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Abstract. We show that there are proper forcings based upon countable trees of creatures
that specialise a given Aronszajn tree.

0. Introduction

The main point of this work is finding forcing notions specialising an Aronszajn
tree, which are creature forcings, tree-like with halving, but being based on ω1 (the
tree) rather than ω. Techniques to specialise a given Aronszajn tree are often useful
for building models of the Souslin hypothesis SH, i.e., models in which there is no
Souslin tree. The present work grew from attempts at showing the consistency of
SH together with ♣ (see [6, I.7.1]), a question by Juhász. This stays open.

Creature forcing tries to enlarge and systemise the family of very nice forcings.
There is “the book on creature forcing” [4], and for uncountable forcings the work
is extended in [3] and [5] and Sh:F514. At first glance it cannot be applied for
specialising an Aronszajn tree, because we have to add a subset of ω1 rather than a
subset of ω. Here we adopt it to ω1. We dispense with some of the main premises
made in the previous work and show new technical details. The work may also be
relevant to cardinal characteristics of ω1 2, but this is left for future work.

The norm of creatures (see Definition 1.7) we shall use is natural for specialis-
ing Aronszajn trees. It is convenient if there is some α < ω1 such that the union of
the domains of the partial specialisation functions that are attached to any branch
of the tree-like forcing condition is the initial segment of the Aronszajn tree T<α ,
i.e., the union of the levels less than α. However, allowing for every branch of a
given condition finitely many possibilities T<αi

with finite sets ui sticking out of
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T<αi
is used for density arguments that show that the generic filter leads to a total

specialisation function.

1. Tree creatures

In this section we define the tree creatures which will be used later to describe the
branching of the countable trees that will serve as forcing conditions. We prove three
important technical properties about gluing together (Claim 1.9), about filling up
(Claim 1.10) and about changing the base together with thinning out (Claim 1.11)
of creatures. We shall define the forcing conditions only in the next section. They
will be countable trees with finite branching, such that each node and its immediate
successors in the tree are described by a creature in the sense of Definition 1.5.
Roughly spoken, in our context, a creature will be an arrangement of partial spe-
cialisation functions with some side conditions.

We reserve the symbol (T , �T ) for the trees in the forcing conditions, which are
trees of partial specialisation functions of some given Aronszajn tree (T, <T). A
specialisation function is a function f : T → ω such that for all s, t ∈ T, if s <T t ,
then f (s) �= f (t), see [2, p. 244].

χ stands for some sufficiently high regular cardinal, and H(χ) denotes the set
of all sets of hereditary cardinality less than χ . For our purpose, χ = (2ω)+ is
enough.

Throughout this work we make the following assumption:

Hypothesis 1.1. T is an Aronszajn tree ordered by <T, and for α < ω1 the level α

of T satisfies:

Tα ⊆ [ωα, ωα + ω).

Throughout this work, T will be fixed. We define the following finite approxi-
mations of specialisation maps:

Definition 1.2. For u ⊆ T and n < ω we let

specn(u) = {η | η : u → [0, n) ∧ (η(x) = η(y) → ¬(x <T y))}.

We let spec(u) = ⋃
n<ω specn(u) and spec = specT = ⋃{spec(u) : u ⊂

T, u finite}.

Choice 1.3 We choose three sequences of natural numbers 〈nk,i : i < ω〉, k =
1, 2, 3, such that the following growth conditions are fulfilled:

(i + 1) · n1,i < n3,i ,(1.1)

n2,i < n1,i+1,(1.2)

n1,i · n1,i ≤ n1,i+1,(1.3)

n1,i ≤ n2,i .(1.4)

We fix them for the rest of this work.
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We compare with the book [4] in order to justify the use of the name creature.
However, we cannot just cite that work, because the framework developed there is
not suitable for the approximation of uncountable domains T.

Definition 1.4. (1.) [4, 1.1.1] A triple t = (nor[t], val[t], dis[t]) is a weak creature
for H if
(a) nor[t] ∈ R

≥0,
(b) Let H = ⋃

i∈ω H(i) and let H(i) be sets. Let � be the strict initial segment
relation.
val[t] is a non-empty subset of





〈x, y〉 ∈

⋃

m0<m1<ω

[
∏

i<m0

H(i)×
∏

i<m1

H(i)] : x � y





.

(c) dis[t] ∈ H(χ).
(2.) nor stands for norm, val stands for value, and dis stands for distinguish.

In our case, we drop the component dis (in the case of simple creatures in the
sense of Definition 1.5) or it will be called k (in the case of creatures), an additional
coordinate, which is a natural number. In order to stress some parts of the weak
creatures t more than others, we shall write val[t] in a slightly different form and
call it a simple creature, c.

As we will see in the next definition, in this work (b) of 1.4 is not fulfilled:
For us val is a non-empty subset of {〈x, y〉 ∈ spec× spec : x �T y} for some
strict partial order �T as in Definition 2.1. Though the members of spec are finite
partial functions, they cannot be written with some n ∈ ω as a domain, since spec is
uncountable and we want to allow arbitrary finite parts. Often properness of a tree
creature forcing follows from the countability of H. Note that our analogue to H is
not countable. In Section 3 we shall prove that the notions of forcing we introduce
are proper for other reasons.

Nevertheless the simple creature in the next definition is a specific case for the
value of a weak creature in the sense of 1.4 without item (1.)(b), and the creature
from the next definition can be seen as a case of a value and a distinction part of a
weak creature.

Definition 1.5. (1) A simple creature is a tuple c = (i(c), η(c), rge(val(c))) with
the following properties:

(a) The first component, i(c), is called the kind of c and is just a natural number.
(b) The second component, η(c), is called the base of c. We require (η(c) = ∅

and i(c) = 0) or (i(c) is the smallest i such that | dom(η(c))| < n2,i−1),
and η(c) ∈ specn3,i−1

.
(c) The range of the value of c, rge(val(c)), is a non-empty subset of {η ∈

specn3,i
: η(c)⊂

�=
η ∧ | dom(η)| < n2,i}, such that | rge(val(c))| < n1,i .

So we have val(c) = {η(c)} × rge(val(c)). That the domain is a singleton,
is typical for tree-creating creatures.
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(d) If η1 ∈ rge(val(c)) and x ∈ dom(η1) \ dom(η(c)) then there is some
η2 ∈ rge(val(c)) such that x ∈ dom(η2) → η1(x) �= η2(x).

(2) A creature c+ is a tuple (i(c+), η(c+), rge(val(c+)), k(c+)) where
(i(c+), η(c+), rge(val(c+))) is a simple creature, and k(c+) ∈ ω is an addi-
tional coordinate.

(3) An (simple) i-creature is a (simple) creature with i(c+) = i (i(c) = i).
(4) If c+ is a creature we mean by c the simple creature such that c+ = (c, k(c+)).
(5) The set of creatures is denoted by K+, and the set of simple creatures is denoted

by K .

Remark 1.6. Property 1.5(d) is equivalent to η(c) = ⋂{η : η ∈ rge(val(c))}, and
also i(c) is determined by η(c) and hence from rge(val(c)). Thus, in our specific
case, every simple creature is determined by the range of its value.

For a real number r we let m = �r� be the smallest natural number such that
m ≥ r . So, for negative numbers r , �r� = 0. We let lg denote the logarithm function
to the base 2. Let log2(x) = �lg(x)� for x > 0, and we set log2 0 = 0.

Definition 1.7. (1) For a simple i-creature c we define nor0(c) as the maximal nat-
ural number k such that if a ⊆ n3,i and |a| ≤ k and B0, . . . , Bk−1 are branches
of T, then there is η ∈ val(c) such that
(α) (∀x ∈ (

⋃
�<k B� ∩ dom(η)) \ dom(η(c)))(η(x) �∈ a),

(β)
| dom(η)|

n2,i

≤ 1

2k
.

(2) We let nor∗(c) = log2(
n1,i(c)
| val(c)| ), and nor

1
2 (c) = min(nor0(c), nor∗(c)).

(3) We define nor1(c) = log2(nor0(c)), and nor2(c) = log2(nor
1
2 (c)).

(4) In order not to fall into specific computations, we use functions f that exhibit
the following properties, in order to define norms on (non-simple) creatures:

(∗)1 f : R
+ × R

+ → R, where R
+ is the set of strictly positive reals.

(∗)2 f fulfils the following monotonicity properties: If n1 ≥ n2 ≥ k2 ≥ k1 then
f (n1, k1) ≥ f (n2, k2).

(∗)3 (For the 2-bigness, see Claim 1.12) f (n
2 , k) ≥ f (n, k)− 1.

(∗)4 n ≤ k → f (n, k) ≤ 0.
(∗)5 (For the halving property, see Definition 3.3) For all n, k: If f (n, k) ≥ 1,

then there is some k′(n, k) = k′ such that k < k′ < n and for all n′,
if k′ < n′ < n and f (n′, k′) ≥ 1, then

f (n, k′) ≥ f (n, k)

2
, and

f (n′, k) = f (n′, k′)+ f (k′, k) ≥ 1+ f (n, k)

2
− 1 = f (n, k)

2
.

For example, f (n, k) = lg( n
k
) for k ≤ n, and f (n, k) = 0 otherwise, and

k′(n, k) = �√nk�, fulfil these conditions. For a creature c+ we define its norm

norf (c+) = nor(c+) = f (nor
1
2 (c), k(c+)).
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Remark 1.8. 1. Note that property (1)(d) of simple creatures (Definition 1.5) fol-
lows from nor0(c) > 0. So we will not check this property any more, but restrict
ourselves to creatures with strictly positive nor0.

2. Definition 1.7(1) speaks about infinitely many requirements, by ranging over
all k-tuples of branches of T. However, at a crucial point in the proof of Claim 1.10
this boils down to counting the possibilities for a ⊆ n3,i .

3. From conditions of nor0 together with additional conditions we shall draw

conclusions on nor0. Often the formulation is smoother for nor
1
2 because the ad-

ditional premises in Claims 1.9 and 1.10 are of the type nor∗(c) ≥ k. Claim 1.11
works for all norms. We hope that the variety of norms will be helpful for future
applications.

The next claim shows that we can extend the functions in the value of a creature
and at the same time decrease the norm of the creature only by a small amount.

Claim 1.9. Assume that

(a) η∗ ∈ spec,
(b) c is a simple i-creature with base η∗, nor0(c) > 0,
(c) k∗ > 1, | rge(val(c))| · k∗ < n1,i ,
(d) for each η ∈ rge(val(c)) and k < k∗ we are given η ⊆ ρη,k ∈ specn3,i

with
| dom(ρη,k)| < n2,i ,

(e) for each η ∈ rge(val(c)), if k1 < k2 < k∗ and x1 ∈ dom(ρη,k1) \ dom(η) and
x2 ∈ dom(ρη,k2) \ dom(η), then x1, x2 are <T-incomparable,

(f) �∗ = max{| dom(ρη,k)| + 1 : η ∈ rge(val(c)) ∧ k < k∗}.
Then there is a simple i-creature d given by

rge(val(d)) = {ρη,k : k < k∗, η ∈ rge(val(c))}.

We have η(d) = η∗, and nor0(d) ≥ m0
def= min

{
nor0(c), log2(

n2,i

�∗ )− 1, k∗ − 1
}
.

Proof. First of all we are to check Definition 1.5(1). Clauses (a),(b), and (c) fol-
low immediately from the premises of the claim. From premise (e) and from the
properties of c it follows that η(d) = η∗. Therefore d satisfies clause (d).

Now for the norm: We check clause (α) of Definition 1.7. Let branches B0, . . .

Bm0−1 of T and a set a ⊆ n3,i be given, |a| ≤ m0. Since m0 ≤ nor0(c), there is some
η ∈ rge(val(c)) such that (∀x ∈ (⋃

�<m0
B�

) ∩ dom(η) \ dom(η(c)))(η(x) �∈ a).
We fix such an η. Now for each � < m0, we let

wη,� = {j < k∗ : ∃x ∈ B� ∩ dom(ρη,j ) \ dom(η)}.

Now we have that |wη,�| ≤ 1 because otherwise we would have k1 < k2 < k∗
in wη,� and xi ∈ B� ∩ dom(ρη,ki

) \ dom(η). As x1 and x2 are <T-comparable, this
is contradicting the requirement (e) of 1.9.

Since m0 < k∗, there is some j ∈ k∗ \⋃
�<m0

wη,�. For such a j , ρη,j is as
required.
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We check clause (β) of Definition 1.7. We take the ρη,j as chosen above. Then
we have

| dom(ρη,j )|
n2,i

≤ �∗

n2,i

= 1

2
lg

(
n2,i
�∗

) ≤ 1

2
log2

(
n2,i
�∗

)
−1
≤ 1

2m0
,

as m0 ≤ log2
(n2,i

�∗
)− 1. ��

Whereas the previous claim will be used only in Section 3 in the proof on prop-
erness (see Claim 3.9), the following two claims will be used in the next section
for density arguments in the forcings built from creatures.

Claim 1.10. Assume

(a) c is a simple i-creature.
(b) k = nor0(c) ≥ 1 and k ≤ n1,i .
(c) x0, . . . xm−1 ∈ T, 1 ≤ m ≤ min(k,

n2,i

2k ).

(d) | rge(val(c))| · k!
(k−m)! ≤ n1,i .

(e) If η ∈ rge(val(c)), then |{y ∈ dom(η) : (∃m′ < m)(xm′ <T y)}| < i and
| dom(η)| < n2,i −m.

Then there is d such that

(1) η(d) = η(c),
(2) rge(val(d)) ⊆ {ν ∈ specn3,i

: | dom(ν)| < n2,i , (∃η ∈ rge(val(c)))(η ⊆
ν ∧ dom(ν) = dom(η) ∪ {x0, . . . , xm−1})},

(3) | rge(val(d))| < n1,i ,
(4) d is a simple i-creature,
(5) nor0(d) ≥ k −m.

Proof. Independently of η ∈ rge(val(c)), we take for m′ < m, zm′ ∈ n3,i \
(rge((η(c))∪⋃

η∈rge(val(c)){η(y) : x <T y}∪{zm′′ : m′′ < m′}). Since | rge(val(c))
| < n1,i and by (d) and since by (1.1) n2,i−1+ (i−1) ·n1,i + k < n3,i there is such
a zm′ , and indeed, which is important for getting a creature that fulfils (5), there are
at least k−m′ such zm′ ’s. Now for every η ∈ rge(val(c)), we take all these choices
νη,z̄ = η ∪ {(xm′ , zm′) : m′ < m} into rge(val(d)). Hence we can choose all νη,z̄

so that we avoid any given a of size k −m with all the zm′ ’s.
Now we check the norm: Let B0, . . . , Bk−m−1 be branches of T and let a ⊆

n3,i(c), |a| ≤ k−m. We have to find ν ∈ rge(val(d)) such that (∀� < k−m)(∀y ∈
dom(ν) ∩ B� \ dom(η(c))(ν(y) �∈ a) and | dom(ν)| ≤ n2,i

2k−m . For m′ < m we
choose Bk−m+m′ , a branch containing xm′ . We take for m′ < m, zm′ ∈ n3,i \
(rge(η(c)) ∪⋃

η∈rge(val(c)){η(y) : xm′ <T y} ∪ a ∪ {zm′′ : m′′ < m′}). We set
a′ = a ∪ {z0, . . . , zm−1}.

By premise (b), we find η ∈ rge(val(c)) for a′ and B0, . . . , B�−1 such that

(1) (∀� < k − 1)(∀x ∈ dom(η) ∩ Bk \ dom(η(c)))(η(x) �∈ a′) and

(2) | dom(η)| ≤ n2,i

2k
.
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Now νη,z̄ = ν is a witness for the norm. We have n2,i

2k + m ≤ n2,i

2k−m , which
follows from the premises on m. The only thing to show is that ν is really a spe-
cialisation function. So let y ∈ dom(η) and y <T xm′ . If y ∈ dom(η) \ dom(η(c)),
then ν(y) = η(y) �= ν(xm′) = zm′ , because y is on the branch leading to xm′ and
because of (1). If y >T xm′ , then we have ν(y) �= η(xm′) simultaneously for all η’s
by our choice of the zm′ ’s. ��

Suppose we have filled up the range of the value of a creature according to one
of the previous claims. Then we want that these extended functions can serve as
bases for suitable creatures as well. This is provided by the next claim.

Claim 1.11. Assume that

(a) c is a simple i-creature.
(b) η∗ ⊇ η(c), η∗ ∈ specn3,i−1

(note that we do not suppose that η∗ ∈ rge(val(c))).
Furthermore we assume | dom(η∗)| ≤ n2,i(c)−1.

(c) We set
�∗2 = | dom(η∗) \ dom(η(c))|,

and

�∗1 = |{y : (∃ν ∈ rge(val(c)))(y ∈ dom(ν) \ dom(η(c)))

∧ (∃x ∈ dom(η∗) \ dom(η(c)))(x <T y)}|,
and we assume that �∗1 + �∗2 < nor0(c).

We define d by η(d) = η∗ and

rge(val(d)) = {ν∪η∗ : ν ∈ rge(val(c)) ∧ ν∪η∗ ∈ specn3,i
, | dom(ν∪η∗)| < n2,i}.

Then

(α) d is a simple i-creature.
(β) nor0(d) ≥ nor0(c)− �∗2 − �∗1.

Proof. Item (α) follows from the requirements on η∗ and from the estimates on the
norm, see below. For item (β), we set k = nor0(c)−�∗1−�∗2. We let B0, . . . Bk−1 be
branches of T and a ⊆ n3,i(c), |a| ≤ k. We set �∗ = �∗1+�∗2. We let 〈y� : � < �∗1〉 list
Y = {y : ∃ν(ν ∈ rge(val(c))∧y ∈ dom(ν))∧∃x(x ∈ dom(η∗)\dom(η(c))∧x ≤T
y)} without repetition. Let Bk, . . . , Bk+�∗1−1 be branches of T such that y� ∈ Bk+�

for � < �∗1. Let 〈x� : � < �∗2〉 list dom(η∗) \ dom(η(c)). Take for � < �∗2,
Bk+�∗1+� such that x� ∈ Bk+�∗1+�. We set a′ = a ∪ {η∗(x�) : � < �∗2}. Since

nor0(c) ≥ k + �∗ there is some ν ∈ rge(val(c)) such that ∀x ∈ ((dom(ν) \
dom(η(c))) ∩⋃

�<k+�∗ B�)(ν(x) �∈ a′). Then, if x �∈ dom(η∗), (ν ∪ η∗)(x) �∈ a.
Moreover | dom(ν∪η∗)| ≤ n2,i

2k+�1∗ +�∗2 ≤ n2,i

2k , if n2,i

2k is large enough. (This premise
will always be fulfilled in our applications, because n1,i ≤ n2,i . We just perform
all our operations on forcing conditions only at high levels i, compared to the size
of the given η∗. This will be done in the next section.)

We have to show that ν ∪ η∗ is a partial specialisation: Since η∗ and ν are
specialisation maps, we have to consider only the case x ∈ dom(η∗) \ dom(η(c))
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and (y ∈ Y or (y ∈ dom(ν) \ dom(η∗) and y <T x)). If y ∈ Y , then we have
ν(y) �= η∗(x�) for all � < �∗2. If y ∈ dom(ν) \ dom(η∗) and y <T x, then y is in a
branch leading to some x�, � < �∗2, and hence again ν(y) �= η∗(x�), � < �∗2. ��

In the applications, the proofs of the density properties, �∗2 will be small com-
pared to the norm (we add �∗2 points to the domain of the functions in the range of
the value of a creature with sufficiently high norm) and �∗1 ≤ |u|, were u is the set
that sticks out of T<α(p) (see Definition 2.2 and Remark 2.5). We will suppose that
these two are small in comparison to nor0(c), so that the premises for Claim 1.11
are fulfilled.

An analogous version of Claim 1.10 with nor
1
2 instead of nor0 holds as well.

The analogous requirements to premises (c) and (d) in 1.10 are even easier: If we

work with nor
1
2 and use n1,i ≤ n2,i from equation (1.4) in the Choice 1.3, then

1 ≤ m ≤ k is enough in premise (c). Premise (d) is included in nor
1
2 (c) = k for

sufficiently large k.

Claims 1.9, 1.10, and 1.11 for nor
1
2 instead of nor0 are proved by easy but a bit

tedious accounting of nor∗(c) = log2(
n1,i(c)
| val(c)| ). Just see that | val(c)| increases only

in a controllable way in Claim 1.9 and in Claim 1.10 and does not increase at all in

Claim 1.11. Hence also if nor∗ is the part determining the minimum in nor
1
2 , the

latter falls at most by lg(k∗) in 1.9 from c to d, and at most by log2(
k!

(k−m)! ) in 1.10
and does not decrease in 1.11. Since premises 1.9(c) and 1.10(d) are conditions
on the largeness of nor∗, they can be combined with the premises on nor0 to one

conditions speaking about nor
1
2 . This combined norm falls only by a small amount

as well.
The next claim will help to find large homogeneous subtrees of the trees built

from creatures that will later be used as forcing conditions.

Claim 1.12. (1) The 2-bigness property [4, Definition 2.3.2]. If c is a simple i-
creature with nor1(c) ≥ k + 1, and c1, c2 are simple i-creatures such that
val(c) = val(c1)∪ val(c2), then nor1(c1) ≥ k or nor1(c2) ≥ k. The same holds
for nor2.

(2) If c+ is a i-creature with nor(c) ≥ k + 1, and c+1 , c+2 are i-creatures such that
val(c) = val(c1) ∪ val(c2), and k(c+1 ) = k(c+2 ) = k(c+), then nor(c+1 ) ≥ k or
nor(c+2 ) ≥ k.

Proof. (1) We first consider nor0. Let j = 2k . We suppose that nor0(c1) < j and
nor0(c2) < j and derive a contradiction: For � = 1, 2 let branches B�

0, . . . , B�
j−1

and sets a� ⊆ n3,i exemplify this.
Let a = a1 ∪ a2 and let, by nor0(c) ≥ 2j , η ∈ rge(val(c)) be such that for

all x ∈ (dom(η) ∩⋃
�=1,2

⋃j−1
i=0 B�

i ) \ dom(η(c)) we have η(x) �∈ a. But then for
that � ∈ {1, 2} for which η ∈ rge(val(c�)) we get a contradiction to nor0(ci ) < j .
Hence (1) follows for nor1. nor∗ increases or stays when taking subsets of val(c),
and hence we have the analogous result for nor2.

Since the k-components of the creatures coincide, part (2) follows from the

behaviour of nor
1
2 that was shown in part (1) and from the requirements on f in

Definition 1.7(4): f (n
2 , k) ≥ f (n, k)− 1. ��
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2. Forcing with tree-creatures

Now we define a notion of forcing with ω-trees 〈c+t : t ∈ (T , �T )〉 as conditions.
The nodes t of these trees (T , �T ) = (dom(p), �p) and their immediate successors
are described by certain creatures c+t from Definition 1.5.

First we collect some general notation about trees. The trees here are not the
Aronszajn trees of the first section, but trees T of finite partial specialisation func-
tions, ordered by �T which is a subrelation of ⊂. Some of these trees will serve as
forcing conditions.

Definition 2.1. (1) A tree (T , �T ) is a set T ⊆ spec, such that for any η ∈ T ,
({ν : ν �T η}, �T ) is a finite linear order and such that in T there is one least
element, called the root, rt(T ). If η �T ν then η ⊂ ν. Every η ∈ T \ rt(T )

has just one immediate �T -predecessor in T . We shall only work with finitely
branching trees.

(2) We define the successors of η in T , the restriction of T to η, the splitting points
of T and the maximal points of T by

sucT (η) = {ν ∈ T : η �T ν ∧ ¬(∃ρ ∈ T )(η �T ρ �T ν)},
T 〈η〉 = {ν ∈ T : η�T ν},

split(T ) = {η ∈ T : | sucT (η)| ≥ 2},
max(T ) = {ν ∈ T : ¬(∃ρ ∈ T )(ν �T ρ}.

(3) The n-th level of T is

T [n] = {η ∈ T : η has n �T -predecessors}.

The set of all branches through T is

lim(T ) = {〈ηk : k < �〉 : � ≤ ω ∧ (∀k < �)(ηk ∈ T [k])

∧ (∀k < �− 1)(ηk �T ηk+1)

∧ ¬(∃η� ∈ T )(∀k < �)(ηk �T η�)}.

A tree is well-founded if there are no infinite branches through it.
(4) A subset F of T is called a front of T if every branch of T passes through this

set, and the set consists of �T -incomparable elements.

Definition 2.2. We define a notion of forcing Q = QT. p ∈ Q iff

(i) p is a function from a subset of spec = specT (see Definition 1.2) to ω.
(ii) p[] = (dom(p), �p) is a tree with ω levels, the �-th level of which is denoted

by p[�].
(iii) p[] has a root, the unique element of level 0, called rt(p).
(iv) We let

i(p)
def= min{i : | dom(rt(p))| < n2,i−1 ∧ rt(p) ∈ specn3,i−1

}.
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Then for any � < ω and η ∈ p[�] the set

sucp(η) = {ν ∈ p[�+1] : η �p ν}
is rge(val(c)) for a simple (i(p)+ �)-creature c with base η. We denote this
simple creature by cp,η and let c+p,η = (cp,η, p(η)). Furthermore, we require

p(η) ≤ nor
1
2 (cp,η).

(v) If η ∈ dom(p) and ν ∈ dom(p) and if η∪ν ∈ spec, then η∪ν ∈ dom(p). It is
a superset of both η and of ν, but in �p it has only one immediate predecessor.
If neither η ⊆ ν nor ν ⊆ η, then at most one of η and ν can be �p-less than
η ∪ ν, while both are⊆-less than η ∪ ν. Every η ∈ spec appears at most once
in dom(p).

(vi) For some k < ω for every η ∈ p[k] there is α < ω1 and a finite u ⊆ T \ T<α

such that for every ω-branch 〈η� : � < ω〉 of p[] satisfying ηk = η we have⋃
�∈ω dom(η�) \ u = T<α .

(vii) For every ω-branch 〈η� : � ∈ ω〉 of p[] we have lim�→ω nor(c+p,η�
) = ω.

The order ≤=≤Q is given by letting p ≤ q (q is stronger than p, we follow
the Jerusalem convention) iff i(p) ≤ i(q) and there is a projection prq,p which
satisfies

(a) prq,p is a function from dom(q) to dom(p).

(b) η ∈ q[�] ⇒ prq,p(η) ∈ p[�+i(q)−i(p)].
(c) If η1, η2 are both in q[] and if η1�qη2, then prq,p(η1)�p prp,q(η2).
(d) q(η) ≥ p(prq,p(η)).
(e) If η ∈ q[] then η ⊇ prq,p(η).

(f) If ν ∈ q[�] and ρ ∈ q[�+1] and ν �q ρ, prq,p(ν) = η, prq,p(ρ) = τ , then
dom(τ ) ∩ dom(ν) = dom(η).

Definition 2.3. For p ∈ Q and η ∈ dom(p) we let

p〈η〉 = p � {ρ ∈ dom(p) : η�ρ}.
Let us give some informal description of the ≤-relation in Q: The stronger

condition’s domain is via prq,p mapped homomorphically w.r.t. the tree orders into

dom(p〈prq,p(rt(q))〉). The root can grow as well. According to (b), the projection
preserves the levels in the trees but for one jump in heights (the �’s in p[�]), due to a
possible lengthening of the root. The partial specialisation functions sitting on the
nodes of the tree are extended (possibly by more than one extension per function)
in q as to compared with the ones attached to the image under pr, but by (b) the
extensions are so small and so few that it preserves the kind i of the creature given
by the node and its successors, and according to (f) the new part of the domain of
the extension is disjoint from the domains of the old partial specification functions
living higher up in the projection of the new tree to the old tree.

Let us compare our setting with the forcings given in the book [4]: There the
≤-relation of the forcing is based on a sub-composition function (whose definition
is not used here, because we just deal with one particular forcing notion) whose
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inputs are well-founded subtrees of the weaker condition. This well-foundedness
condition [4, 1.1.3] is not fulfilled: if we look at (e) and (f) in the definition of ≤
we see that we have to look at all the branches of p that are in the range of prq,p

in order to see whether some ν ∈ q[�] fulfils (f) of the definition of p ≤ q. On the
other hand, the projections shift all the levels by the same amount i(q)− i(p), and
are not arbitrary finite contractions as in most of the forcings in the book [4].

Definition 2.4. (1) p ∈ Q is called normal iff for every ω-branch 〈η� : � ∈ ω〉 of
p[] the sequence 〈nor(c+p,η�

) : � ∈ ω〉 is non-decreasing.
(2) p ∈ Q is called smooth iff in clause (vi) of Definition 2.2 the number k is 0 and

u is empty.
(3) p ∈ Q is called weakly smooth iff in clause (vi) of Definition 2.2 the number k

is 0.

Remark 2.5. If p ∈ Q is smooth then there is some α < ω1 such that for every
ω-branch 〈η� : � ∈ ω〉 of p[] we have

⋃
�<ω dom(η�) = T<α . This α is denoted

by α(p).

Fact 2.6. (1) If p is weakly smooth Then: If p ≤ q and η ∈ dom(p), ν ∈ dom(q),
η = prq,p(ν) and η � τ ∈ dom(p), then dom(ν) ∩ dom(τ ) = dom(η).

(2) If p ≤ q and p is weakly smooth then
ν ∈ dom(q) → dom(ν) ∩ (T<α(p) ∪ u) = dom(prq,p(ν)).

Proof. (1): If p is weakly smooth, then all branches of p[] have the same union of
domains, and hence it is immaterial whether ρ and ν from 2.2(f) are in the range
of prq,p or not. (2) follows from (1). ��
Definition 2.7. For 0 ≤ n < ω we define the partial order ≤n on Q by letting
p ≤n q iff

(i) p ≤ q,
(ii) i(p) = i(q),

(iii) p[�] = q[�] for � < n, and p �
⋃

�<n p[�] = q �
⋃

�<n q[�],
(iv) if prq,p(η) = ν, then

– η = ν and c+q,η = c+p,ν

– or nor(c+q,η) ≥ n.

We state and prove some basic properties of the notions defined above.

Claim 2.8. (1) If p ≤ q and p is weakly smooth, then prq,p is unique.
(2) If p ∈ Q and � ∈ ω then |p[�]| < n1,i(p)+�.
(3) (Q,≤Q) is a partial order.
(4) If p ≤ q and prq,p(η) = ν, then i(cq,η) = i(cp,ν).
(5) If p ≤ q and prq,p(η) = ν, then nor0(cq,η) ≤ nor0(cp,ν).
(6) (Q,≤n) is a partial order.
(7) p ≤n+1 q → p ≤n q → p ≤ q.
(8) If c is a simple i-creature with k ≤ nor0(c), then there is a simple i-creature

c′ with k = nor0(c′) and val(c′) ⊆ val(c).
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(9) For every p ∈ Q there is a q ≥ p such that for all η and ν

prq,p(η) = ν → nor0(cq,η) = min{nor0(cp,ρ) : ν�pρ ∈ dom(p)}.
(10) For every (not necessarily normal) p we have that limn→ω min{nor(c+p,η) :

η ∈ p[n]} = ∞.
(11) If p ∈ Q and η ∈ p[�] then | dom(η)| < n2,i(p)+�−1 or � = 0 and i(p) = 0

and η = ∅.

Proof. (1) By induction on � we show that prq,p �
⋃

�′≤� p[�′] is unique: It is easy
to see that for weakly smooth p, prq,p(rt(q)) is the ⊆-maximal element of p that
is a subfunction of rt(q). By Definition 2.2(v) such a maximum exists. Then we
proceed level by level in q[], and again Definition 2.2(v) yields uniqueness of prq,p.

(2) This is also proved by induction on �. Note that for η ∈ p[�] we have
that | rge(val((η))| ≤ n1,i(p)+�−1. We have |p[0]| = 1 and by Definition 1.5(c),
|p[�+1]| ≤ |p[�]| ·n1,i(p)+� ≤ n1,i(p)+� ·n1,i(p)+� ≤ n1,i(p)+�+1, by equation (1.3).

(3) Given p ≤ q and q ≤ r we define prr,p = prq,p ◦ prr,q . It is easily seen
that this function is as required.

(4) Let � be such that η ∈ q[�]. Then i(cq,η) = i(q)+ � and ν ∈ p[�+i(q)−i(p)].
Hence i(cp,ν) = i(p)+ �+ i(q)− i(p) = i(q)+ �.

(5) Suppose nor0(cq,η) > nor0(cp,ν). Let k = nor0(cq,η) and let i = i(cq,η) =
i(cp,ν). Suppose that a ⊆ n3,i and the branches B0, . . . , Bk−1 of T exemplify that
nor0(cp,ν) < k. Hence for all τ ∈ sucp(ν)

(α) there is x ∈ (dom(τ ) ∩⋃k−1
�=0 B�) \ dom(ν) such that τ(x) ∈ a, or

(β) | dom(τ )| > n2,i

2k .

Suppose that a and B0, . . . , Bk−1 exemplify nor0(cq,η) < k. Let τ ∈ sucq(η),
and prq,p(τ ) = τ ′. Suppose 1.7(1) (α) is the case for τ ′. Then the same a and
B0, . . . , Bk−1 exemplify (α) for τ and cq,η, because we have η ⊇ ν = prq,p(η) and

prq,p[sucq(η)] ⊆ sucp(ν). The same x will show that ∃x ∈ (dom(τ )∩⋃k−1
�=0 B�) \

dom(η) such that τ(x) ∈ a, if we verify that x �∈ dom(η). But we have for all
τ ∈ sucq(η) that dom(η) ∩ dom(τ ) = dom(ν) by 2.2(f), and hence x �∈ dom(η).

Suppose 1.7(1)(β) is the case for τ ′. Then τ ′ ∈ sucp(ν) and τ ⊇ τ ′, and hence
| dom(τ )| ≥ n2,i

2k .
(6) Suppose that p ≤n q ≤n r and prr,q(σ ) = η and prq,p(η) = ν. By (1) and

(3) we have that prr,p(σ ) = ν, and now it is easy to check the requirements for
p ≤n r .

(7) Obvious.
(8) We may assume that nor0(c) > k, because otherwise c itself is as required.

Look at

Y = {d : d is a simple i-creature and val(d) �= ∅ and

nor0(d) ≥ k and val(d) ⊆ val(c)}.
Since c ∈ Y , it is non-empty, and it has a member d with a minimal number

of elements. We assume towards a contradiction that nor0(d) > k. We choose
η∗ ∈ rge(val(d)). We let rge(val(d∗)) = rge(val(d)) \ {η∗}.
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Claim: d∗ �= ∅. Otherwise we choose x ∈ dom(η∗) \ dom(η(c)). If η∗ �= η(c)
such anx exists.η∗0η(c) is excluded becauseη(c) �∈ rge(val(c)). Now we letB0 be a
branch of T to which x belongs and set a = {η∗(x)}. They witness that nor0(d) �≥ 1,
so nor0(d) = 0, which contradicts the assumption that nor0(d) > k > 0.

Claim: nor0(d∗) ≥ k. Otherwise there are branches B0, . . . , Bk−1 and a set
a ⊆ n3,i witnessing nor0(d∗) �≥ k. Let x ∈ dom(η∗) \ dom(η(d)) and let Bk be a
branch such that x ∈ Bk and set a′ = a ∪ {η∗(x)}. The B0, . . . , Bk and a′ witness
that nor0(c) �≥ k + 1. Hence d∗ is a member of Y with fewer elements than d,
contradiction.

(9) Follows from (8). We can even take dom(q) ⊆ dom(p). First see: For no m

the set {η ∈ p such that for densely (in p[]) many η′�pη we have that nor0(cp,η′) <

m}. is anywhere dense. Otherwise we can choose a branch 〈η� : � ∈ ω〉 such that
there is some m ∈ ω such that for all � < ω, nor0(cp,η�

) < m.
Now we choose by induction of �, dom(q�) ⊆ dom(p), such that dom(q�) has

no infinite branch and hence is finite, though we do not have a bound on its height.
First step: Say min{nor0(cp,η) : η ∈ dom(p)} = k and it is reached in η ∈

dom(p). We take q[0] = {η}.
([1]) Then we take for any η′ ∈ rge(val(cp,η)) some η′′ ⊇ η′ such that η′′ ∈

dom(p) and such that for all η̃ ⊇ η′′, if η̃ ∈ dom(p) then nor0(cp,η̃) ≥ k + 1. By
the mentioned nowhere-density result, this is possible. We put such an η′′ in q[�],
if it is in p[�+i(q)−i(p)].

([2]) Then we look at the ν in the branch between η and η′′ in dom(p). If
nor0(cp,ν) > k we take according to (8) a subset of rge(val(cp,ν)) with norm k

and put this into dom(q). We have to put successors to all ν′ ∈ rge(val(cp,ν)) for
all ν in question into dom(q1). This is done as in ([1]), applied to ν instead of η.
With all the ν in this subset we do the procedure in ([1]), and repeat and repeat
it. In finitely many (intermediate) steps we reach a subtree dom(q�) of dom(p)

without any ω-branches such that all its leaves fulfil η′′ ∈ dom(p) and such that
for all η̃ ⊇ η′′, if η̃ ∈ dom(p) then nor0(cp,η̃) ≥ k + 1, and all its nodes η fulfil
nor0(cq1,η) ≥ k. By König’s lemma, this tree dom(q1) is finite.

([3]) With the leaves of dom(q�) and k+2 instead of k+1, we repeat the choice
procedure in ([1]) and ([2]). We do it successively for all k ∈ ω. The union of the
dom(q�), � ∈ ω, is a q as desired in (9).

(10) This follows from König’s lemma: Since p[] is finitely branching, there is
a branch though every infinite subset.

(11) Follows from Definitions 1.5 and 2.2. ��

The next lemma states that Q fulfils some fusion property:

Lemma 2.9. Let 〈ni : i ∈ ω〉 be a strictly increasing sequence of natural num-
bers. We assume that for every i, qi ≤ni

qi+1, and we set n−1 = 0. Then q =
⋃

i<ω

⋃
ni−1≤n<ni

(qi) � q
[n]
i ∈ Q and for all i, q ≥ni

qi .

Proof. Clear by the definitions. ��

The fusion lemma is usually applied in the following setting:
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Conclusion 2.10. Suppose p ∈ Q is given and we are to find q ≥ p such that q

fulfils countably many tasks. For this it is enough to find for any single task and
any p0 and k∗ ∈ ω some q ≥k∗ p0 that fulfils the task.

Now we want to fill up the domains of the partial specialisation functions and
to show that smooth conditions are dense:

Lemma 2.11. If p ∈ Q and m < ω then for some smooth q ∈ Q we have p ≤m q.
Moreover, if

⋃{dom(η) : η ∈ p[]} ⊆ T<α then we can demand that
⋃{dom(η) :

η ∈ q[]} = T<α . Moreover, η ∈ q[] implies nor1(cq,η) ≥ nor1(cp,prq,p(η))− 1, and

q(η) = p(prq,p(η)) implies that nor(c+q,η) ≥ nor(c+p,prq,p(η))− 1.

Proof. We first use the definition of p ∈ Q: By item (v) there is some k < ω for
every η ∈ p[k] there is α(η) < ω1 and a finite uη ∈ T \ T<α(η) such that for every
ω-branch 〈η� : � < ω〉 of p[] satisfying ηk = η we have

⋃
�∈ω dom(η�) \ uη =

T<α(η). We fix such a k and such uη’s and setu = ⋃
η∈p[k] uη. Let {xη

k : k < ω)}
enumerate T<α \ (T<α(η)∪uν) without repetition. Since m is arbitrary, it is enough
to find q ≥m p such that the first � of the x

η
k ’s are in its domain. So we aim for such

a condition.
We can find n such that

(∗)1 m ≤ n < ω, k ≤ n,
(∗)2 |u| < n,
(∗)3 for every ν ∈ p[n], we have nor0(cp,ν) > m,
(∗)4 if η ∈ p[n], η ⊆ ν ∈ dom(p) then dom(ν) \ dom(η) is disjoint from u.

For each η ∈ p[n] let w+η = {ν : η �T ν ∈ dom(p) ∧ nor1(cp,ν) + � + n >

nor1(cp,η)}, wη = {ν ∈ w+η : (� ∃ρ)(η�T ρ �T ν ∧ ρ ∈ w+η }, and let η̃ be the
predecessor of η in p[k]. So w := ⋃{wη : η ∈ p[n]} is a front of p[]. For each
ν ∈ w let ν ∈ p[�(ν)] (so �(ν) ≥ n) and let α(ν) = α(η̃) and uν = uη̃ when ν ∈ wη.

For each η ∈ p[n], ν ∈ wη,

|{ρ̃ ∈ uν : (∃k < �)x
η̃
k �T ρ̃}| + |{xη̃

k : k < �}| < n+ �. �×
We let ρ ∈ dom(p) be a candidate if

(a) (ρ ⊆ ν ∨ ν ⊆ ρ ∈ p[]) and α = α(ν) or
(b) ν ⊆ ρ ∧ α(ν) < α ∧ ∃� > �(ν)∃τ ∈ p[�](ν ⊆ τ ∧ dom(ρ) = dom(τ )∪ {xη̃

k :

k < � and ρ(x
η̃
k ) < n3,i(p)+k).

We let q
[]∗ be the set of all candidates and choose q[] ⊆ q

[]∗ by successively
climbing upwards in the levels of p[], using first Claim 1.10 for the immediate suc-
cessors of an already chosen node, and then using Claim 1.11 to make these new
successors the bases of the creatures attached to them. We choose q rich enough as
in Claim 1.10 but also small enough as to have sufficiently high nor∗(cq,ρ). We set
q(ρ) = p(τ) if ρ, τ are as above.

For checking the conditions for p ≤ q and on the norms note that �× above
gives clause of the premises of Claim 1.10 on a given level and of Claim 1.11 on
its successor level. By the choice of q, it is smooth. ��
Conclusion 2.12. Forcing with Q specialises T.
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3. Decisions taken by the tree creature forcing

In this section we prove that Q is proper and ωω-bounding. Indeed we prove that
Q has “continuous reading of names” (this is the property stated in 3.9), which
implies Axiom A (see [1]) and properness.

Claim 3.1. (1) If p ∈ Q and {η1, . . . , ηn} is a front of p, then {p〈η1〉, . . . , p〈ηn〉} is
predense above p.

(2) If {η1, . . . , ηn} is a front of p and p〈η�〉 ≤ q� ∈ Q for each �, then there is
q ≥ p with {η1, . . . , ηn} ⊆ q[] such that for all � we have that q〈η�〉 = q�.
Hence {q〈η�〉 : 1 ≤ � ≤ n} is predense above q.

Claim 3.2. If p ∈ Q and X ⊆ dom(p) is upwards closed in �p, and ∀η ∈
dom(p) nor0(cp,η) > 0, then there is some q such that

(a) p ≤0 q, and either (∃�)q[≥�] ⊆ X or dom(q) ∩X = ∅,
(b) dom(q) ⊆ dom(p) and q = p � dom(q),
(c) for every ν ∈ dom(q), if cq,ν �= cp,ν , then nor2(cq,ν) ≥ nor2(cp,ν) − 1 and

nor(c+q,ν) ≥ nor(c+p,ν)− 1.

Proof. We will choose dom(q) ⊆ dom(p) and then let q = p � dom(q). For each
� we first choose by downward induction on j ≤ � subsets X�,j ⊆ p[≤�] and a
colouring f�,j of X�,j ∩ p[j ] with two colours, 0 and 1. The choice is performed
in such a way that X�,j−1 ⊆ X�,j and such that p[i] ⊆ X�,j for i ≤ j .

We choose X�,� = p[≤�] and for ν ∈ p[�] we set f�,�(ν) = 0 iff (∃�′)(p〈ν〉)[≥�′]

⊆ X and f�,�(ν) = 1 otherwise.
Suppose that X�,j and f�,j are chosen. For η ∈ p[j−1] ∩X�,j we have

rge(val(cη,p)) ={ν ∈ rge(val(cη,p)) : f�,j (ν) = 0} ∪
{ν ∈ rge(val(cη,p)) : f�,j (ν) = 1}

Note that the sets would be all the same if we intersect with X�,j , because p[j ] ⊆
X�,j . By Claim 1.12 at least one of the two sets gives a creature c with nor2(c) ≥
nor2(cη,p)− 1. The same holds for nor.

So we keep in X�,j−1 ∩ p[j ] only those of the majority colour and close
this set downwards in p[]. This is X�,j−1. We colour the points on p[j−1] ∩
X�,j−1 with f�,j−1 according to these majority colors, i.e., f�,j−1(η) = i iff
{ν ∈ rge(val(cη,p)) : f�,j (ν) = i} ⊆ X�,j−1. We work downwards until we
come to the root of p and keep f�,0(rt(p)) in our memory.

We repeat the procedure of the downwards induction on j for larger and larger
�.

If there is one � where the root got colour 0, we are, because X is upwards
closed, in the first case of the alternative in the conclusion (a). If for all � the root
got colour 1, we have for all � finite subtrees t such that for all ν ∈ t , p〈ν〉 ∩ t has
at least original norm -1 at its root. By König’s Lemma (initial segments of trees
are taking from finitely many possibilities) we build a condition q such that all of
its nodes are not in X, and thus (a) is proved. The item (b) is clear. Item (c) follows
from our choice of q and from 1.12. ��
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The next claim is very similar to 3.2. We want to find q ≥m p, and therefore
we have to weaken the homogeneity property in item (a) of 3.2.

Claim 3.3. If p ∈ Q, k∗ ∈ ω, and X ⊆ dom(p) is upwards closed, and ∀η ∈
dom(p) nor0(cp,η) > 0, then there is some q such that

(a) p ≤k∗ q, and there is a front {ν0, . . . νs} of p which is contained in q and whose
being contained in q ensures p ≤k∗ q, and such that for all νi we have: either
(∃�)(q〈νi 〉)[≥�] ⊆ X or dom(q〈νi 〉) ∩X = ∅,

(b) dom(q) ⊆ dom(p) and q = p � dom(q),
(c) for every ν ∈ dom(q), if c+q,ν �= c+p,ν , then nor2(cq,ν) ≥ nor2(cp,ν) − 1 and

nor(c+q,ν) ≥ nor(c+p,ν)− 1.

Proof. We repeat the proof of 3.2 for each p〈νi 〉. ��
Now for the first time we make use of the coordinate k(c+) of our creatures.

The next lemma states that the creatures have the halving property (compare to [4,
2.2.7]).

Definition 3.4. K+ has the halving property, iff there is a function half : K+ → K+
with the following properties:

(1) half(c+) = (c, k(half(c+))),
(2) nor(half(c+)) ≥ nor(c+)

2 − 1,
(3) if c′ is a simple creature and k ≥ k(half(c+)) and nor(c′, k) > 0, then

nor(c′, k(c+)) ≥ nor(c+)
2 .

Lemma 3.5. K+ has the halving property.

Proof. We set k(half(c+)) = �k′(nor
1
2 (c), k(c+))� ≥ k(c+) as in 1.7(4). Then

we have that nor(half(c+)) = f (nor
1
2 (c), k(half(c+))) ≥ nor(c+)

2 − 1, by Defini-
tion 1.7(4).

If c′ is a simple creature and nor(c′, k(half(c+)) > 0 and nor
1
2 (c′) ≤ nor

1
2 (c),

then

nor(c′, k(c+)) = f (nor
1
2 (c′), k(c+))

≥ f (nor
1
2 (c′), k(half(c+))+ f (nor

1
2 (c), k(half(c+)))

≥ 1+ nor(c+)

2
− 1 ≥ nor(c+)

2
.

If nor
1
2 (c′) > nor

1
2 (c), then the inequality follows from the monotonicity properties

in Definition 1.7 (4). ��
Claim 3.6. Assume that τ˜ is a Q-name for an ordinal, and let a be a set of ordinals.
Let k, m ∈ ω. Let p, q be conditions such that

(a) (∀ν ∈ p[≥k])(nor(cp,ν, p(ν)) ≥ 2m+ 1),
(b) dom(q) = dom(p), and for η ∈ dom(q), k(c+q,η) = k(half(c+p,η)), cq,η = cq,η.
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Then for any r ∈ Q: q ≤ r and r�τ˜ ∈ a and ν = rt(r) and η = prr,p(ν) ∈ p[k]

imply that there is some r ′ such that

(α) p〈η〉 ≤ r ′, ν = rt(r ′)
(β) r ′�τ˜ ∈ a,
(γ ) for every ρ ∈ dom(r ′), nor(cr ′,ρ, q ′(ρ)) ≥ m.

Proof. So let r ≥ q and r�τ˜ ∈ a. We take some n(∗) ∈ ω such that

(∀ρ ∈ dom(r))(ρ ∈
⋃

n′≥n(∗)
r [n′] → nor(c+r,ρ) > 2m).

We define r ′ by dom(r ′) = dom(r) and ρ ∈ ⋃
n′≥n(∗) r [n′] → c+

r ′,ρ = c+r,ρ ,

ρ ∈ ⋃
n′<n(∗) r [n′] → c+

r ′,ρ = (cr,ρ, k(c+p,ρ)).
q and q ′ force the same things, because we weakened q to q ′ only in an atomic

part, because there are only finitely many k such that (cq,ρ, k) is a creature with
0 ≤ nor0(cq,ρ).

From Lemma 3.5 we get ρ ∈ dom(q) → nor(c+
q ′,ρ) ≥ m. ��

As a preparation for the following proof, we define isomorphism types of partial
specialisation functions over conditions p:

Definition 3.7. Let η0, η1 ∈ spec and let p ∈ Q. We say η0 is isomorphic to η1
over p if there is some injective partial function f : T → T such that x <T y

iff f (x) <T f (y) and dom(η0) ∪
⋃{dom(η) : η ∈ dom(p)} ⊆ dom(f ) and

f �
⋃{dom(η) : η ∈ dom(p)} = id and f [dom(η0)] = dom(η1) and η0(x) =

η1(f (x)) for all x ∈ dom(η0).

Fact 3.8. For each fixed p, there are only countably many isomorphism types for
η over p. If the elements of dom(η0) and of dom(η1) are pairwise incomparable in
T and if they are isomorphic over p with

⋃{dom(η) : η ∈ dom(p)} ⊆ T<α for
some countable α, and if there is some r ≥ p such that η0 ∈ r [], then there is some
r ′ ≥ p such that η1 ∈ (r ′)[].

Claim 3.9. Suppose that p0 ∈ Q and that m < ω and that τ˜ is a Q-name of an
ordinal. Then there is some q ∈ Q such that

(a) p0 ≤m q,
(b) for some � ∈ ω we have that for every η ∈ q[�] the condition q〈η〉 forces a value

to τ˜ .

Proof. Choose n(∗) such that ρ ∈ ⋃
n≥n(∗) p

[n]
0 → nor(c+p0,ρ

) ≥ m+ 1.
Then we define

X =
{

ρ : ρ ∈
⋃

n≥n(∗)
p

[n]
0 ∧ (∃q)

(

p
〈ρ〉
0 ≤0 q ∧ q forces a value to τ˜

∧ (∀ν ∈ q[])(nor(c+q,ν) ≥ 1)

)}

.
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Let p1 be chosen as in 3.3 for (p0, X, n(∗)). By a density argument, there is a
front {ν0, . . . νr} of p1 such that for all νi the first clause of the alternative in 3.3(a)
holds with k∗ = 4m+4. W.l.o.g. let n(∗) be bigger than all the �’s from 3.3(a) plus
the maximum of the height of νi in p0 for all νi , 0 ≤ i ≤ r .

For m̃ < ω, r, s ∈ Q, η ∈ dom(r), we denote the following property by (∗)m̃,η
r,s :

r〈η〉 ≤0 s ∧
∀ν(η ⊆ ν ∈ dom(s) → nor(c+s,ν) ≥ m̃+ 1) ∧
(∃� ∈ ω)(∀ρ ∈ s[�])(s〈ρ〉 forces a value to τ˜ ).

(∗)m̃,η
r,s

We choose by induction on t < ω a countable Nt ≺ (H(χ),∈) and an ordinal
αt and pairs (kt , qt ) such that

(0) q0 = p1,
(1) p1, T, τ˜ ∈ N0,
(2) Nt ∈ Nt+1,
(3) Nt ∩ ω1 = αt ,
(4) δ = limt→ω αt ,
(5) kt is increasing with t , kt ≥ n(∗),
(6) qt ∈ Q is smooth,
(7) α(qt ) = αt ,
(8) kt is the first k strictly larger than all the kt1 for t1 < t and such that

ρ ∈ q
[≥k]
t → nor(c+qt ,ρ

) > 4m+ 4t + 3,
(9) qt ≤m+t+1 qt+1,

(10) if η ∈ q
[kt ]
t and there is q (∈ V ) satisfying (∗)m+t,η

qt ,q , then q = q
〈η〉
t+1 satisfies

it,
(11) qt ∈ Nt+1,
(12) if η ∈ q

[kt ]
t and no q satisfies (∗)m+t,η

qt ,q , then (q
〈η〉
t+1)

[] = (q
〈η〉
t )[] and η ⊆ ρ ∈

dom(qt ) implies that c+qt+1,ρ
= half(c+qt ,ρ

).

It is clear that the definition can be carried out as required. If we are given qt

we can easily find kt . For each η ∈ q
[kt ]
t we choose qt,η ∈ Nt such that (∗)m+t,η

qt ,qt,η

if possible and in fact w.l.o.g. qt,η = q
〈η〉
t , otherwise we follow (12) and apply the

halving function.
Having carried out the induction, we let r = ⋃

t∈ω(qt � q
(kt−1,kt ]
t ). So, by (7),

r ∈ Q is smooth with α(r) = δ and for every t we have qt ≤m+t+1 r , and in
particular p1 ≤m+1 r .

Assume for a contradiction that we are in the bad case that r does not fulfil (b)
of 3.9. So for all t there is η ∈ q

[kt ]
t not fulfilling (10). We take t = 0.

For η0 ∈ r [k0] either clause (10) applies, then we have nothing to do, or clause
(12) applies (and this happens at least once by our assumption), which means

there is no s such that

r〈η0〉 ≤m+1 s and (∃�)(∀ρ′ ∈ s[�])(s〈ρ
′〉 forces a value to τ˜ ).

�×
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For each such η0 now separately we carry out the following construction:
Choose q ≥0 r〈η0〉 in Q such that q forces a value to τ˜ and that q has the property
as in Claim 3.6. Note that also dom(r) has the property of X with p0 replaced by
r in the definition of X. So such a q exists.

As r is smooth, by the definition of q ≥ r (2.2(f )) we have that the additional
information on partial specialisation functions that are in q but not in r does not
have the domain in T<δ .

Let ν0 = rt(q). Then by the choice of X, i(ν0) = i(η0). Moreover, η0 =
dom(rt(q))∩T<δ ⊆ T<α0 , and i(p0) = i(q0) = i(r) = i(q)− k0. By the halving
we have

(∀ν)(ν0 ⊆ ν ∈ dom(q) → nor(c+q,ν) ≥ 2m+ 2).

Now easily, if 0 ≤ t, ν0 ≤ ν ∈ dom(q), prq,r (ν) ∈ r [kt ], then prq,r (ν) =
prq,qt

(ν), dom(ν) ∩ T<α(r) = dom(prq,r (ν)) = dom(prq,qt
(ν)) ⊆ T<α(qt ).

From η0 ∈ r [k0] we get η0 ∈ q
[k0]
0 . So by the choice of 〈qt : t ∈ ω〉 we know

that there is no q with (∗)m,η0
q0,q , as otherwise q

〈η0〉
1 would be like this and this property

would be inherited by r .
Fix for some time ν ∈ sucq(ν0) and let η = prq,q1

(ν) ∈ q
[k0+1]
1 , so η ∈

sucq1(η0).
So let dom(ν)\dom(η) = {x0, . . . , xs̃−1}.We just saw that x0, . . . , xs̃−1 �∈ T<δ .

Let us define ȳ = 〈y� : � < s̃〉 is a candidate for an extended domain iff:

(a) y� are without repetitions,
(b) there is some rȳ such that

(0) rt(rȳ) = η ∪ {(y�, ν(x�)) : � < s̃} ∈ Q, such that

(1) rȳ ≥ q
〈η〉
t ,

(2) (∀ρ)(η ⊆ ρ ∈ dom(rȳ) → nor(c+rȳ ,ρ) > m+ 1),
(3) rȳ forces a value to τ˜(4) 〈(y�, ν(x�)) : � < s̃〉 ∈ specT is isomorphic over T<δ to

〈(x�, ν(x�)) : � < s̃〉.
We set

Y = Yη = {ȳ : ȳ is a candidate for an extension}.
Now we have that 〈x� : � < s̃〉 ∈ Y . This is exemplified by q〈ν〉.
We have that qt ∈

⋃
t<ω Nt = N and for all �, x� ∈ T≥δ , because the αt are

cofinal in δ and since αt = α(qt ).
Since x� ≥ δ, counting isomorphism types over T<δ yields |Yη| = ℵ1.
By a fact onAronszajn trees (Jech, or [6, III, 5.4]) we find 〈yη

j,� : � < s, j ∈ ω1〉
and a root η such that

(a) 〈yη
j,� : � ∈ s̃〉 ∈ Yη are without repetition,

(b) for j �= j ′, {yη
j,� : � < s̃} ∩ {yη

j ′,� : � < s̃} = η,

(c) if j1 �= j2 and if y
η
j1,�1

�∈ η and y
η
j2,�2

�∈ η then they are incompatible in
<T.



646 H. Mildenberger, S. Shelah

Let c = {prq,qt
(ν) : ν ∈ sucq(ν0)}. This is a simple (i(q0)+ k0 + 1)-creature

with nor(c, q0(η0)) ≥ m+ 2 by property (10) of (k0, q0). For each η ∈ rge(val(c))
let 〈yη

j,� : � < s̃, j < ω1〉 be as above and let r
η
j be a witness for 〈yη

j,� : � < s̃〉 ∈
Yη.

Let j∗ = nor0(cq0,η0).
For each η ∈ rge(val(cq0,η0)) choose a witness νη ∈ sucq(ν0) such that

prq,q0
(νη) = η. Now we define a simple i(cq0,η0)-creature d by

η(d) = η(cq0,η0)

rge(val(d)) = {η ∪ {(yη
j,�, νη(y�)) : � < s̃} : η ∈ rge(val(c)), j < j∗}.

Then we have by Claim 1.9 that d is a i(cq0,η0))-creature and nor0(d) ≥
min{nor0(cq0,η0), lg(

n2,i(d)

s̃
)−1, k∗ −1} ≥ m+1. By the choice of ν0, lg(

n2,i(d)

s̃
) ≥

m+ 1. Since nor∗ drops at most by 1, we have nor(d, q0(η0)) ≥ m+ 1. Now we
define s ∈ Q as follows:

(α) rt(s) = η0, s(η0) = q0(η0),
(β) cs,η0 = d,
(γ ) if ρ ∈ rge(val(d)) and if ρ = η ∪ {(yη

j,�, νη(y�)) : � < s̃}} then s〈ρ〉 = r
η
j .

Clearly s ∈ Q and q
〈η0〉
t ≤m+1 s and for every η ∈ s[�] the condition s〈η〉

forces a value to τ˜ , in fact � = 1 is o.k., by the way the r
η
j were chosen. So we get

a contradiction to �× for η0. ��
Conclusion 3.10. Q is a proper ωω-bounding forcing adding reals that specialises
a given Aronszajn tree.

Proof. We show that forcing with Q adds a new real: Let xn ∈ T, n ∈ ω, be
pairwise different arbitrary nodes of the Aronszajn tree T. Let f

˜
be a name for the

generic specification function. By Conclusion 2.12, f
˜

is defined on the whole T.
Every condition 〈c+t : t ∈ T 〉 determines f

˜
(xn) iff xn ∈ dom(rt(T )), so only for

finitely many xn. Hence by a density argument, 〈(n, f
˜
(xn)) : n ∈ ω〉 is a new real.

For a proof that continuous reading of names implies properness and ωω-bounding
see Sections 2.3 and 3.1 in [4]. ��

Now the preservation theorems for properness and ωω-bounding allow us to
iterate forcings Q = QT with countable support, for various T. Starting form a
ground model with 2ℵ1 = ℵ2 we can successively specialise all Aronszajn trees
in the ground model and in all intermediate models of the iteration and thus get a
model where all Aronszajn trees are special and b = ℵ1 and 2ω = ℵ2. Since♣ and
CH together imply ♦ (see [6, Fact 7.3]), SH and ♣ together imply 2ω ≥ ℵ2.
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