
FUNDAMENTAMATHEMATICAE* (200*)The splitting number can be smaller than thematrix chaos numberbyHeike Mildenberger (Vienna) and Saharon Shelah (Jerusalem)Abstract. Let � be the minimum cardinality of a subset of !2 that cannot be madeconvergent by multiplication with a single Toeplitz matrix. By an application of a creatureforcing we show that s < � is consistent. We thus answer a question by Vojt�a�s. We give twokinds of models for the strict inequality. The �rst is the combination of an @2-iteration ofsome proper forcing with adding @1 random reals. The second kind of models is obtainedby adding � random reals to a model of MA<� for some � 2 [@1; �). It was a conjectureof Blass that s = @1 < � = � holds in such a model. For the analysis of the second modelwe again use the creature forcing from the �rst model.0. Introduction. We consider products of !�! matrices A = (ai;j)i;j<!of reals and functions from ! to 2 or to some bounded interval of the reals.We de�ne A lim f := limi!1 1Xj=0(ai;j � f(j)):Toeplitz (cf. [2]) showed:A lim is an extension of the ordinary limit i� A isa regular matrix , i.e. i� (9m)(8i)(P1j=0 jai;j j < m) and limi!1P1j=0 ai;j = 1and (8j)(limi!1 ai;j = 0). Regular matrices are also called Toeplitz mat-rices .We are interested in whether for many f 's simultaneously there is one Asuch that all A lim f exist, and formulate our question in terms of cardinalcharacteristics.Let `1 denote the set of bounded real sequences, and let M denote theset of all Toeplitz matrices. Vojt�a�s [10] de�ned for A � M the chaos relations�A ;1 and their norms k�A ;1k as follows:2000 Mathematics Subject Classi�cation: 03E15, 03E17, 03E35.The �rst author was supported by a Minerva fellowship.The second author's research was partially supported by the \Israel Science Foun-dation", founded by the Israel Academy of Science and Humanities. This is the secondauthor's work number 753. [1]



2 H. Mildenberger and S. Shelah�A ;1 = f(A; f) : A 2 A ^ f 2 `1 ^ A lim f does not existg;k�A ;1k = minfjFj : F � `1^(8A 2 A )(9f 2 F) (A lim f does not exist)g:By replacing `1 by !2, the set of !-sequences with values in 2, we get thevariations �A ;2 . In [6] we showed that for the cardinals we are interested in,!2 and `1 give the same result. From now on we shall work with !2.Vojt�a�s (cf. [11]) also gave some bounds valid for any A that contains atleast all matrices which have exactly one non-zero entry in each line:s � k�A ;2k � b � s:We write � for k�M ;2k.In [6] we showed that � < b � s is consistent relative to ZFC. Here, weshow the complementary consistency result, that s < � is consistent. We getthe convergence with positive matrices.Now we recall the de�nitions of the cardinal characteristics b and sinvolved: The order of eventual dominance �� is de�ned as follows: Forf; g 2 !! we say f �� g if there is k 2 ! such that for all n � k we havef(n) � g(n).The unbounding number b is the smallest size of a subset B � !! suchthat for each f 2 !! there is some b 2 B such that b 6�� f . The splittingnumber s is the smallest size of a subset S � [!]! such that for eachX 2 [!]!there is some S 2 S such that X \S and X nS are both in�nite. The latteris expressed as \S splits X", and S is called a splitting family . For moreinformation on these cardinal characteristics, we refer the reader to thesurvey articles [1, 3, 9].If A lim f exists, then so does A0 lim f for any A0 that is obtained from Aby erasing rows and moving the remaining (in�nitely many) rows together.We may further change A0 by keeping only �nitely many non-zero entriesin each row, so that the neglected ones have a negligible absolute sum, andthen possibly multiplying the remaining ones so that they again sum upto 1. Hence, after possibly a further deletion of lines we may restrict the setof Toeplitz matrices to linear Toeplitz matrices. A matrix is linear i� eachcolumn j has at most one entry ai;j 6= 0 and for j < j 0 the i with ai;j 6= 0 issmaller than or equal to the i with ai;j0 6= 0 if both exist, in picture:0B@ c0(0) . . . c0(mup(c0)� 1) 0 . . . 0 0 . . .0 . . . 0 c1(mdn(c1)) . . . c1(mup(c1) � 1) 0 . . .0 . . . 0 0 . . . 0 c2(mdn(c2)) . . .... 1CALinear matrices can be naturally (as in the picture) read as hciii<! whereci : [mdn(ci); mup(ci)) ! [0; 1], ci(j) = ai;j , give the �nitely many non-zero



Splitting number and matrix chaos number 3entries in row i, and mup(ci�1) = mdn(ci). The ci's are special instances ofthe weak creatures in the sense of [7]. In the next two sections we shall show:The ci's coming from the trunks of the conditions in the generic �lter of ourforcing Q give matrices that make, after multiplication, members of !2 fromthe ground model and members of !2 of any random extension convergent.Now that we have used the word \creature" several times, we shouldexplain it. Roughly speaking, creatures are certain partial functions. Count-ably many of them are put into an arrangement which serves as one forcingcondition. Stronger conditions are obtained by composing (usually �nitelymany) partial functions and changing the arrangement in a certain way. Weneed the exact de�nitions only at one point in our work, when we want tocite some result on properness from [7]. For this purpose, we have to verifythat our forcing is an instance of a creature forcing built from a �nitarycreating pair, such that the forcing conditions ful�l some conditions on thegrowth of the norms of their building blocks. We shall explain these notionsin the next section.1. A creature forcing. In this section, we give a self-contained descrip-tion of the creature forcing Q which is the main tool for building the twokinds of models in the next section. Moreover, we explain the connectionsand give the references to [7], so that the reader can identify it as a specialcase of an extensive framework.Definition 1.1. (a) We de�ne a forcing notion Q. We say that p 2 Qif p = (n; hciii<!) (or p = (np; hcpi ii<!) when we want to avoid confusioncomparing two elements of Q) and(1) n < !,(2) for each i there are natural numbers mdn(ci) < mup(ci) such thatci : [mdn(ci); mup(ci))! [0; 1],(3) (8i < !)(8k 2 dom(ci))(ci(k) � k! 2Z),(4) (8i < !)(Pk2dom(ci) ci(k) = 1),(5) mup(ci) = mdn(ci+1).We let p � q (\q is stronger than p") if(6) np � nq ,(7) (80 � k < np)(cpk = cqk),(8) there exists an increasing sequence hktit�np of natural numbers suchthat for each t � np there exist a non-empty set ut � [kt; kt+1) and positiverationals fdl : l 2 utg such thatPl2ut dl = 1 and cqt =Pl2ut dlcpl .Observe that if p � q then for each t � np we have mdn(cqt) = mdn(cpkt)and mup(cqt) = mup(cpkt+1�1).



4 H. Mildenberger and S. ShelahWe write p �i q if np = nq and cqj = cpj for j < np + i.Remark 1.2. The notation we used in 1.1 is natural to describe ourforcing in a compact manner. However, it does not coincide with the nota-tion given for the general framework in [7]. Here is a translation: We write(hcpi ii<np ; hcpi ii�np) instead of (np; hcpi ii<!), which contains the same infor-mation. Then we write(�) (hcpi ii<np ; hcpi ii�np) = (wp; htpi ii<!);i.e. we shift the indices.Now we want to show that Q is proper. This follows from the work in [7]once we have veri�ed that Q, in the form (�), ful�ls all the conditions onforcing notions in [7, 2.1.6].We claim that there is a set K of creatures with respect to a �nitary Hand a subcomposition function � such that (K;�) is �nitary [7, 1.1.3(2)]and such that our forcing is Q�s;1(K;�) in the notation of [7].We take H : ! ! V such that H(i) = f0; 1=i!; 2=i!; . . . ; (i!� 1)=i!; 1g fori 2 !. As usual we write / for the proper initial segment relation. The set ofall weak creatures with respect toH is the set of all t=(nor(t);val(t);dis(t))such that nor(t) 2 R, nor(t) > 0, and val(t) is a non-empty subset ofn(x; y) 2 [m0<m1<! h Yi<m0H(i)� Yi<m1H(i)i : x / yo:K will be a subset of the set of all weak creatures. The function dis isthe empty function in our case. There are the following requirements ont 2 K: For i 2 !, ti from (�) is a part of such a t in the followingsense: nor(t) = mdn(ti), range(val(t)) = ftig. For dom(val(t)) one cantake the maximal set �tting to val(t), since the range does not depend onthe domain in our case. We see that H and K are �nitary in the sense of[7, 1.1.3(2)]. Now we take � : [K]<! ! P(K), �(ft0; . . . ; tn�1g) = ; unlessti : [mdn(ti); mup(ti))! R, ti 2 K, and mup(ti) = mdn(ti+1), in which case�(ft0; . . . ; tn�1g) is the set of all t : [mdn(t0); mup(tn�1))! R, t 2 K, suchthat there are dl, l 2 n; with Pl2n dl = 1 and t(m) = dltl(m) for each l andm 2 [mdn(tl); mup(tl)). Our � is a subcomposition operation in the sense of[7, 1.1.4]. Now some further quite long de�nitions (the interested reader maylook at 1.1.6 to 1.1.10, 1.2.1 to 1.2.6 in [7]) give that our instance (K;�) isa �nitary creating pair and that our Q is Q�s;1(K;�) in Rosªanowski andShelah's framework. Now their work shows:Lemma 1.3 ([7, Corollary 2.1.6]). The forcing notion Q is proper.2. The e�ect of Q on random reals. Let G be Q-generic over V .We set cGi = cqi for q 2 G and nq > i. This is well de�ned. Let ci~ be a



Splitting number and matrix chaos number 5name for it. Our aim is to show that multiplication by the matrix whoseith row is ci makes any real from the ground model and even any realfrom a random extension of the ground model convergent. For backgroundinformation about random reals we refer the reader to [5, x42]. The Lebesguemeasure is denoted by �. By \adding � random reals" we mean forcing withthe measure algebra R� on 2!��, that is, adding � random reals at once or\side-by-side" and not successively.Definition 2.1. (1) Let mayk(p) = fcri : p �k r; i � np + kg.(2) For a function c : dom(c)! R with �nite domain and � 2 !2 letav(�; c) = Xk2dom(c) c(k)�(k):Main Lemma 2.2. Assume that(A) �~ is a random name of a member of !2, �~ = f(r~) where f is Boreland r~ is a name of the random generic real ,(B) p 2 Q,(C) k� < !.Then for every k � k� there is some q(k) 2 Q such that(�) p �k� q(k),(�) for all l, if k� � k < l < ! and c1; c2 2 mayl(q(k)) then1l! > ��r : 32k � jav(f(r); c1)� av(f(r); c0)j�:Proof. For q 2 Q and k; l 2 !, i 2 f0; 1; . . . ; 2kg we seterrk;i(�~ ; c) = 1\0 ����av(f(r); c)� i2k ���� dr;elk;i(�~ ; q) = infferrk;i(�~ ; c) : c 2 mayl(q)g:Note that errk;i(�~ ; c) is a real and no longer a random name. So thein�mum is well de�ned.Now, if l1 < l2 then mayl1(q) � mayl2(q) and henceel1k;i(�~ ; q) � el2k;i(�~; q):So helk;i(�~ ; q)il<! is an increasing bounded sequence ande�k;i(�~ ; q) = liml!1 elk;i(�~ ; q)is well de�ned.



6 H. Mildenberger and S. ShelahWe �x i � 2k, until Subclaim 4, when we start looking at all i together.Subclaim 1. There is some qk;i1 = q1 �k� p such that for l � k�,e�k;i(�~ ; p)� 1=l � errk;i(�~ ; cq1l ) � e�k;i(�~; p) + 1=l:Moreover , if mdn(cq1l0 ) = mdn(cpl ) then el0k;i(�~ ; q1) � e�k;i(�~ ; p)� 1=l.Why? We choose cq1l by induction on l: For l � np+k�, we take cq1l = cpl .Suppose that we have chosen cq1m for m < l and that we are to choose cq1l ,l > np + k�. We set " = 1=l. By possibly end-extending cq1l�1 by zeroes wemay assume that mup(cq1l�1) = mup(cpl0) for an l0 � l so large that for alll00 � l0, el00k;i(�~ ; p) � e�k;i(�~; p) � ". Then we take cl = cq1l 2 mayl00(p) suchthat errk;i(�~ ; cq1l ) � el00k;i(�~ ; p)+ " � e�k;i(�~; p)+ ". On the other hand we haveerrk;i(�~ ; cq1l ) � el00k;i(�~ ; p) � e�k;i(�~; p) � ". The fact that this holds also forl0 � l if mdn(cq1l0 ) = mdn(cpl ) yields the \moreover" part.Subclaim 2. In Claim 1, if l � k� and qk;i1 �l q2 thene�k;i(�~ ; q)� 1=l � errk;i(�~ ; cq2l ) � e�k;i(�~; q) + 1=l:Why? By the de�nition if su�ces to show:(
) if l1 < . . . < lt < ! and d1; . . . ; dt � 0 and d1 + . . . + dt = 1, andcq2l = d1cq11 + . . . + dtcq1t , thene�k;i(�~ ; q1)� 1=l � errk;i(�~; cq2l ) � e�k;i(�~ ; q1) + 1=l.The �rst inequality holds by the \moreover" part in the previous claim.For the second inequality it su�ces to show thaterrk;i(�~ ; c) � tXs=1 dserrk;i(�~ ; cq1s ):For this it su�ces to see that1\0 (jav(f(r); c)� i=2kj) dr � tXs=1 ds 1\0 (jav(f(r); cq1s )� i=2kj) dr;and since ds � 0 and Ps ds = 1 we �nish by the the triangle inequality.Subclaim 3. Let qk;i be as in Subclaim 2. For all l, if c0; c1 2 mayl(qk;i1 ),then 2k+1l � ��r : av(f(r); c0) � i+ 12k ^ av(f(r); c1) � i� 12k �:Why? Consider c = 12c0 + 12c1 2 mayl(q1) . WriteA = �r : av(f(r); c0) � i+ 12k ^ av(f(r); c1) � i� 12k �:



Splitting number and matrix chaos number 7Then 2l � 12errk;i(�~ ; c0) + 12errk;i(�~ ; c1)� errk;i(�~ ; c)= 1\0�12 ����av(f(r); c0)� i2k ����+ 12 ����av(f(r); c1)� i2k ����� ����av(f(r)); c)� i2k ����� dr� \A�12����av(f(r); c0)� i2k ���� + 12 ����av(f(r); c1)� i2k ����� ����av(f(r)); c)� i2k ����� dr� 12k�(A):Subclaim 4. For every q 2 Q and k� we can �nd qk such that(�) q �k� qk,(�) if l 2 [k; !) and c0; c1 2 mayl(qk) and i 2 f1; 2; . . . ; 2k � 1g then2k+1l > ��r : av(f(r); c0) � i+ 12k ^ av(f(r); c1) � i� 12k �:(
) This holds also for every q� � qk.Why? Repeat Subclaims 1{3 choosing qk;i, i = 0; 1; . . . ; 2k. We let q0 = qand choose qk;i+1 which relates to qk;i like q1 to q.Now qk = qk;2k is O.K. Note that according to (
) thinning and averagingcan only help.Subclaim 5. Let qk be as in Subclaim 4. For l � k there is q(k; l)�l�1 qk such that for c0; c1 2 mayl(q(k; l)),1=l! > �fr : 3=2k � jav(f(r); c1)� av(f(r); c0)jg:Why? The event 3=2k � jav(f(r); c1)�av(f(r); c0)j implies that for somei 2 f1; 2; . . . ; 2k � 1g we haveav(f(r); c1) � i+ 12k ^ av(f(r); c2) � i� 12kor vice versa. So it is included in the union of 2 � (2k � 1) events, each ofmeasure � 2k+1=l. Hence it itself has measure � 22k+2=l. By thinning outqk (by moving the former l far out by putting in a lot of zeroes and thushaving as new cl's partial functions that were formerly labelled with a muchlarger l and thus giving a much smaller quotient according to Subclaim 4)we replace 22k+2=l by 1=l!.Finally we come to the q(k) from part (�) of the lemma:



8 H. Mildenberger and S. ShelahSubclaim 6. For any k there is q(k) such that q �k� q(k) and for anyl � k and any c0; c1 2 mayl(q�),1=l! > �fr : 3=2k � jav(f(r); c1)� av(f(r); c0)jg:Why? As in the previous claim we choose inductively q(k; l) such thatq0 = p and q(k; l+1) �l q(k; l) and (q(k; l+1); q(k; l); l) are like (q(k; l); q; l)from Subclaim 5, but for larger and larger l. Nowq(k) = (np + k; cp0; . . . ; cpnp+k ; cq(k;np+k+1)np+k+1 ; cq(k;np+k+2)np+k+1 ; . . .)is as required in (�) and (�) of the conclusion; we have even q(k) �k p.Now we use the Main Lemma in an iteration. Any forcing notion Q0 thatpreserves @1 and @2 is suitable. In the application, Q0 will be an end segmentof length @2 of a countable support iteration of Q.Conclusion 2.3. Let Q0 be any notion of forcing. Then we have:
Q \if �~ 2 V is a random name for a real in V Q�Q0~ �R!~ then \
Q0~ �R!~hav(�~ ; c~n) : n 2 !i converges." "Proof. Let q 2 Q and " > 0 be given. Let �~ = f(r~), f 2 V , be a randomname for a real. We take k0 such that 3=2k0 < ". Then we take q(k) � q asin the Main Lemma. We setAk;c0;c1 = fr : 3=2k > jav(f(r); c1)� av(f(r); c0)jg:Since Pl�1 1=l! <1, we can apply the Borel{Cantelli lemma and get:For any sequence hclil<! such that cl 2 mayl(q�(k)) we have�� [K2[k;!) \l�KAk0;cl;cl+1� = 1:So r 2 Tl�K Ak;cl;cl+1 for some K � k. So q(k) forces (also in V [G] where Gis Q�Q0~ �R!~ -generic over V ) that hclil<! describes a matrix whose productwith � lies eventually within an "-interval. Now we take smaller and smaller"'s and a density argument.Conclusion 2.4. Let P!2 = hPi; Q~ j : i � !2; j < !2i be a countablesupport iteration of Q~ i, where Qi is Q de�ned in V Pi , and let R~ !1 be aP!2-name of the @1-random algebra. Then in V P!2�R~ !1 we have s = @1 and� > @1.Proof. Dow proves in [4, Lemma 2.3] that s = @1 after adding @1 ormore random reals, over any ground model. In order to show � > @1, let�i, i < !1, be reals in V P!2 �R~ !1 . Over V P!2 , each �i has an R!1-name �i~ .Since the random algebra is c.c.c., without loss of generality there are onlycountably many of the @1 random reals mentioned in �i~ . Let �0i~ be obtainedfrom �i~ by replacing these countably many by the �rst ! ones and thenacting as if there were just one random real. This is possible because R1



Splitting number and matrix chaos number 9and R! are equivalent forcings. Since the random algebra is c.c.c., the name�0i~ can be coded as a single real ri in V P!2 . Now, by [8, V.4.4] and by theproperness of the Qj~ , this name ri appears at some stage �(�i) < @2 inthe iteration P!2 . We take the supremum � of all the �(�i), i < !1. Weapply 2.3 with Q = Q�, Q0 = hPi; Qj~ : � < i � !2; � < j < !2i and R!to the �0i~ . Thus Q� adds a Toeplitz matrix that makes, by multiplication,all the �0i convergent. Since Conclusion 2.3 applies to all random algebrassimultaneously, this matrix makes also the �i convergent.Definition 2.5. (1) Qpr=fp 2 Q : np=0g is called the pure part of Q.(2) We write p �� q if there are some w, n such that p � (w; tqn; tqn+1; . . .).So, it is p � q up to a �nite \mistake".Fact 2.6. If hpi : i < 
i is ��-increasing in Q and MAj
j holds , thenthere is p 2 Qpr such that for all i < �, pi �� p.Proof. We apply MAj
j to the following partial order P : Conditions are(s; F ) where s = (tp0; . . . ; tpn) is an initial segment of a condition in Qpr andF � 
 is a �nite set. We let (s; F ) �P (t; G) i� s E t and F � G and(8n 2 lg(t) � lg(s))(8� 2 F )(n > (all mistakes between the p�) ! tn 2�(cp�i : i 2 S(�; n) for suitable S(�; n))). This forcing is c.c.c., becauseconditions with the same �rst component are compatible and because thereare only countably many possibilities for the �rst component. It is easy tosee that for � < � the sets D� = f(s; F ) : � 2 Fg are dense and that forn 2 ! the sets Dn = f(s; F ) : lg(s) � ng are dense. Hence if G is generic,then p = Sfs : (9F )((s; F ) 2 G)g �� p� for all �.Conclusion 2.7. If V j= MA� and � > � > @0, then in V R� thematrix number is at least � and the splitting number is @1.Proof. As mentioned, [4] shows the result on the splitting number. Forthe matrix number, let random names �i~ , i < 
, be given in V , 
 < �. We �x" > 0 and K as in the proof of 2.3. For i < 
, we choose pi = hcikik<! as atthe end of the proof of 2.3 for �i~ , use Fact 2.6 iteratively 
+1 times and �nd apure condition p = hckik<! �� pi for all i < 
, that gives the lines of a matrixwhich brings everything into an "-range. We denote these ck by ck = ck(").Now by induction we choose ck: c0 = c0(1), and ck = ck0(1=(k0+ 1)) if k0 > kis the �rst k00 such thatmdn(ck00(1=(k00 + 1))) > mdn(ck�1). The matrix withck in the kth line acts as desired. (Nowmup(ck) > mdn(ck+1) is possible butthis does not harm.)Acknowledgements. The �rst author would like to thank AndreasBlass for discussions on the subject and for reading and commenting.
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