,ν(qα).
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(⊕)5 We look at the cone above qα and show:
(∀q ≥ qα)(∀ν ∈ spl(q))(∃rα,ν ≥Q2

κ
q)

(∃c ∈ [setq(ν)]κ)(∃F ⊆ {η ∈ spl(q) : η . ν})(
rα,ν = q(ν, c, F ) ∧ (∀β ∈ Uα,ν(qα))(r〈ν〉α,ν ⊥ p

〈ν〉
β ∨ p

〈ν〉
β ≤ r

〈ν〉
α,ν)

)
.

(3.5)

How do we find rα,ν = rα,ν(q)? Given q ≥Q2
κ
qα, ν ∈ spl(q) we

enumerate Uα,ν(qα) as β0, . . . , βk−1. We let r0 = q and by induction
on i ≤ k we define ri, increasing in strength, with ν ∈ spl(ri) and
ci = setri(ν). Thus the ci are ⊆-decreasing sets of size κ. Given ri, we
distinguish cases:

First case: βi 6∈ Uα,ν(ri). Then there is ci+1 ∈ [setri(ν)]κ, ci+1 ∩
setpβi (ν) = ∅. We let ri+1 = ri(ν, ci+1) and thus have r〈ν〉i+1 ⊥ pβi .

Second case: βi ∈ Uα,ν(ri). We let

ci = {j ∈ setri(ν) : r〈ν 〈̂j〉〉i ≥ p〈ν 〈̂j〉〉βi
} ∪ {j ∈ setri(ν) : r〈ν 〈̂j〉〉i 6≥ p〈ν 〈̂j〉〉βi

}.

If ci,1 = {j ∈ setri(ν) : r〈ν 〈̂j〉〉i ≥ p
〈ν 〈̂j〉〉
βi

} has size κ, then we let
ci+1 = c1,i and ri+1 = ri(ν, ci+1) and thus get r〈ν〉i+1 ≥ pβi .

If |ci,1| < κ, then ci,2 = {j ∈ setri(ν) : r〈ν 〈̂j〉〉i 6≥ p
〈ν 〈̂j〉〉
βi

} has size
κ, and we let ci+1 = ci,2. For j ∈ ci+1, r〈ν 〈̂j〉〉i 6≥ p

〈ν 〈̂j〉〉
βi

. Thus we
can find a node in the r〈ν 〈̂j〉〉i \ p〈ν 〈̂j〉〉βi

and above this node we find a
splitting node of ri. We take this latter splitting node into ri+1 as the
direct successor splitting node to ν 〈̂j〉. Doing so for every j ∈ ci+1 we
get Fν,i, a front strictly above ν in ri+1 = ri(ν, ci+1, Fν,i). Again we get
r
〈ν〉
i+1 ⊥ pβi .
In the end we let rα,ν = rk. There is a front F that contains for

each j ∈ ck the shortest splitting node of rk above ν 〈̂j〉. Thus we have
rk = rα,ν = q(ν, ck, F ) and rα,ν fulfils (3.5).

(⊕)6 Now we use (⊕)5 iteratively along all ν ∈ κ<κ to find a fusion sequence
〈rα,ν , ν, cν , Fν : ν < κ<κ〉 with starting point qα = r0,ν0 . In this se-
quence, rα,ν is chosen as rα,ν(q) in ⊕5 for q =

⋂
β<α rβ, if ν ∈ spl(q).

If ν 6∈ spl(q), then rα,ν = q. Then we apply the fusion Lemma 3.4 and
get an upper bound rα of rα,ν , ν ∈ κ>κ. Note r〈ν〉α ⊥ pβ iff r

〈ν〉
α ⊥ p

〈ν〉
β

and r〈ν〉α ≥ pβ iff r〈ν〉α ≥ p〈ν〉β . Hence rα ≥ qα and

(∀ν ∈ spl(rα))(∀β ∈ Uα,ν(qα))(r〈ν〉α ⊥ pβ ∨ pβ ≤ r〈ν〉α ).

(⊕)7 Finally we choose nα and pα. There are k and ν such that n < ω and
ν ∈ spl(rα) such that pα = r

〈ν〉
α fulfils

(∀β < α)(nβ ≥ k → pα ⊥ pβ).
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Proof of existence. By induction on k ∈ ω we try to find 〈νk, βk : k ∈ ω〉
such that
(a) νk ∈ spl(rα),
(b) νk / νm for k < m,

(c) βk < α and nβk ≥ k and r〈νk〉α ≥ pβk .
If we succeed, then ν∗ =

⋃
{νk : k ∈ ω} = ν∗ ∈ spl(rα) by Definition 1.1

(2). Here we use that cf(κ) > ω. Hence

r〈ν
∗〉

α ∈ QT ∩
⋂
{Dk : k < ω} and

aηrα,ν∗ determines in Q1
κ

for any k < ω the value of τ
˜
� k.

This is a contradiction.
So there is a smallest k such that νk cannot be defined. We let

nα = k. We let pα be a strengthening of r〈νk−1〉
α such that pα ∈ Dnα .

For finding such a strengthening we again invoke the fusion Lemma 3.2.
We show that pα ⊥ pβ for β < α with nβ ≥ k. Otherwise, having

arrived at r〈νk−1〉
α we find some βk, α such that nβk ≥ k and r〈νk−1〉

α is
compatible with pβk . Then we can prolong νk−1 to a splitting node
νk ∈ spl(pβk) ∩ spl(rα). By the choice of rα the latter implies that
r
〈νk〉
α ≥ pβk . However, now we would have found νk, βk as required in
contradiction to the choice of k.

�

Remark 3.11. Conditions (a) to (c) of Lemma 3.10 yield: For any k < ω,

{pα : nα ≥ k} is dense in Q2
κ.

Proof. Let k and p be given. There is α0 such that Tα0 ∈ D0 and Tα0 ≥Q2
κ
p.

Then pα0 ≥ Tα0 and nα0 . Then there is α1 > α0 such that Tα1 ≥Q2
κ
pα0 .

Then pα1 ≥ Tα1 and hence by condition (c), nα1 > nα0 ≥ 0. We can can
repeat the argument k − 1 times. �

Now we drop the component γ̄α from a sequence 〈pα, nα, γ̄α : α < 2κ〉
given by Lemma 3.10. Then we get a sequence with properties (a), (b), and
a weakening (c) with the property stated in the remark.

Lemma 3.12. We assume that Q1
κ collapses 2κ to ω, cf(κ) > ω and 2(2<κ) =

2κ. Let 〈Tα : α < 2κ〉 enumerate all Miller trees that such each tree appears
2κ times. If 〈(pα, nα) : α < 2κ〉 are such that
(a) nα < ω,
(b) pα ∈ Dnα and pα ≥ Tα,
(c) if β < α and nβ = nα then pβ ⊥ pα,
(d) for any k ∈ ω, {pα : nα ≥ k} is dense in Q2

κ.
Then there is a Q2

κ-name τ
˜
′ for a surjection of ω onto 2κ.
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Proof. Let G be a Q2
κ-generic filter over V. We define τ

˜
(n), a Q2

κ-name by
τ
˜

(n)[G] = α if pα ∈ G and nα = n. The name τ
˜

is a name of a function
by (c). By (d), the domain of τ

˜
is forced to be infinite. For any p ∈ Q2

κ

we let Up = {α : Tα = p}. Up is of size 2κ, in particular for α ∈ 2κ we
have |Upα | = 2κ. Hence there is f : 2κ → 2κ such that for any α, γ ∈ 2κ and
∃β ∈ Upγ with f(β) = α. We let τ ′

˜
(n) = f(τ

˜
(n)). Next we show

Q2
κ  range(τ ′

˜
) = 2κ.

Suppose p ∈ QT and α < 2κ are given. By construction the sequence
{pβ : β < 2κ} is dense. Let p ≤ pγ . Then there is β ∈ Upγ , with f(β) = α.
However, β ∈ Upγ means Tβ = pγ ≤ pβ by construction. By the definition
of τ

˜
, pβ  τ˜

(nβ) = β, so pβ  f(τ
˜

(nβ)) = α. �

So we can sum up:

Theorem 3.13. We assume that Q1
κ collapses 2κ to ω and cf(κ) > ω and

2(κ<κ) = 2κ. Then the forcing with Q2
κ collapses 2κ to ℵ0.

4. κ-Cohen reals and the Levy collapse

Another vice of a κ-tree forcing is to add κ-Cohen reals. In this section we
show that under the above conditions, Qκ

2 adds Cohen reals and is equivalent
to the Levy collapse of 2κ to ℵ0.

Lemma 4.1. If P collapses 2κ to ℵ0, cf(κ) > ℵ0, and 22<κ = 2κ, then Q2
κ

adds a κ-Cohen real.

Proof. Let G be Q2
κ-generic over V. Let f : ω → 2<κ be a function in V[G],

such that (∀η ∈ 2<κ)(∃∞kf(k) = η). Such a function exists since 2<κ ≤ 2κ.
Since 22<κ = 2κ, we can enumerate all antichains in C(κ) in α∗ ≤ 2κ many

steps. In V[G], α∗ is countable. We list it as 〈αn : n < ω〉. Now we choose
ηn ∈ C(κ)V by induction on n in V[G]: η0 = ∅. Given ηn we choose kn such
that f(kn) = ηn and then we choose ηn+1 D ηn, such that ηn+1 ∈ Iαn . Then
{η : (∃n < ω)(η E f(kn))} is a C(κ)-generic filter over V and it exists in
V [G], since it it definable from {f(kn) : n < ω}. �

Two forcings P1, P2 are said to be equivalent if their regular open algebras
RO(Pi) coincide (for a definition of the regular open algebra of a poset, see,
e.g., [3, Corollary 14.12]). Some forcings are characterised up to equivalence
just by their size and their collapsing behaviour.

Definition 4.2. Let B be a Boolean algebra. We write B+ = B \ {0}. A
subset D ⊆ B+ is called dense if (∀b ∈ B+)(∃d ∈ D)(d ≤ b). The density
of a Boolean algebra B is the least size of a dense subset of B. A Boolean
algebra B has uniform density if for every a ∈ B+, B � a has the same
density. The density of a forcing order (P, <) is the density of the regular
open algebra RO(P).
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Lemma 4.3. [3, Lemma 26.7]. Let (Q,<) be a notion of forcing such that
|Q| = λ > ℵ0 and such that Q collapses λ onto ℵ0 , i.e.,

0Q Q |λ̌| = ℵ0.

Then RO(Q) = Levy(ℵ0, λ).

Lemma 4.4. If Q1
κ collapses 2κ to ℵ0, then Q1

κ is equivalent of Levy(ℵ0, 2κ).

Proof. Q1
κ has size 2κ. Hence Lemma 4.3 yields RO(Q1

κ) = Levy(ℵ0, 2κ). �

Definition 4.5. A Boolean algebra is (θ, λ)-nowhere distributive if there
are antichains p̄ε = 〈pεα : α < αε〉 of P for ε < θ such that for every p ∈ P
for some ε < θ

|{α < αε : p 6⊥ pεα}| ≥ λ.

Lemma 4.6. [1, Theorem 1.15] Let θ < λ be regular cardinals.
(1) Suppose that P has the following properties (a) to (c).

(a) P is a (θ, λ)-nowhere distributive forcing notion,
(b) P has density λ,
(c) in case θ > ℵ0, P has a θ-complete subset S. The latter means:

(∀B ∈ [S]<θ)(∃s ∈ S)(∀b ∈ B)(b ≤P s).
Then P is equivalent to Levy(θ, λ).

(2) Under (a) and (b) P collapses λ to θ (and may or may not collapse
ℵ0).

Proposition 4.7. If there is a κ-mad family of size 2κ the forcing Q1
κ is

(ℵ0, 2κ)-nowhere distributive.

Proof. Lemma 2.5 gives T such that p̄n = {aη : η ∈ n(2κ)}, n ∈ ω, witnesses
(ℵ0, 2κ)-nowhere distributivity. �

By Lemma 4.3 and Theorem 3.13 we get:

Proposition 4.8. If Q1
κ collapses 2κ to ℵ0, cf(κ) > ℵ and and 2(κ<κ) = 2κ

then Q2
κ is equivalent to Levy(ℵ0, 2κ).

Acknowledgement: We thank Marlene Koelbing for pointing out a gap
in an earlier version.
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