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Abstract. We show that club κ-Miller forcing may collapse κ++. We
show that under κ<κ > κ, club κ-Miller forcing collapses κ<κ to κ. An-
swering a question by Brendle, Brooke-Taylor, Friedman and Montoya,
we show that the iteration of ultrafilter κ-Miller forcing does not have
the Laver property.

1. Introduction

Many of the tree forcings on the Baire space over ω have various analogues
for higher cardinals. Here we are concerned with club κ-Miller forcing [16]
for regular uncountable κ, and some of our results apply also to κ-Sacks
forcing and some higher amoeba forcings.

In Section 2 we review some of the common tree higher forcings for un-
countable κ. We show that the diamond principle and the inaccessibility of κ
can be replaced by the weaker principle (Dl)κ in the known theorems about
the preservation of κ+ in κ-supported iterations of some popular higher tree
forcings like Kanamori’s κ-Sacks forcing [10], Landver’s versions of filter
Sacks forcing [14], κ-club Miller forcing [7], and κ-club Laver forcing [4].

In Section 3, we show that under κ<κ = κ it is independent whether club
κ-Miller forcing preserves 2κ = κ++. Petr Simon proved that Sacks forcing
collapses the continuum to the bounding number. Under an hypothesis on
a κ-evasion number, we show that club Miller forcing collapses 2κ to the
bounding number at κ.

In Section 4 we prove that club κ-Miller collapses κ<κ to κ if κ<κ > κ.
This may serve as a mathematical reason for the assumption κ<κ = κ in
work with higher tree forcings.

In Section 5 we answer a question of Brendle, Brooke-Taylor, Friedman
and Montoya: We show that the (≤ κ)-support iteration of κ-Miller forcing
with branching into a normal ultrafilter does not have the Laver property.
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Notation: Throughout the paper we let κ be an uncountable regular
cardinal. When used, we add additional conditions on κ. If dom(t), i are
ordinals, we write t̂ ⟨i⟩ for the concatenation of t with the singleton function
{(0, i)}, i.e., t̂ ⟨i⟩ = t ∪ {(dom(t), i)}. We write λ>κ for the set of functions
f : α → κ for some α < λ. The domain α of f is also called the length of f .
The set of subsets of κ of size κ is denoted by [κ]κ.

Definition 1.1. Let κ be an infinite cardinal.
(1) A tree (on κ) is a non-empty subset of κ>κ that is closed under initial

segments. We use the symbol ⊴ for the initial segment relation and
the symbot ◁ for the corresponding strict relation.

(2) A tree on κ is called unbounded if
(∀t ∈ p)(∀α < κ)(∃t′ ∈ p)(dom(t′) ≥ α ∧ t′ ⊵ t).

(3) Let T ⊆ κ>κ be a tree and s ∈ T . We let

T ⟨s⟩ = {t ∈ T : t ⊴ s ∨ s ⊴ t}.

(4) We let [T ] = {x ∈ κκ : (∀α < κ)(x ↾ α ∈ T )}. The set [T ] is called
the set of branches of T or the body of T .

(5) The elements of a tree are called nodes. A node that has at least two
immediate ◁-successors in p is called a splitting node of p. The set of
splitting nodes of p is denoted by spl(p).

(6) Let T ⊆ κ>κ be a tree that contains a splitting node. We let the trunk
of T , tr(T ), be the ⊴-least splitting node of T . If T has no splitting
node then we let tr(p) = p.

(7) Let P = (P, ≤P) = (P, ⊇) denote a forcing whose conditions are (< κ)-
closed unbounded trees. Let G be a P -generic filter. In V[G] we
define

xG =
⋃

{tr(p) : p ∈ G}.

The function xG is called the generic κ-real, branch, or function.

In the forcings we investigate, the conditions are unbounded trees with
additional properties. Subtrees are stronger conditions. In forcing we use
the Israeli notation that p ≤P q means that q is stronger than p1. We
usually write q ⊆ p. We write P ⊩ φ if any condition (equivalently, the
weakest condition is there is such one) forces φ.

We review some general properties. Often the κ-real xG is closely related
to the generic filter G:

Proposition 1.2. Let P = (P, ⊇) be a forcing whose conditions are (< κ)-
closed unbounded trees p ⊆ κ>κ. In addition we assume that P contains for

1We will also observe the alphabetical convention: Letters later in the alphabet are
used for stronger conditions.
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each p ∈ P and s ∈ p also the condition p⟨s⟩ (from Def. 1.1(3)). Let G be
the generic filter and xG be the generic real. Then the following holds.

(1) For any p, q ∈ P, p ⊩ xG ∈ [q] implies p ⊆ q.

(2) For any p, q ∈ P, xG ∈ [p] ∩ [q] implies that p and q are compatible.

(3) The κ-real xG determines G via G = {p ∈ P : xG ∈ [p]}.

Proof. (1) If p ̸⊆ q then there is t ∈ p \ q, and p⟨t⟩ ⊩ xG
˜

̸∈ [q].
(2) Let Dp,q = {r ∈ P : r ⊩ xG

˜
∈ [p] ∩ [q] ∨ r ⊩ xG

˜
̸∈ [p] ∨ r ⊩ xG

˜
̸∈ [q]}.

The set Dp,q is dense in P. So there is r ∈ Dp,q ∩ G. We fix such an r. Since
P contains only (< κ)-closed unbounded trees, we have xG ∈ [p] ∩ [q] ∩ κκ.
By the definition of Dp,q, r ⊩ xG ∈ [p] ∩ [q]. Hence by (1), r ≥ p, q.

(3) Suppose p ∈ G. Then by definition xG ∈ [p]. By (2), the set {p :
xG ∈ [p]} is a filter. Since the generic G is a subset of this filter, the latter
coincides with G. □

2. On the club version κ-Miller forcing

For an uncountable cardinal κ such that κ<κ = κ and such that ♢κ holds,
Kanamori [10] defined a club version of κ-Sacks forcing, proved a κ-version
of Axiom A for it and iterated it with support of size κ, in the style of
Baumgartner and Laver [3]. Later Eisworth [6] (again under κ<κ = κ > ω
and ♢κ) and Rosłanowski and Shelah [17, 18, 19, 20] (mainly for inaccessible
κ) investigated versions of κ-properness and (< κ+)-support iterations of
iterands of length κ++ for iterands that are in a strong sense proper for the
higher cardinal. All of the settings suppose that the iterands are (< κ)-
closed. An early use of ♢κ for showing that the κ-supported product of
κ-Silver forcing preserves κ+ is in Baumgartners proof of [2, Theorem 6.7].2

A careful inspection shows that in the named examples the diamond prin-
ciple can be replaced by the weaker principle (Dl)κ (see Def. 2.8). We
mention here some results that show that (Dl)κ is “slightly weaker”: For
κ ≥ ℵ1 being a successor cardinal, ♢κ and (Dl)κ are equivalent (see [12]).
For strongly inaccessible κ, the principle (Dl)κ holds. In Corollary 2.13 we
show that under suitable large cardinal hypotheses there is a forcing such
that in the extension there is a regular non-strong limit cardinal κ with
(Dl)κ and not ♢κ.

The use of the diamond ♢κ or of the principle (Dl)κ poses for many κ no
additional requirement. In Shelah [27] it is shown: If κ is a successor and
κ<κ = κ > ℵ2 then ♢κ. On (Dl)κ, see Theorem 2.10.

It is not known whether κ-properness in the sense of Eisworth coincides
with one of the various versions in the work of Rosłanowski and Shelah. The
preservation theorems by Eisworth and by Rosłanowski and Shelah suggest
that just replacing ω by κ in the definition of “properness” does in general

2Heike Mildenberger thanks Stevo Todorcevic for pointing this out to her on the Logic
Colloquium 2019 in Prague.
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not suffice to preserve κ+. The preservation of κ+ in iterations is usually
guaranteed only under additional requirements on κ and on the iterands.

There is an instructive example of a (< κ)-closed forcing that is not
proper: We write Sλ

κ = {α < λ : cf(α) = κ}. In the case of 2µ = κ for some
µ < κ, 2κ = κ+, a non-iterable (< κ)-closed forcing is the κ++ long iterated
forcing Punif adding a uniformisation to any colouring of a ladder system
⟨Cα : α ∈ κ+, cf(α) = κ⟩, see [23, Appendix]. However, if 2µ = κ, then no
continuous ladder system on Sκ+

κ has club uniformisation by [23, Theorem
3.6]. Thus (κ+)V is collapsed by Punif .

On the other hand Eisworth [6] shows for κ = ℵ1 that for a stationary
co-stationary S ⊆ Sℵ2

ℵ1
the forcing adding a uniformisation to any colouring

of a ladder system ⟨Cα : α ∈ S⟩ is consistent together with CH.
For inaccessible cardinals κ, Friedman and Zdomskyy [7] and Friedman

et al. [4, Section 5.2]) define a version of club κ-Miller forcing. We present
an equivalent version of the forcing and show that under κ<κ = κ > ω a
κ-version of Axiom A holds. For iteration with κ-support we use (Dl)κ.

Definition 2.1. Let κ be a regular cardinal such that κ<κ = κ. Conditions
in the forcing order Qa

κ are trees p ⊆ κ>κ with the following additional
properties:
(1) (Club filter superperfectness) For any s ∈ p there is an extension t ⊵ s

in p such that

osuccp(t) := {α ∈ κ : t̂ ⟨α⟩ ∈ p} is club in κ.

We require that each node has either only one direct successor or splits
into a club.

We write for t ∈ p,

succp(t) := {t̂ ⟨α⟩ ∈ κ : t̂ ⟨α⟩ ∈ p}

for the set of immediate p-successors of t.
(2) (Closure of splitting) For each increasing sequence of length < κ of

splitting nodes, the union of the nodes on the sequence is a splitting
node of p as well.

A condition q is stronger than p if q ⊆ p.

We remark that clauses (1) and (2) imply that any p ∈ Qa
κ is unbounded

and has the following closure property:
(3) For every increasing sequence ⟨ti : i < λ⟩ of length λ < κ of nodes

ti ∈ p ∈ Qa
κ we have that the limit of the sequence

⋃
{ti : i < λ} is

also a node in p.
This clause is sometimes added to the definition, see e.g., [4, Def. 74], where
the forcing is called MIClubfilter

κ . Splitting into osucc-sets in the club filter
is equivalent to splitting into club sets. The forcing Qa

κ is isomorphic to
its version that works only with nodes that are strictly increasing elements
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of κ>κ. The forcing Qa
κ is isomorphic to a dense subset of MIClubfilter

κ and
hence their regular open algebras coincide.

In [4, Prop. 77] it is shown that Qa
κ adds a κ-Cohen real, i.e., a generic for

(2<κ,⊴). This is a sharp contrast to ω-Miller forcing. The latter preserves
P -points and hence does not add Cohen reals.

Definition 2.2. (See [10]) The κ-Sacks forcing Sκ. Conditions in Sκ are
perfect subtrees of 2<κ such that each limit of a (< κ)-sequence of splitting
nodes is a splitting node.

Interesting non-equivalent variants of κ-Sacks forcing were introduced by
Landver in [14]. He replaces closure of splitting nodes by the requirement
that the splitting nodes along each branch must be in a given normal filter
over κ.

It is well-known (see e.g., [10, 17, 7]) that under κ<κ = κ the forcing
order Qa

κ fulfils a κ-version of Axiom A. We define ≤α slightly differently
from Friedman and Zdomskyy [7, Def. 2.2], so that the premise κ<κ = κ
suffices for the fusion lemma for one iterand. However, in iterations the
inaccessibility of κ or the diamond is used in limit steps. See Discussion 2.7
below. We show that (Dl)κ suffices.

Notation 2.3. We assume κ<κ = κ. (This assumption is waived only
in Section 4 and taken up again in Section 5.) We fix an enumeration
⟨ηi : i < κ⟩ of κ<κ such that ηi ◁ ηj implies i < j.

Definition 2.4. For α < κ we let

splα(p) =
{
t ∈ spl(p) : otp({s ⊊ t : s ∈ spl(p)}) = α

}
and

clα(p) := {s ∈ p : (∃γ ≤ α)(∃t ∈ splγ(p))(s ⊆ t) ∧ (∃β ≤ α)(s = ηβ)}.

We let p ≤α q if p ≤ q and clα(p) = clα(q).

Note | clα(p)| ≤ |α| + ℵ0 < κ.

Lemma 2.5. The forcing (Qa
κ, ≤) together with the orders (≤α)α<κ fulfils

the fusion lemma.

Proof. Let ⟨pα : α < κ⟩ be a fusion sequence, i.e. pα ≤α pβ for α < β.
Then ∅ ∈

⋂
pα. Now let t ∈

⋂
pα. For α < κ, let γα be maximal γ such

that t ∈ clγ(pα). By closure of splitting, the maximum exists. Since the
⟨pα : α < κ⟩ are increasing in strength we have for α ≤ β, γα ≥ γβ. Then
let γ be the minimum of the γα, α < κ. Let γ < α0 < κ be such that for any
α ≥ α0, t ̸∈ clγ+1(pα). Now we choose an increasing continuous sequence
⟨tα : α0 ≤ α < κ⟩ such that tα is a minimal node in splγ+1(pα) above tβ,
α0 ≤ β < α. There are club many α such that for any tβ, β < α, there is
some i < α such that tβ = ηi. We take the minimal limit element β of such
a club. Then by definition of ≤α, tβ stays a (γ + 1)-splitting node in all the
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pα, α < κ. Its osucc-set in
⋂

pα is a diagonal intersection of osuccpα(tβ),
α < κ.

It is clear that any (< κ)-limit of splitting nodes of
⋂

pα is a splitting
node in

⋂
pα. □

Lemma 2.6. For every maximal antichain A and every α and p there is a
q ≥α p that is compatible with at most κ members of the antichain.

Proof. For any t ∈ splα(p) we find a club Ct ⊆ osuccp(t) of i such that for
any i ∈ Ct there is a condition qt,i with p⟨t̂ ⟨i⟩⟩ ≤ qt,i. Since A is a maximal
antichain, there is some a ∈ A such that there is some rt,i ≥ qt,i, a. Now we
let

q :=
⋃

{rt,i : t ∈ splα(p), i ∈ Ct}.

The union q is a condition and q ≥α p and q is compatible just with | splα(p)|·
κ many elements of A. □

In Section 4 we will see that the assumption κ<κ = κ is essential.
In summary (Qa

κ, ≤, (≤α)α<κ) fulfils a κ-version of Axiom A and preserves
κ.

If 2κ = κ+ then Qa
κ preserves cardinals strictly above κ+.

Discussion 2.7. As in the above, we restrict our attention to regular un-
countable κ with κ<κ = κ. For κ = λ+ > ℵ1 and 2λ = κ, by [27], ♢κ

holds. So only for κ = ℵ1 and for regular non-strong limit cardinals κ, it
is open whether κ<κ = κ is sufficient for preserving κ+ in iterations with
support κ of suitable (< κ)-closed tree forcing iterands like κ-Sacks forcing
(see Def. 2.2) or club κ-Miller forcing (see Def. 2.1). For Sacks forcing,
Kanamori asks this question in [10].

2.1. Fusion sequences for limits of cofinality κ. In this subsection we
show that ♢κ can be replaced by (Dl)κ as a sufficient condition that the
κ-support iteration of a tree forcing iterands with Axiom A preserves κ+.
This is a weak partial answer to Kanamori’s question. First we show that
(Dl)κ can be strictly weaker than ♢κ.

Definition 2.8. (See [21, 24, 25].)
(1) For a regular uncountable κ and a stationary S ⊆ κ we let (Dl)S

mean the following: There is a sequence F̄ = ⟨Fδ : δ ∈ S⟩ such
that Fδ ⊆ δδ is of cardinality < κ and for every f ∈ κκ there are
stationarily many δ ∈ S such that f ↾ δ ∈ Fδ.

(2) We write (Dl)∗
S if in (1) we demand that the set {δ ∈ S : f ↾ δ ̸∈ Fδ}

is not stationary.

Fact 2.9. We assume that κ is regular and uncountable and S ⊆ κ is sta-
tionary.

(1) If κ is a successor cardinal then (Dl)S is equivalent to ♢S and (Dl)∗
S

is equivalent to ♢∗
S.
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(2) If κ is strongly inaccessible then (Dl)∗
S holds.

(3) If S1 ⊆ S2 are stationary in κ then (Dl)S2 implies (Dl)S1 and the
same for the diamond and both ∗-versions.

Proof. (1) Is proved by Kunen [12, Chapter III]. (2) We can let for δ ∈ S,
Fδ = δδ, and we have that ⟨Fδ : δ ∈ S⟩ is a (Dl)∗

S-sequence. □

Theorem 2.10. If µ is an uncountable strong limit cardinal and κ<κ = κ >
µ then for all but finitely many regular θ < µ we have (Dl)∗

{δ<κ : cf(δ)=θ}.

Proof. See [25]. □

Lemma 2.11.
(1) Assume that κ is strongly inaccessible and S ⊆ κ is stationary and P is

a κ-c.c. forcing notion of cardinality κ. Then the following holds.
(a) In VP, (Dl)∗

S holds and hence κ<κ = κ.

(b) If ♢S holds in V, then it holds also in VP.

(2) If in addition P has the θ-c.c. for some regular θ < κ then the follow-
ing holds.

(a) In VP the cardinal κ is weakly inaccessible.

(b) We assume yet in addition that θ ≤ µ < κ, µ is regular, and

(2.1) V |= (∀α < κ)(cf(α) ≥ µ → |α|<θ = |α|).
Let S = Sκ

≥µ := {α < κ : cf(α) ≥ µ}. If V |= ¬♢S, so
VP |= ¬♢S.

Proof. (1)(a) Since P has the κ-cc., S is also stationary in VP. We choose
an continuously increasing sequence ⟨Pα : α < κ⟩ of subsets of P such that
|Pα| < κ, P =

⋃
{Pα : α < κ} and Pα ≤ic P, i.e., Pα is an incompatibility

preserving suborder of P, incompatibility of two elements of Pα within the
order Pα entails their incompatibilty in P. Let Dδ be the set of canonical
Pδ-names for functions in δδ. Such a canonical name τ

˜
has, e.g., the form

τ
˜

= {⟨pτ
γ̃,β, ⟨γ, f τ

˜ (γ, β)⟩⟩ : γ < δ, β < βγ}

such that
(i) for γ < δ, βγ < κ.

(ii) for γ < δ, β < βγ , f τ
˜ (γ, β) < δ.

(iii) for γ < δ, {p
τ
γ̃,β : β < βγ} is a maximal antichain in Pδ.

We let Pδ be a name for all evaluations of elements of Pδ, so
Pδ = {⟨1P, τ

˜
⟩ : τ

˜
is a canonical Pδ-name}.

Since κ is strongly inaccessibly and (|δ| · |Pδ|)|Pδ| < κ, we have that for any
δ < κ, |Pδ| < κ and hence P ⊩ |Pδ| < κ.
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Moreover, since P has the κ-c.c., every P-name for an elements of δδ is a
Pε-name for some ε < κ. We show that P forces that ⟨Pδ : δ ∈ S⟩ has the
guessing property of a (Dl)∗

S-sequence. Let τ
˜

be a canonical P-name for a
function from κ to κ. We have to show that
(2.2) P ⊩ {δ ∈ S : τ

˜
↾ δ ∈ Pδ} is stationary.

We let
C1 ={δ < κ : (∀α < δ){p

τ
α̃,β : β < βα} ⊆ Pδ}.

The set C1 is club in κ. Let P force that C
˜

be a P-name for a club subset of
κ. Since P has the κ-c.c., there is a club C2 ∈ V, such that P ⊩ C2 ⊆ C

˜
. Let

p ∈ P. Let δ ∈ S ∩ C2 ∩ C1. For γ < δ, β < βγ , p
τ
γ̃,β ⊩ τ

˜
(γ) = f(γ, β). By

the definition of C1 and Pδ, we have P ⊩ τ ↾ δ ∈ Pδ. Hence (2.2) is proved.
(1)(b) We let Pα, α < κ, be chosen as in the proof of (1)(a). Let S ⊆ κ

be stationary and let ⟨Dα : α ∈ S⟩ be a ♢S-sequence in V. We assume
that P ⊆ κ. Then there is a club C such that Pδ ⊆ δ for δ ∈ S ∩ C. Let
φ : κ → κ × (κ × κ) be a bijection. By the κ-c.c, there is a club C1 ⊆ C such
that for δ ∈ C1,
(⊕)1 φ ↾ δ is onto δ × (δ × δ), and
(⊕)2 (∀β < δ)(∀γ, α < κ)(⟨α, ⟨β, γ⟩⟩ ∈ τ

˜
→ α, γ < δ).

Let for α ∈ S ∩ C1,
D′

α = {φ(β) : β ∈ Dα}.

We show that P forces that ⟨⟨1P, ⟨α, D′
α⟩⟩ : α ∈ S⟩ is a name for a diamond

sequence on S in VP.
We let

A = {φ−1(⟨α, ⟨β, γ⟩⟩) : ⟨α, ⟨β, γ⟩⟩ ∈ τ
˜

}.

Then there are stationarily many δ ∈ S ∩ C1 such that A ∩ δ = Dδ. By the
choice of C1 and of D′

δ, for any such δ we have
P ⊩ τ

˜
↾ δ = D′

δ.

(2)(a) Any cardinal δ ∈ [θ, κ] in V stays a cardinal in the extension. Since κ
is regular in the ground model, by the κ-c.c., it stays regular in the extension.

(2)(b) Now let S be the special set as in the premise. A ♢−
S sequence

is a (Dl)κ-sequence ⟨Pδ : δ < κ⟩ such that |Pδ| ≤ δ. There is a function
f : κ → κ such that for each δ < κ, each Pδ has a Pf(δ)-name. By the θ-c.c.
and the assumption on cardinal expontiation, we have (∀δ ∈ S)(f(δ) ≤ δ).
Let ⟨Pδ : δ ∈ S⟩ be a ♢−

S -sequence in VP. Then P ⊩ |Pδ| ≤ |δ|. We let for
δ ∈ S,

Dδ = {x ∈ δδ ∩ V : (∃p ∈ Pδ)(p ⊩ x ∈ Pδ)}.

Since P has the θ-c.c. and since P ⊩ |Pδ| ≤ δ, the set Dδ has size at most
|δ|. We show

⟨Dδ : δ ∈ S⟩
is a ♢−

S -sequence in V. Let x ⊆ κ ∈ V, C ⊆ κ be club in V. By the κ-c.c.,
C is also a club in VP. Then for any δ < κ, x ∩ δ has a Pδ-name. By
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assumption, P ⊩ “{δ ∈ C ∩ S : x ↾ δ ∈ Pδ} ̸= ∅”. We pick δ ∈ C ∩ S and
p ∈ P such that p ⊩ x ∩ δ ∈ Pδ. Since δ ∈ S we can choose p ∈ Pδ. Thus
x ∩ δ ∈ Dδ. □

Remark 2.12. Let κ be strongly inaccessible. For any regular ξ < κ, the
forcing adding κ many ξ-Cohen reals, i.e.,

P = {f : (∃u ∈ [κ]<ξ)(f : u → {0, 1})},

fulfils the premises of (1) and has the ξ+-cc.
Finally we separate ♢S from (Dl)S for some stationary sets S.

Corollary 2.13. If there is a supercompact cardinal κ and a measurable
above κ, ξ < κ, then is consistent that κ is strongly inaccessible and for any
stationary S ⊆ κ, (Dl)S holds but ♢S fails.

Under the same large cardinal assumptions there is a weakly inaccessible
not strongly inaccessible cardinal κ and there is are regular ξ+ < µ < κ such
that for S = {α < κ : cf(α) ≥ µ} the principle (Dl)S holds but the diamond
♢S fails.
Proof. It suffices to force that κ is strongly inaccessible and ¬♢κ. Under
the named large cardinal assumption there is such a forcing construction in
unpublished work by Woodin. Golshani worked Woodin’s construction out
in [8]. Zeman [29] provides a lower bound on the consistency strength.

For the second part of the corollary, we consider Woodin’s model as the
ground model V. The iterated modified Radin forcing that is based on a
measure sequence forces (2.1).

We apply Lemma 2.11(1) and (2) to a forcing P as in Remark 2.12. Such
a forcing destroys that κ is a strong limit but preserves that κ is weakly
inaccessible. According to the second part of the lemma, ♢S fails in VP.
Note that the notion of being a cardinal is not changed by P for cardinals
of cofinality at least ξ+. □

This concludes our discussion of the principle (Dl)S .
Now we return to Miller and Sacks forcing.

Definition 2.14.
(1) Let Pα be the κ-support iteration of Qa

κ. If p, q ∈ Pα, γ < κ, and
F ⊆ supp(p) we write q ≥F,γ p if ∀β ∈ F , q ↾ β ⊩ q(β) ≤γ p(β).

(2) We denote that support of a condition by supp(p).
Lemma 2.15. (Kanamori, proof of [10, Theorem 2.2]) Assume (Dl)κ and
that p ∈ Pα and p ⊩Pα τ ∈ On. Suppose also that F ⊆ supp(p) and |F | < κ,
and that γ < κ. Then there is a q ≥F,γ p and an x ⊆ On, |x| ≤ κ, such that
q ⊩ τ ∈ x.
Proof. Sketch. We rework Kanamori [10, Theorem 2.2] and shows that it
works with (Dl)κ instead of ♢κ. The modification is: By (< κ)-closure, in
the successor step, we can find a strengthening of all the < κ many guesses
offered by (Dl)κ by strengthening successively, in < κ substeps. □
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As a routine conclusion of the technical lemma we get the following:
Theorem 2.16. Assume κ<κ = κ and (Dl)κ. Let δ be an ordinal and
let P = ⟨Pα,Q

˜
β : α ≤ δ, β < δ⟩ be a (≤ κ)-support iteration of iterands

Q
˜

β = Qa
κ (in VPβ ). Then Pδ has the following properties.

(1) Pδ does not collapse κ+.
(2) (κ-properness) For any N ≺ H(χ), |N | = κ with <κN ⊆ N and

κ, p,Pδ ∈ N , and p ∈ Pδ there is a stronger (N,Pδ) generic condition
q.

The same holds for any κ-support iteration of κ-Sacks forcing. We restate
Kanamori’s question:
Question 2.17. Can we replace (Dl)κ by κ<κ = κ in Theorem 2.16?

3. κ++ may be preserved or not

Here we are concerned with the preservation of κ++. In this section we
show that under the condition 2κ = κ++ the preservation of κ++ by Qa

κ is
independent from ZFC.
Definition 3.1. Let Q be a forcing order and let λ be a cardinal. Ax(Q, < λ)
is the statement: For any set D of size < λ of dense sets in Q there is a filter
G ⊆ Q such that (∀D ∈ D)(G ∩ D ̸= ∅). Such a filter is called D-generic.
Definition 3.2. An amoeba for Qa

κ. See [13]. Let κ > ℵ0 be an inaccessible
cardinal. The amoeba for κ-Miller forcing, Qa,amoeba

κ , is the following forcing
order: Conditions are of the form p = (tp, Tp), where Tp ∈ Qa

κ and tp is a
subtree of Tp that is (< κ)-closed in the following sense

(a) each increasing sequence of splitting nodes in tp of length (< κ) is a
splitting node of tp (hence tp has maximal nodes which are of successor
length). We write

term(tp) = {s ∈ tp : (¬∃t ▷ s)t ∈ tp}.

This set is called the set of terminal nodes of tp. Since tp is (< κ)-
closed, for each s ∈ tp there is a subset F of p⟨s⟩ such that for each
branch b of p⟨s⟩ terminal t ⊵ s, t ∈ b.

(b) For each t ∈ tp ∩ spl(p) \ term(tp) we have osucctp(t) is a closed initial
subset of osuccTp(t).

The requirement (b) is used for
⋃

{tp : (tp, Tp) ∈ G} ∈ Qa
κ. This is

used in Theorem 3.4 (4)(b).
The forcing order is as follows: (tp, Tp) ≤ (tq, Tq) if Tq ⊆ Tp, tq ⊇ tp and

for each η ∈ tp, osucctp(η) is an initial segment of osucctq (η).

Results about Qa,amoeba
κ , for inaccessible κ, can be found in [13].

Definition 3.3. Now we define ≤α for Qa,amoeba
κ under the assumption

κ<κ = κ.
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(1) Let p = (tp, Tp) ∈ Qa,amoeba
κ .

We write
term(tp) = {s ∈ tp : (¬∃t ▷ s)t ∈ tp}.

This set is called the set of terminal nodes of tp.

(2) Let α < κ. We define

splamoeba
α (p) =

{
t ∈ spl(Tp) \ tp :

otp({s ∈ Tp \ tp : s ⊊ t ∧ s ∈ spl(Tp)}) = α
}
.

(3) Let ⟨ηα : α < κ⟩ enumerate κ<κ = κ and let α < κ.

clamoeba
α (p) := {s ∈ Tp : (∃γ ≤ α)(∃t ∈ splamoeba

γ (p))(s ⊆ t)∧(∃β < α)(s = ηβ)}.

(4) For α < κ we let p = (tp, Tp) ≤α q = (tq, Tq) if p ≤ q, tp = tq and
clamoeba

α (p) = clamoeba
α (q).

Now we state the positive part of the consistency result.

Theorem 3.4. Suppose that κ > ω, κ<κ = κ.
(1) Ax(Qa

κ, < κ++) and 2κ = κ++ is consistent relative to ZFC.
Now let κ be inaccessible.

(2) Ax(Qa,amoeba
κ , < κ++) and 2κ = κ++ is consistent relative to ZFC.

Proof. (1) and (2). Over a ground model with κ<κ = κ, 2κ = κ+ and ♢κ,
one performs the usual iteration with (≤ κ)-support as introduced in [10].
Any name for κ+-many dense subsets of Qa

κ has an equivalent name that is
hereditarily of size < κ++, and hence there is a book-keeping device.

□

Forcing with Qa
κ may collapse 2κ to bκ. Now we come to a comple-

mentary scenario: Qa
κ may collapse 2κ to bκ. Petr Simon showed that Sacks

forcing collapses the continuum to the bounding number [28]. Here we prove,
under additional hypotheses, a similar result for the higher case. Our result
pertains to Qa

κ.

Definition 3.5. We recall the definition of three cardinal invariants at
κ.
(1) The ideal of bounded subsets of κ is Jbd

κ = [κ]<κ. The order of eventual
domination is: f ≤Jbd

κ
g if {α : f(α) ̸≤ g(α)} ∈ Jbd

κ . The bounding
number at κ is the following cardinal

bκ = min{|F | : F ⊆ κκ ∧ (∀g ∈ κκ)(∃f ∈ F )(f ̸≤Jbd
κ

g)}.

(2) The order of club-domination is defined on functions from κ to κ as
follows: f ≤club g if {α ∈ κ : f(α) ≤ g(α)} contains a club subset.
The bounding number modulo a club at κ is the following cardinal
bclub,κ = min{|F | : F ⊆ κκ ∧ (∀g ∈ κκ)(∃f ∈ F )(f ̸≤club g)}.
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By [5, Theorem 6], bclub,κ = bκ for any regular uncountable κ.
For any condition p in a tree forcing, in particular for Qa

κ, there is a
function mapping each node to the shortest splitting node above it. We
work with this function for thinning out trees.

Definition 3.6.
(1) We say p ∈ Qa

κ is nice if the following holds:
(a) For every p ∈ Qa

κ for every η ∈ p, η is a strictly increasing
function.

(b) If η ∈ spl(p) then lg(η) is a limit ordinal.
(2) We fix an enumeration ⟨ηα : α < κ⟩ of κ>κ. Let p ∈ Qa

κ. We define
hp : κ>κ → κ>κ

as follows: For η = ηα ∈ p \ spl(p) we let hp(η) be the shortest ν such
that (η ν̂ ∈ spl(p) and lg(η ν̂) ≥ α).

For η ̸∈ p and for η ∈ spl(p), we let hp(η) = ∅.
(3) Let A ⊆ κ>κ. h : κ>κ → κ>κ is called increasing on A if for every

η ∈ A there is (ϱ, σ) ∈ h(η) such that
(∀α ∈ dom(η))(η(α) < σ).

The set of nice conditions in dense in the isomorphic copy of Qa
κ whose

conditions contain only strictly increasing nodes. From now on we assume
that any p ∈ Qa

κ contains only strictly increasing nodes.

Remark 3.7. If p ∈ Qa
κ is nice and A = {η ⟨̂α⟩ : η ∈ spl(p), η ⟨̂α⟩ ∈ p},

then the function hp from Definition 3.6(2) is increasing on A.

We work with particular evasion numbers, defined as follows.

Definition 3.8.
(1) Let e0

κ be the maximal λ such that for every F ⊆ (κ>κ)κ of size < λ
and every everywhere strictly increasing h : κ>κ → κ>κ there is some
g : κ>κ → κ with the following property:

For every f ∈ F and η ∈ κ>κ there is a stationary set S = Sh,f,η

such that for any δ ∈ S

g(η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)) ̸= f(η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)).

(2) Actually we can work with a somewhat more specific variant of e0
κ:

Let e1
κ be the maximal λ such that for every nice p ∈ Qa

κ and h = hp

and for every F ⊆ (κ>κ)κ of size < λ there is some g : κ>κ → κ with
the following property:

For every f ∈ F and η ∈ spl(p) there is a stationary set S = Shp,f,η

such that for any δ ∈ S

η ⟨̂δ⟩ ∈ p ∧ g(η ⟨̂δ⟩̂ hp(η ⟨̂δ⟩)) ̸= f(η ⟨̂δ⟩̂ hp(η ⟨̂δ⟩)).
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Lemma 3.9. Suppose that κ = κ<κ > ℵ0 and that P is the forcing adding
λ = λκ many Cohen reals with support < κ. Then in the extension we have

bκ = bclub,κ = κ+ ∧ e0
κ = e1

κ = λ.

Proof. It is easy to see that the first κ+ Cohen reals form an unbounded
family. Now we work in the forcing extension. Let P = Pλ = ⟨Pα,Qβ : β <
λ, α ≤ λ⟩ be the iteration, Qα = (κ>κ, ◁). Suppose F and h are given as in
the definition of e0

κ. Since F is of size < λ, there is an initial segment Pα

of Pλ, α < λ and a p ∈ Pα, such that p forces that F and h are Pα-names.
We conceive Cohen reals as functions from κ>κ → κ. Since κ<κ = κ, this is
possible. Now let g = cα be the α-th Cohen real.

Suppose for a contradiction that there is some q ∈ Pλ, q ≥ p, η ∈ κ>κ,
f ∈ F and a name C

˜
such that

q ⊩C
˜

is club in κ∧
(∀δ)(δ ∈ C

˜
→ cα(η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)) = f(η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)))(3.1)

Now by induction on n < ω we choose δ−1 = 0 and increasing qn ≥ q,
qn ∈ Pλ, and δn such that

qn ⊩δn ∈ C
˜

∧ δn > δn−1∧
cα(η ⟨̂δn⟩̂ h(η ⟨̂δn⟩)) = f(η ⟨̂δn⟩̂ h(η ⟨̂δn⟩))

and
(∀ν ∈ dom(qn(α)))(∀σ ∈ range(ν))(σ < δn+1).

Then we let r =
⋃

qn and we let δ = sup δn. Then

r ⊩ δ ∈ C
˜

.

Since h is an increasing function, we have

η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)) ̸∈ dom(r(α)).

Hence there is some x ∈ κ such that

s = r ∪ {⟨α, ⟨η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)), x⟩⟩} ∈ Pλ

and
x ̸= f(η ⟨̂δ⟩̂ h(η ⟨̂δ⟩)).

So we reached a contradiction to the assumption (3.1). For e1
κ we work with

a name for a subset of osuccp(η) in Equation (3.1). □

In preparation for the next theorem we recall nowhere distributivity and
some notions for complete boolean algebras. Two forcings P1, P2 are said
to be equivalent if their regular open algebras RO(Pi) are isomorphic (for
a definition of the regular open algebra of a poset, see, e.g., [9, Corollary
14.12]). Some forcings are characterised up to equivalence just by their
density, their closure, and their collapsing behaviour. For a Boolean algebra
B, we denote by B+ = B \ {0B}.
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Definition 3.10. ([1, Def.17]) Let B be a Boolean algebra θ, λ cardinals. A
collection P ⊆ P(B+) is called a matrix if each member of P is a maximal
disjoint subset of B+.

A Boolean algebra B is (θ, λ)-distributive if for every matrix P = {Pα :
α ∈ θ} there is some maximal disjoint set Q ⊆ B+ such that for each q ∈ Q
and α ∈ θ, |{p ∈ Pα : p ∩ q ̸= 0}| < λ.

A Boolean algebra is called (θ, λ)-nowhere distributive if for every x ∈ B+

the algebra B ↾ x = {y ∈ B : y ≤ x} is not (θ, λ)-distributive.
Lemma 3.11. ([1, Lemma 1.11]) If a Boolean algebra is (θ, λ)-nowhere
distributive then there are maximal antichains p̄ε = ⟨pε

α : α < αε⟩ of P for
ε < θ such that for every p ∈ P for some ε < θ

|{α < αε : p ̸⊥ pε
α}| ≥ λ.

Definition 3.12. Let B be a Boolean algebra. A subset D ⊆ B+ is called
dense if (∀b ∈ B+)(∃d ∈ D)(d ≤ b). The density of a Boolean algebra B
is the least size of a dense subset of B. A Boolean algebra B has uniform
density if for every a ∈ B+, B ↾ a has the same density. The density of a
forcing order (P, <) is the density of the regular open algebra RO(P).

From the following Lemma, only part (3) will be used later. Part (3)
together with Lemma 3.11 gives an alternative proof of part (2).
Lemma 3.13. Let θ < λ be regular cardinals.

(1) [1, Theorem 1.15] Suppose that P has the following properties (a) to
(c).

(a) P is a (θ, λ)-nowhere distributive forcing notion,
(b) P has density λ,
(c) in case θ > ℵ0, P has a (< θ)-complete dense subset S. The

latter means: For any γ < θ for any ≤P-ascending sequence
⟨bi : i < γ⟩ of elements bi ∈ S, there is an upper bound s ∈ S,
i.e., for any i, (bi ≤P s).

Then P is equivalent to Levy(θ, λ).
(2) [26] Under (a) and (b), P collapses λ to θ (and may or may not

collapse ℵ0).
(3) Suppose that P has density λ and that there are maximal antichains

Pε = ⟨pε,α : α < αε⟩ for ε < bclub,κ as in Lemma 3.11. Then P
collapses λ to θ.

Proof. (3) For completeness, we show such a name. We let for ε < bclub,κ, Pε

be a maximal antichain such that for any p ∈ Qa
κ, there is some ε < bclub,κ

such that |{q ∈ Pε : q ̸⊥ p}| ≥ λ. We enumerate Qa
κ as ⟨pα : α < λ⟩

such that each condition appears λ times. For each ε < bclub,κ we choose by
induction on α < λ a pair (qε,α, rε,α) such that

(a) qε,α ∈ {s : (∃r ∈ Pε)(r ≤ s)} and for β < α, qε,α ⊥ q′
ε,β.
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(b) If |{q ∈ Pε : q ̸⊥ pα}| = λ the we choose rε,α ≥ pα, qε,α. Otherwise
we let rε,α = qε,α.

This is easily done. Then we define a name τ
˜

of a function from bκ into λ
by letting for ε ∈ bκ,

τ
˜

[G](ε) =
{

otp{β < α : pβ = pα} if rε,α ∈ G (this α is unique);
0 else.

We show that τ
˜

is a name for a surjection from bκ to λ. Given a condition
p and α ∈ λ, we first choose ε < bκ such that |{q ∈ Pε : q ̸⊥ p}| = λ and
enumerate {β < λ : p = pβ} in increasing order via ⟨βζ : ζ < λ⟩.

Then we choose ζ = α and have that

rε,βα ⊩ τ
˜

(ε) = α.

□

Theorem 3.14. Suppose
(a) κ = κ<κ > ω and

(b) e1
κ = λ = 2κ.

Then Qa
κ collapses 2κ to bclub,κ.

Proof. It suffices to show that there are maximal antichains as in the premise
of Lemma 3.11. Then Lemma 3.13(3) provides a name for a collapsing
function.
(⊗)1 We fix an enumeration ⟨ηi : i < κ⟩ of κ<κ such that

(a) ηi ◁ ηj implies i < j and

(b) for each α < κ, lg(ηα) ≤ α.

(c) For each β, ε < κ if η ⟨̂ε⟩ = ηβ then β ≥ ε.
For η ∈ κ>κ, the index of η is the minimal α such that η = ηα.

(⊗)2 We fix a function h∗ : κ → κ such that for any α < κ, h−1[{α}] is a
stationary subset of κ.

(⊗3) Now we define for nice conditions p ∈ Qa
κ three sets of nodes

Λ1
p = {η ∈ spl(p) : otp({α < lg(η) : η ↾ α ∈ spl(p)}) is a limit ordinal}

If α < lg(η) and η ↾ α ∈ spl(p) contains a limit order type, say αi,
i ∈ I converge to αlim, then it also contains η ↾ αlim since the latter
must be a splitting point, so

⋃
i∈I η ↾ αi = η. So equivalently we can

say that Λ1
p is the set of limits of splitting nodes.

We choose Λ1
p and not spl(p) for our thinning out procedures on

splitting successors of limit splitting points that are called Λ3
p. The

point is that after the thinning out according to (⊗)4 we still have
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a condition, since we thin out at most the successor sets of splitting
nodes at successor splitting levels.

Λ2
p = {η ⟨̂α⟩ : η ∈ Λ1

p}
Λ3

p = {η ⟨̂α⟩̂ hp(η ⟨̂α⟩) : η ∈ Λ1
p, η ⟨̂α⟩ ∈ Λ2

p}.

For a nice p and η ∈ Λ1(p) we have for any α such that η ⟨̂α⟩ ∈ p,
that η ⟨̂α⟩ ̸∈ spl(p) and η ⟨̂α⟩̂ hp(η ⟨̂α⟩) ∈ Λ3

p.

(⊗)4 For p ∈ Qa
κ, g : κ>κ → κ we define q = q(p, g) as the set of η ∈ p such

that
(∀α < lg(η))(η ↾ α ∈ Λ3

p

→ η(α) = min{ξ : η ↾ α ⟨̂ξ⟩ ∈ p ∧ h∗(ξ) = g(η ↾ α))}).

Then q(p, g) is a condition and q(p, g) ≥ p.
If p ∈ Qa

κ, g is as above, and q = q(p, g), then for any r ≥ q,
spl(r) ∩ Λ3

p = ∅.

(⊗)5 Let E be a club and p ∈ Qa
κ. We say p is suitable for E if for any

η ∈ spl(p) we have
{δ < κ : η ⟨̂δ⟩ ∈ p ∧ lg(η ⟨̂δ⟩̂ hp(η ⟨̂δ⟩)) ̸∈ E}

is a stationary subset of κ.
(⊗)6 For p, q ∈ Qa

κ we define a function
gp,q : κ>κ → κ

as follows. If ν ∈ Λ3
p ∩ (q \ spl(q)), then we let

gp,q(ν) = min(h−1
∗ [{ξ}])

for the unique ξ < κ such that ν ⟨̂ξ⟩ ∈ q. For all other ν, we let
gp,q(ν) = 0.

(⊗)7 Let E be club in κ such that there is a p suitable for E. We show:
There is a maximal antichain PE = ⟨qE,α : α < 2κ⟩ with the following
property: For every p ∈ Qa

κ that is suitable for E there are 2κ mutually
incompatible stengthenings qE,α > p, α ∈ A for some A ⊆ 2κ, |A| =
2κ.

Proof: Let ⟨pE,α : α < 2κ⟩ list the p ∈ Qa
κ that are suitable for

E each appearing 2κ times. (In (⊗)9 we will see that there are such
p, E.) We choose qE,α be induction on α such that pE,α ≤ qE,α and
qE,α ∈ Qa

κ and β < α → qβ ⊥ qE,α. In the end we take any maximal
antichain containing {qE,α : α < 2κ} as a subset. Since any p that is
suitable for E appears at 2κ many stages as pE,α, say at stages α ∈ A,
we have 2κ many mutually incompatible qE,α > p = pE,α, α ∈ A.

Arriving at α, for β < α, the function
fβ = gpE,α,qE,β

: κ>κ → κ
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is well defined. By our assumption on e1
κ = λ, there is some g for any

η ∈ spl(pα) such that otp({α < lg(η) : η ↾ α ∈ spl(pα)}) is a limit
ordinal +1 there are stationary many δ < κ such that η ⟨̂δ⟩ ∈ pα and

fβ(η ⟨̂δ⟩̂ hpE,α(η ⟨̂α⟩)) ̸= g(η ⟨̂δ⟩̂ hpE,α(η ⟨̂α⟩)).
We let qE,α = q(pE,α, g).

(⊗)8 We take a club-unbounded family ⟨f∗
ε : ε < bκ⟩ such that the f∗

ε are
increasing functions.

For α < bκ, we let
E∗

α = {δ < κ : δ is a limit ∧ (∀ε < δ)(f∗
α(ε) < δ)}.

(⊗)9 Claim: For every p there is an ε < bκ such that p is suitable of E∗
ε .

We let
Ep ={δ < κ : δ is a limit ordinal and

(∀α, β < δ)(ηα ∈ p → ηα ⟨̂β⟩, ηαˆhp(ηα) ∈ {ηβ : β < δ}))}

Let gp(ε) be the ε+7-th member of Ep. Pick αp = α < bclub,κ such
that

{ε < κ : gp(ε) < f∗
α(ε)}

is a stationary subset of κ.
Now we show that p is suitable for E∗

α. We have to show: For any
η ∈ spl(p) we have

{δ < κ : η ⟨̂δ⟩ ∈ p ∧ lg(η ⟨̂δ⟩̂ hp(η ⟨̂δ⟩)) ̸∈ E∗
α}

is a stationary subset of κ.
Let η = ηβ ∈ spl(p). By our choice of α,

A = {ε > β : ε ∈ Ep ∩ E∗
α ∧ gp(ε) < f∗

α(ε)}
is a stationary subset of κ. If ε ∈ A, then ζ = min{γ ∈ Ep : γ > ε} ∈
Ep and ζ < gp(ε), since the latter is the ε+7-th member of Ep. By the
defition of Ep, ε < ζ and ζ ∈ Ep implies that η ⟨̂ε⟩ ⊆ {ηγ : γ < ζ},
and hence

η ⟨̂ε⟩̂ h(η ⟨̂ε⟩) ∈ {ηγ : γ < ζ}.

If ε ∈ A then
ε < ζ < gp(ε) < f∗

α(ε) < succE∗
α
(ε).

Recall, we stipulated properties (a) and (b) of (⊗)1 on the enumer-
ation. Hence lg(ηγ) ≤ γ and the index of η ⟨̂ε⟩ is larger than ε. By
the definition of hp we get

succE∗
α
(ε) > lg(η ⟨̂ε⟩̂ hp(η ⟨̂ε⟩)) ≥ ζ.

Hence hp(η ⟨̂ε⟩) is longer than ε. So for any ε ∈ A we have
lg(η ⟨̂ε⟩̂ h∗(η ⟨̂ε⟩)) ̸∈ E∗

α,
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and the claim is proved.
Now we show that we now have established the premise of Lemma 3.11.

We start with α0 < κ+ such that there is at all a p that is suitable for
E∗

α0 . Hence p is suitable also for E∗
α, α ≥ α0. We take for α ∈ [α0, κ+) an

antichain PE∗
α

as in (⊗)7. For any p ∈ Qa
κ there is a β ≥ α0 such that p is

suitable for E∗
β. Hence by (⊗)7 the set {q ∈ PE∗

β
: q ̸⊥ p} has size λ. □

Corollary 3.15. It is consistent relative to ZFC that κ<κ = κ > ω, bκ = κ+,
2κ > κ+ and Qa

κ collapses 2κ to bκ.

We do not know whether our conditions on the evasion numbers are nec-
essary.

Question 3.16. Does Qa
κ collapse 2κ to bκ just under the condition 2κ =

κ++ > bκ?

4. Waiving κ<κ = κ

In this section we collect mathematical reasons for the fact that in higher
tree forcings the condition κ<κ = κ is very common. We show that under
κ<κ > κ, the forcing Qa

κ collapses κ<κ to κ. We focus on regular κ. This
proof of the next theorem is quite complicated and was found before the
more general Theorem 4.2. We let it stand because the name is different in
particular in the choice of the lengths of trunks that are actually evaluated.
If θ > ω is regular, then then in the next theorem we give a much simpler
name of a collapse of κθ to κ.

Theorem 4.1. If cf(κ) = κ = λ+ and κ ≥ θ++, and κθ > κ, then Qa
κ

collapses κθ.

Proof. By [22, Lemma 4.4.(3)] for λ+ = κ there is a sequence C̄ and there
are T , Si, i < λ, with the following properties:

(1) T = {α ∈ κ : cf(α) ≤ θ}, and
(2) T is the union of stationary sets Si, i < λ, that have the following

square property:
(i) There is C̄i = ⟨Ci

α : α ∈ Si⟩,
(ii) Ci

α is a closed subset of α, not necessarily cofinal in α, however,
if α is a limit ordinal, then Ci

α is cofinal in α, Ci
α ⊆ T ∩ α and

otp(Ci
α) ≤ θ,

(iii) for α ∈ Si, for any β ∈ Ci
α, then β ∈ Si and Ci

β = Ci
α ∩ β.

Again, we choose in the ground model a function h∗ : κ → κ such that for
each ε ∈ κ, there are stationarily many α with h∗(α) = ε.

Now let G be Qa
κ generic over V and let η

˜
be a name for

⋃
{tr(p) : p ∈ G

˜
}.

First step
There is a pair (i, E) such that

(a) E is club in κ and
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(b) i < κ and

(c) for every club C of κ there are stationarily many α ∈ Si such that
C ∩ E ∩ Ci

α = E ∩ Ci
α and otp(E ∩ Ci

α) = θ.
A proof is given, e.g., in [11, Fact 3.7].

Let S = Si ∩ E and Cα = Ci
α ∩ E for α ∈ Si. Let

S′ = {α ∈ S : otp(Cα) = θ}.

For α ∈ S′ let ⟨γ(α, j) : j < θ⟩ list Cα in increasing order.
Now for each α ∈ S′ we define a P-name η

˜
α of a function from θ into κ

by letting for j ∈ θ and α ∈ S′

(4.1) η
˜

α(j) = h∗(η
˜

(γ(α, j))).
Second step

We show: If p ∈ P and ν ∈ θκ then for some pair (α, q) we have
(α) α ∈ S′ and

(β) q ≥ p and

(γ) q ⊩P η
˜

α = ν.
This is done as follows: For every p and ν by induction on β < κ we choose
ϱβ such that

(a) ϱβ ∈ spl(p),

(b) for β < γ < κ, ϱβ ⊴ ϱγ ,

(c) at limits δ < κ, ϱδ =
⋃

β<δ ϱβ,

(d) if γ = β + 1 and β ∈ S, and lg(ϱβ) = β, then g(ϱγ(β)) = ν(otp(Cβ)).
Note, for β < α, α ∈ Si, γ(α, j) = β:
(4.2) otp(Cβ) = otp(Cα ∩ β) = j.

So ⟨lg(ϱβ) : β < κ⟩ is increasing and continuous in κ. Hence C ′ =
{lg(ϱβ) : β < κ} is a club in κ and there is α in S′ such that Cα ⊆ C ′

and cf(α) = θ. By item (d) and Equation (4.2), we have for any j < θ,
γ(α, j) ∈ Cα, if γ(α, j) = β < α then

h∗(η
˜

(γ(α, j))) = h∗(ρβ+1(β)) = ν(j).

Since p[ϱα] determines η
˜
↾ α, we have

p[ϱα] ⊩ η
˜

α(j) = h∗(ϱα(γ(α, j)) = ν(j).

As |S′| = κ, we see that forcing with P collapses κθ to κ. □

Theorem 4.2.
(1) If κ = cf(κ) > θ = cf(θ) > ω and κθ > κ, then forcing with Qa

κ

collapses κθ to κ.

(2) If κ = ℵ1 and 2ω > ℵ1, then forcing with Qa
κ collapses 2ω to ω1.
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Proof. (1) On θκ we define an equivalence relation E as follows:

ϱEσ if {α < θ : ϱ(α) = σ(α)} contains a club in θ.

By Solovay’s theorem, that there are θ mutually disjoint stationary subsets of
θ, the relation E has κθ classes. Let ⟨ϱζ : ζ < κθ⟩ list a set of representatives
without any repetitions.

Again we choose and fix a function h∗ from κ to κ such that for each
α ∈ κ, h−1

∗ [{α}] is a stationary subset of κ. We let η
˜

be a name for the
Qa

κ-generic κ-real. Now we define a name for a function

τ
˜

: {δ < κ : cf(δ) = θ} → κθ,

by letting τ
˜

(δ) be the minimal ζ ∈ κθ such that there is an increasing
continuous sequence ⟨αi : i < θ⟩ converging to δ such that

⟨h∗(η
˜

(αi)) : i < θ⟩Eϱζ .

The particular choice of ⟨αi : i < θ⟩ does not matter, since for any two
such sequences that are club many i < θ on which they coincide. We prove
that Qa

κ forces that τ
˜

is surjective. Given ζ ∈ κθ we choose by induction on
i < θ, a node ηi ∈ spl(p) and ordinals αi ∈ κ, βi ∈ κ, with the following
properties:

(a) η0 = tr(p)

(b) lg(ηi) = αi,

(c) ηi+1 ▷ ηi ⟨̂βi⟩ (—so ηi+1(αi) = βi—) and βi ∈ osuccp(ηi) is chosen
such that h∗(βi) = ϱ(αi).

(d) ηδ =
⋃

{ηi : i < δ} for limit δ ≤ θ.
In the end we let q = p⟨ηθ⟩ and δ =

⋃
{αi : i < θ} have

q ⊩ ⟨h∗(η
˜

(βi)) : i < θ⟩Eϱζ ∧ lim
i→θ

(αi) = δ ∧ τ
˜

(δ) = ζ.

(2) Now for the case of κ = ℵ1. For any limit ordinal δ ∈ κ we choose
an increasing sequence ᾱδ = ⟨αδ,n : n < ω⟩ that converges δ. Again we let
η
˜

be a name for the generic branch. We let S = {δ < κ : δ limit ordinal}.
We let

w
˜ δ = {(n, i) : n < ω ∧ i ∈ S∧

η
˜

(i) ∈ [αδ,n, αδ,n+1) ∧ (∀j < i)(η
˜

(j) < αδ,n)}.
(4.3)

We define an equivalence relation E on ωω:

ϱ E σ if (∃n ∈ Z)(∀m)(ϱ(m) = σ(m + n)).

We let ⟨ϱζ : ζ ∈ 2ω⟩ list a system of representatives without repetitions.
Recall: κ = ω1 and we let h∗ : ω1 → ω1 be such that for any ξ ∈ ω1,

h−1
∗ [{ξ}] is stationary in ω1.
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Now we define a name ν
˜ δ as follows: p ⊩ νδ

˜
(n) = γ if for some m ∈ ω

and i ∈ S,
p ⊩((m, i) ∈ wδ∧

n = |{m′ ≤ m : (∃j < ω1)(m′, j) ∈ wδ}|∧
h∗(i) = γ).

(4.4)

We show that
(4.5) Qa

κ ⊩ {νδ
˜

/E : δ ∈ S} = {ϱζ/E : ζ ∈ 2ω}.

This will finish the proof, since then for any Qa
κ-generic filter G over V, in

V[G] the map on S such that
δ 7→ ζ for the ζ with νδ

˜
[G] E ϱζ

is a collapsing function from S onto 2ω. Since κ is uncountable, also in the
extension |S| = ω1.

Heading for (4.5), given p, ϱ, we show that there are a stronger condition
q and some δ ∈ S such that q ⊩ νδ

˜
E ϱ.

We choose an increasing continuous sequence ⟨Mα : α < ω1⟩ of countable
elementary submodels of (H(χ), ∈, <) such that ⟨ᾱδ : δ ∈ S⟩, ω1, ϱ, p ∈ M0.

We take δ ∈ S such that Mδ ∩ ω1 = δ. Since ⟨Mα : α < ω1⟩ is increasing
and continuous, such a δ ∈ S exists.

The aim is to show that there is some node η ∈ p such that

p⟨η⟩ ⊩ νδEϱ.

We let:
w(ω) = {n < ω : (∃≥ωα < ω1)(Mα ∩ ω1 ∈ [αδ,n, αδ,n+1))}.

We prove that w(ω) is infinite. Suppose that n0 is given. Then there
is some β < δ such that Mβ ∩ ω1 ≥ αδ,n0 and moreover β + ω < δ, since
Mδ ≺ (H(χ), ∈, <) and hence Mδ with ω, β ∈ Mδ fulfils the replacement
scheme for the function ⟨(n, β + n) : n < ω⟩. So Mβ+ω ∩ ω1 < αδ,n1 for
some n0 < n1 < ω. Hence all the Mβ+n ∩ ω1, n ≤ ω, are in the interval
[αδ,n0 , αδ,n1). The latter interval is the union of [αδ,nαδ,n+1), n0 ≤ n < n1.
Hence one of these contains Mβ+m ∩ ω1 for m from an infinite set.

Let n0 < n1 . . . list w(ω) in inceasing order.
By induction on ℓ < ω we choose an increasing sequence of splitting nodes

ηℓ ∈ spl(p) and εℓ ∈ κ such that such that
(α) ηℓ ◁ ηℓ+1

(β) For ℓ ≥ 0, iℓ = lg(ηℓ) = Mεℓ
∩ ω1 ∈ [αδ,nℓ

, αδ,nℓ+1),

(γ) ηℓ is a ω-limit of splitting nodes and range(ηℓ) ⊆ Mεℓ
∩ ω1.

(δ) ηℓ+1(lg(ηℓ) ∈ h−1
∗ [{ϱ(ℓ)].

To find η0 and ε0 we apply the second half of the successor step to rt(p) and
M0.
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We carry out the successor step: Suppose ηℓ and εℓ are chosen. and
dom(ηℓ) = iℓ = Mεℓ

∩ ω1 has range contained in Mεℓ
∩ ω1. Hence

(∀j < iℓ)(ηℓ(j) < αδ,nℓ+1).

We choose α such that ηℓ ⟨̂α⟩ ∈ p and we choose a preliminary ε′
ℓ+1 with

the following properties: We let ε′
ℓ+1 ≥ εℓ + 1 such that Mε′

ℓ+1
∩ ω1 ∈

[αnℓ+1 , αnℓ+1+1). Since ηℓ is definable from Mj , j ≤ εℓ and p, we have
ηℓ ∈ Mε′

ℓ+1
and hence we can do the preliminary step in Mε′

ℓ+1
.

Since Sℓ = h−1
∗ [{ϱ(ℓ))}] is in Mε′

ℓ+1
a stationary subset of ω1 there are

arbitrary large members of Sℓ ∩ (Mε′
ℓ+1

∩ ω1) and in particular there are
members in Sℓ ∩ (Mε′

ℓ+1
∩ ω1) ∩ [αδ,nℓ+1 , αδ,nℓ+2). Thus there is α ∈ ω1 ∩

[αδ,nℓ+1 , αδ,nℓ+2) is such that h∗(ηℓ+1(iℓ)) = ϱ(ℓ) and ηℓ ⟨̂α⟩ ∈ p.
Then we choose εℓ+1 such that Mεℓ+1 ∩ ω ∈ [αδ,nℓ+1 , αδ,nℓ+1+1) and such

that ηℓ+1 ▷ ηℓ ⟨̂α⟩ is a splitting node of p that has range ⊆ αδ,nℓ+1+1 and
lg(ηℓ+1) = Mεℓ+1 ∩ ω1.

Why is there such an ηℓ+1? Since limits of splitting nodes are splitting
nodes and since the sequence Mα is continuously increasing, we can find ηℓ+1
by an intermediate ω-sequence of nodes ηℓ+1,k ∈ spl(p) with Mηℓ+1,k

∩ ω1 =
lg(ηℓ+1,k) > Mηℓ,k

∩ κ and the range of ηℓ+1,k ↾ [iℓ, dom(ηℓ+1)) is a subset of
[αδ,nℓ+1 , αδ,nℓ+1+1).

By Equations (4.3) and (4.4) the argument iℓ is determined from (nℓ, iℓ) ∈
w
˜ δ for some m ∈ Z, for all ℓ and (nℓ + m, h∗(η

˜
(iℓ))) = (nℓ, ϱ(ℓ)) ∈ ν

˜ δ. 3 .
In the end we let η =

⋃
ηℓ. Now the nℓ, iℓ, ηℓ+1, ℓ ≥ 1, witness

p[η] ⊩ νδ
˜

Eϱ.

□

Now we sum up all the cases of κ<κ > κ for regular κ.

Theorem 4.3. If κ is a regular uncountable cardinal and κ<κ > κ then Qa
κ

collapses κ<κ to κ.

Proof. (1) κ is a limit cardinal. Then we can write κ<κ as sup{κθ+ : θ <

κ}. According to Theorem 4.2 part (1) each of the κθ+ is collapsed to
κ, and we can combine the names of the collapses and get: Forcing
with Qa

κ collapses κ<κ to κ.

(2) κ = θ+ and θ > ω is regular. This is Theorem 4.2 part (1).

(3) κ = ω1. This is Theorem 4.2 part (2).

(4) κ = θ+ and cf(θ) < θ.

3The shift by m may happen since we do not know what η
˜
↾ lg(η0) determines under

the interpretation through Equation (4.3) and (4.4). It might be more or less than what
ϱ determines.
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4.1: The first subcase is: κθ = κµ for some µ ∈ [ω1, θ). Then we
can choose a regular such µ. Now κθ = κ<κ = κµ is collapsed to κ by
Theorem 4.2 part (1).

4.2: The second subcase is: For all µ < θ, κµ ≤ κ. Then κθ = κcf(θ).
This subcase is divided in two subsubcases:

4.2.1: If cf(θ) > ω, then by Theorem 4.2 part (1) κθ is collapsed to
κ.

4.2.2: If cf(θ) = ω, then we need to rework part (2) of Theorem
4.2 to get that also κω is collapsed. We replace ω1 by κ and instead
of with countable elementary submodels we work with submodels of
cardinality < κ.

□

5. On the Laver property

In this section we assume that κ is a measurable cardinal that is measur-
able after forcing with any (< κ)-directed forcing. Such a cardinal is gotten
by starting with a supercompact cardinal and performing a Laver prepara-
tion [15]. Then the supercompactness is indestructible under (< κ)-directed
forcings.

The purpose of this section is to answer a question posed in [4] about
the Laver property of an ultrafilter version of Miller forcing. The starting
point is the observation in [4] that for normal ultrafilters, each iterand has
a version of the Laver property.

Definition 5.1. Given a normal ultrafilter over κ, we define Qa
κ(U), Miller

forcing with branching into U , as follows: A condition p ∈ Qa
κ(U) is a (< κ)-

closed superperfect tree p ⊆ κ>κ such that for any splitting node s ∈ spl(p),
osuccp(s) = {α ∈ κ : ŝ ⟨α⟩ ∈ p}

is an element of U . Subtrees are stronger conditions.

Now we recall the definition of the higher Laver properties.

Definition 5.2. (See [4, Def. 79]) Let h : κ → κ\{0}. A sequence ⟨φα : α <

κ⟩ is called a h-slalom if for each α, φα ∈ [κ]|h(α)|. We say P has the h-Laver
property if for any P name τ

˜
and for any g : κ → κ such that P ⊩ τ

˜
≤∗ g

there is a h-slalom ⟨φα : α < κ⟩ and there is q such that
q ⊩ |{α < κ : τ

˜
(α) ̸∈ φα}| < κ.

We answer a question by Brendle, Brooke-Taylor, Friedman, and Mon-
toya:

Proposition 5.3. Assume that κ is supercompact and underwent the Laver
preparation. Let P = ⟨Pm,Qn : n < ω, m ≤ ω⟩ be the countable support
iteration of length ω of iterands Qn = Qa

κ(Un), where Un is a normal ul-
trafilter over κ in VPn. By the Laver preparation κ is still supercompact in
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VPn. For any h : κ → κ \ {0} there is a g : κ → κ and there is a P-name for
a function below g that witnesses that P does not have the h-Laver property.

Proof. Let h be given. For each δ < κ we choose some cardinal g(δ) ∈
[|h(δ)|+, κ). For any δ < κ fix a partition ⟨Sδ,ε : ε < g(δ)⟩ of Sκ

ℵ0
= {α <

κ : cf(α) = ℵ0} into g(δ) many stationary sets.
Let ηn be the Qn-generic κ-real.
Now we define a name for a function that is bounded by g:

(5.1) ν(δ) =
{

ε if limn⟨ηn(δ) : n < ω⟩ ∈ Sδ,ε;
0 else.

Now we show:
(∗) (∀ϱ ∈

∏
δ<κ g(δ))V, for any condition p for any ϱ-slalom T̄ = ⟨T (δ) :

δ < κ⟩ in the ground model, for any club C of δ < κ, there is some
δ ∈ C, p ⊩ ν(δ) ̸∈ T (δ)).

Property (∗) can be applied in particular to ϱ = h, C = [α, κ) for some
α < κ, and hence negates the h-Laver property. Let ϱ ∈

∏
δ<κ g(δ))V,

⟨T (δ) : δ < κ⟩ ∈ V be such that T (δ) ∈ [κ]ϱ(δ) for δ < κ, p be a condition
and let C

˜
be a P-name for a club subset of κ. We show that

(⊙) There are q ≥ p and δ < κ such that q ⊩ δ ∈ C
˜

∧ ν(δ) ̸∈ T (δ).
By induction on n < ω we choose pn, δn such that pn = ⟨pn(k) : k ∈ ω⟩,
where k is the coordinate that runs over the iteration stages, such that

(1) p0 = p, δ0 = 0,

(2) pn+1 ≥ pn, dom(pn) = ω,

(3) pn ↾ k ⊩ tr(pn(k)) = ηn,k,

(4) δn+1 > δn,

(5) pn ↾ k ⊩ δn+1 > lg(ηn,k),

(6) pn+1 ⊩ δn+1 ∈ C
˜

, and

(7) pn+1 ↾ k ⊩Pk
lg(tr(pn+1(k)) ≥ δn+1.

In the end we use that Pω is (< κ)-closed and hence we can let pω be a
lower bound of pn, n < ω. We have

pω ⊩ δ ∈ C
˜

.

Since |T (δ)| < g(δ), we can choose an ε ∈ g(δ) \ T (δ). Then we choose
Nn ≺ (H(χ), ∈) such that

(1) T̄ , P, pω ∈ N0.

(2) |Nn| < κ,

(3) Nn ∩ κ ∈ Sδ,ε.

(4) Nn ∈ Nn+1.
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So there is q1 ≥ pω such that q1 ∈ N1 ∩ P, q1(0) ≥ pω(0), q1(n) = pω(n) for
n > 0. By induction on n we choose qn such that

qn ↾ (n + 1) ⊩ ηn(δ) ∈ [Nn ∩ κ, Nn+1 ∩ κ)
and qn(k) = pω(k) for k > n. Let qω be an upper bound of the qn. Then

qω ⊩ lim
n

ηn(δ) = lim
n

(Nn ∩ κ) ∈ Sδ,ε.

Hence by Equation (5.1),
qω ⊩ ν(δ) = ε ∈ κ \ T (δ),

and ⊙ is proved. □
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