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Abstract. We show that there is a forcing extension in which any two

ultrafilters on ω are nearly coherent and there is a non-meagre filter

that is not nearly ultra. This answers Blass’ longstanding question [3]

whether the principle of near coherence of filters is strictly weaker than

the filter dichotomy principle.

Dedicated to Andreas Blass on the occasion of his 60th birthday.

1. Introduction

By a filter we mean a proper filter on ω. We call a filter non-principal

if it contains all cofinite sets. Let F be a non-principal filter on ω and let

f : ω → ω be finite-to-one (that means that the preimage of each natural

number is finite). Then also f(F ) = {X : f−1(X) ∈F} is a non-principal

filter. Two filters F and G are nearly coherent if there is some finite-to-one

f : ω → ω such that f(F ) ∪ f(G ) generates a filter. We also say to this

situation that f(F ) and f(G ) are coherent.

The filter dichotomy principle, FD, says that for every filter there is a

finite-to-one function g such that g(F ) is either the filter of cofinite sets

(also called the Fréchet filter) or an ultrafilter. In the latter case we call

F nearly ultra. Talagrand [19] showed that there is a finite-to-one function

such that f(F ) is Fréchet iff F is meagre, that is the set of the characteristic

functions of the members of F is a meagre subset of the space 2ω.

The principle of near coherence of filters, NCF, says that any two fil-

ters (equivalently: ultrafilters) are nearly coherent. Blass and Laflamme [5]

showed that u < g implies FD, and that FD implies NCF. The purpose of

this paper is to show that NCF does not imply FD.

Main Theorem. “NCF and not FD” is consistent relative to ZFC.

Since NCF is equivalent to “βR+ r R+ has only one composant” and

to “the ideal of compact operators on a Hilbert space is not the sum of
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two proper subideals” [3] and since FD is weaker than “there are just four

slenderness classes of abelian groups” (by [5], actually by [14] they are equiv-

alent), our result says that is is possible that βR+ r R+ has only one com-

posant and the ideal of compact operators on a Hilbert space is not the sum

of two proper subideals and yet there are more than four slenderness classes

of abelian groups.

We also looked at the splitting number s (see [1, 1.3.5]) in our models of

NCF and not FD, because by [14], FD together with s > u implies u < g, and

we wanted to know whether s has an influence also in our non-implication.

We give two types of models of NCF and not FD, one with s = ℵ2 and one

where we do not know the splitting number. The hope is that the elbow

room in our construction will at some time help to solve the open problem

whether u < g is strictly stronger than FD.

Before we give an outline of the forcing construction, let us first review

the known models of FD. P -points and two cardinal characteristics play

an important rôle in our topic: We write A ⊆∗ B iff A r B is finite. An

ultrafilter U is called a P -point if for every γ < ℵ1, for every Ai ∈ U , i < γ,

there is some A ∈ U such that for all i < γ, A ⊆∗ Ai; such an A is called a

pseudo-intersection or a diagonalisation of the Ai, i < γ. A notion of forcing

P preserves an ultrafilter U iff P “(∀X ∈ [ω]ℵ0)(∃Y ∈ U )(Y ⊆ X ∨ Y ⊆

ω r X))” and in the contrary case we say “P destroys U ”. If P preserves

U and U is a P -point, then U stays a P -point [6, Lemma 3.2].

B ⊆ U is a base for U if for every X ∈ U there is some Y ∈B such that

Y ⊆ X. The cardinal u is the smallest cardinal of a base for a non-principal

ultrafilter.

A subset G of [ω]ω is called groupwise dense if (∀X ∈ G )(∀Y ⊆∗ X)(Y ∈

G ) and for every partition of ω into finite intervals {[πi, πi+1) : i ∈ ω} there

is an infinite set A such that
⋃
{[πi, πi+1) : i ∈ A} ∈ G . The groupwise

density number, g, is the smallest number of groupwise dense families with

empty intersection.

The only models of NCF that have been known so far are also models of

FD and u < g, which is possibly strictly stronger than FD. A ground model

with CH is extended by an iterated forcing 〈Pβ, Q
˜

α : β ≤ γ, α < γ〉 that is

built in the usual way: The iterand Q
˜

α is a Pα-name and Pα+1 = Pα ∗ Q
˜

α,

and at limits we build Pα with countable supports. The iterands are proper

forcings that preserve at least one, indeed all P -points, and thus keep u

small. (If u < d, which follows from NCF, then by Ketonen [11] every filter

witnessing u is a P -point, so we do not have to worry whether there is

some non-P ultrafilter with a base of a smaller size. Also, since u = ℵ1 is

the minimum possible, these worries are unnecessary.) Let us write Vα for
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VPα , an arbitrary extension by a Pα-generic filter Gα. Although u is kept

small, at least at stationarily many limit steps α < ℵ2 of cofinality ℵ1 the

next iterand adds a real that has supersets in all groupwise dense sets in Vα

and thus g = ℵ2 [5].

Some types of such models of u < g are known: an iteration of length ℵ2

with countable support of Blass-Shelah forcing over a ground model of CH

[6] gives ℵ1 = u < s = g = 2ℵ0 = ℵ2 and an iteration of length ℵ2 with

countable support of Miller forcing over a ground model of CH [7] gives

ℵ1 = u = s < g = 2ℵ0 = ℵ2. A third type of model of u < g is given by a

countable support iteration of Matet forcing [3]. Other proper tree forcings

that preserve P -points can be interwoven into the iteration and, as long as

at stationarily many steps of cofinality ℵ1 a real is added that has a superset

in each groupwise dense family in the intermediate model, the outcome is

u < g.

Now our proof of the main theorem modifies these constructions: First:

we preserve only one arbitrary P -point E ∈ V0 that will be fixed forever,

and we destroy many others.

We try to specify what we mean when we use one of the ambiguous

expressions “stage α” or “step α”; When we say “at stage α we have” or

something similar it means “in VPα holds”. When we say “at stage α we

do” it refers to the choice of Q
˜

α, which is a part of Pα+1 = Pα ∗Q
˜

α. Second:

We let S2
1 = {α ∈ ℵ2 : cf(α) = ℵ1}. We build up one non-meagre non-

nearly-ultra filter A generated by {Aα : α 6∈ S2
1}. In a stage α ∈ ℵ2 r S2

1

we let Qα diagonalise A ’s initial segment Aα := the filter generated in Vα

by {Aβ : β < α, β 6∈ S2
1} and let Aα be a subset of the complement of

a diagonalisation built from certain blocks. Looking at sufficiently many

combinations of infinitely many blocks guarantees A = Aω2
will be not

meagre in the end. Also A will be very far from being ultra, because at

any time it contains a tree of 2ℵ1 mutually non-nearly coherent core filters

Φ(U ) (see Definition 3.4) among its supersets and at stages α ∈ ℵ2 r S2
1

the filter Aα even has a pseudo-intersection (see Definition 4.1) in Vα (if

cf(α) = ω and α is the limit of a sequence in S2
1 then we take a cofinal

sequence βn converging to α and take a pseudo-intersection of the centred

set {Xβn
: n ∈ ω}, note that by the definition of iterated forcing the

sequence 〈Xβn
: n ∈ ω〉 ∈ VPα ; in the successor case α = β + 1, β 6∈ S2

1

we use the induction hypothesis and the fact that {Aβ} ∪ Aβ is centred;

if α = β + 1, β ∈ S2
1 then Xα is a pseudointersection of Aβ; the case of

cf(α) = ω and α has a maximal predecessor in S2
1 is similar) and at stages

α ∈ S2
1 the filter Aα has a pseudo-intersection in Vα+1. We strengthen the

latter properties of Aα to a property of every two stages β < α, β, α ∈ ℵ2rS2
1
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that is preserved in the iteration and that will allow us to work with stable

ordered-union ultrafilters U on the set F of all finite, nonempty subsets of

ω. The strengthening will be the technical property (P5) of the iteration in

Section 5. It prevents the misfortune that for some α ∈ S2
1 , Aα is all of a

sudden nearly ultra.

Third: We get NCF with the aid of a diamond and special iterands: A

diamond sequence on S2
1 is a sequence 〈Sα : α ∈ S2

1〉 such that for all

X ⊆ ℵ2 the set {α ∈ S2
1 : X ∩α = Sα} is stationary. ♦(S2

1) says that there

is a diamond sequence on S2
1 .

The tricky part is to find suitable iterands Qα for α ∈ S2
1 : Qα shall pre-

serve E , shall make the ultrafilter handed down by the diamond to be nearly

coherent to E and shall diagonalise Aα by adding a pseudo-intersection

Xα ∈ Vα+1. Thus in the whole extension A is not mapped by any finite-

to-one function to an ultrafilter.

We divide the proof of the main theorem into four sections: First we deal

with the iterands for the stages α 6∈ S2
1 . In Section 3 we work on the iterands

for the stages α ∈ S2
1 . In Section 4 we introduce pseudo-intersections and

witnesses. In Section 5 we put the iteration together. In Section 6 we

consider the values of the entries of Cichoń’s diagramme and of s, r, u, g, h

and other cardinal invariants in the two types of models of “NCF and not

FD” from Section 5.

2. The iterands Qα for α 6∈ S2
1

In the stages α 6∈ S2
1 of the iteration Qα shall add some set Aα to Aα,

the filter generated by {Aβ : β < α}, so that these additions will guarantee

that in the end A = Aℵ2
is not meagre. Any forcing that diagonalises

all groupwise dense sets in the ground model would accomplish this task.

However, we consider here only two candidates: one is Blass-Shelah forcing

Q (see [6] or [1, pages 370 ff.]) and the second is Matet forcing.

Why just these two? Using the first in unboundedly many steps makes

s = ℵ2 in the final model, whereas taking coboundedly often the latter

possibly keeps s small.

Now we review Matet forcing, since we shall also use a suborder of it later

in the choice of the iterands Qα for α ∈ S2
1 .

We let F be the collection of all nonempty finite subsets of ω. For a, b ∈ F

we write a < b if (∀n ∈ a)(∀m ∈ b)(n < m). We will work with proper

filters on F, i.e. subsets of P(F) that are closed under binary intersections

and supersets and do not contain the empty set. A sequence c̄ of members

of F is called unmeshed if for all n, cn < cn+1. The set (F)ω denotes the

collection of all infinite unmeshed sequences in F. If c̄ is a sequence in (F)ω,
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we write (FU)ω(c̄) for the set of all unmeshed sequences whose members are

finite unions of some of the cn’s and we write FU(c̄) for the set of all finite

unions of members of c̄. The symbol =∗ denotes equality up to finitely many

exceptions.

Definition 2.1. Given c̄ and d̄ in (F)ω, we say that d̄ is a condensation of c̄

and we write d̄ v c̄ if d̄ ∈ (FU)ω(c̄). We say d̄ is almost a condensation of c̄

and we write d̄ v∗ c̄ iff there is an n such that 〈dt : t ≥ n〉 is a condensation

of c̄. If there is some A ∈ [ω]ℵ0 such that X =∗
⋃
{cn : n ∈ A}, then we let

c̄ ∩X be defined as 〈cn ∩X : n ∈ ω, cn ∩X 6= ∅〉.

Note that c̄ ∩X, when defined, is almost a condensation of c̄.

Definition 2.2. 1. In the Matet forcing, M, the conditions are pairs (w, c̄)

such that w ∈ F and c̄ ∈ (F)ω and w < c0. The forcing order is (w′, c̄′) ≥

(w, c̄) iff w ⊆ w′ and w′ r w is a union of finitely many of the cn and c̄′ is

a condensation of c̄.

2. The set Mpr of pure conditions of M is the set of conditions with

w = ∅. In this case we write c̄ instead of (∅, c̄). For two pure conditions we

let c̄ ≤∗ d̄ iff c̄ w∗ d̄. We let set(c̄) =
⋃
{cn : n ∈ ω}.

In [3] it is shown that M is proper. In unpublished work, Blass and

Laflamme independently have shown that M preserves P -points. Eisworth’s

work ([9, Theorem 4] or Theorem 3.5 below) implies this result, as we shall

explain below.

We explain why we prefer the Matet forcing: Given a stable ordered

union ultrafilter (see Def. 3.1) U on F, we can thin out the Matet partial

order to a σ-centred subforcing. In the thinning process Hindman’s theorem

([10, 3.3], below Theorem 3.2) is used, and we do not know how to apply it

unless we have forgetful [17, 1.2.5] forcings. “Forgetful” [17, Definition 1.2.5

(3)], means that the possible strengthenings of the part ci ⊆ [f(i), f(i + 1))

of a condition (w, c̄) do not depend on the part of the condition outside

[f(i), f(i + 1)), in particular not on the part of the condition below f(i), as

in the tree forcings, like Laver, Sacks, Miller or the more general examples

from Chapter 1.3 of [17]. Moreover in some technical parts of our proof,

again for the mentioned property (P5), we shall use the following property:

For every condition (w′, c̄′) in the Matet forcing, the generic real X =
⋃
{w :

(∃c̄)((w, c̄) ∈ G)} coincides up to finitely many exceptions with the union

over a suitable infinite set of blocks c′n or there is some (w, c̄) ∈ G such that

c̄ and c̄′ do not have a common almost condensation. In the next section we

consider subforcings in which the second part of this disjunction is excluded.
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3. σ-centred subforcings of M

In this section we look for the iterands Qα for α ∈ S2
1 . To define these

(necessarily non-complete, as they will destroy some P -points) subforcings

of M, we first introduce some properties of filters on the set F of all nonempty

finite subsets for ω. Our nomenclature follows Blass [2] and Eisworth [9].

Note that if we used the Blass-Shelah forcing or the Matet forcing as

iterand Qα at stationarily many stages α ∈ S2
1 , then we would get u < g,

which implies FD.

Definition 3.1. A non-principal filter F on F is said to be an ordered-

union filter if it has a basis of sets of the form FU(d̄) for d̄ ∈ (F)ω. Let µ

be an uncountable cardinal. An ordered-union filter is said to be < µ-stable

if, whenever it contains FU(d̄α) for d̄α ∈ (F)ω, α < κ, for some κ < µ, then

it also contains some FU(ē) for some ē that is almost a condensation of d̄α

for α < κ. For “< ℵ1-stable” we say “stable”.

Ordered-union ultrafilters need not exist, as their existence implies the

existence of Q-points [2] and there are models without Q-points [16]. With

the help of Hindman’s theorem one shows that under MA(σ-centred) stable

(even < 2ω-stable) ordered-union ultrafilters exist [2]. We will construct

suitable stable ordered-union ultrafilters for the choice of Qα, α ∈ S2
1 , by

induction on ℵ1 using CH and Hindman’s theorem:

Theorem 3.2. (Hindman, [10, Corollary 3.3]) If the set F is partitioned

into finitely many pieces then there is a set d̄ ∈ (F)ω such that FU(d̄) is

included in one piece.

The theorem also holds if instead of F we partition only FU(c̄) for some

c̄ ∈ (F)ω, the homogeneous sequence d̄ given by the theorem is then a

condensation of c̄.

Definition 3.3. Given an ordered-union ultrafilter U on F we let M(U )

consist of all pairs (s, c̄) ∈M, such that s ∈ F and FU(c̄) ∈ U . The forcing

order is the same as in the Matet forcing.

It is well known [13, 3] that Matet forcing M can be decomposed into

two steps P ∗ M(U
˜

), such that P is ℵ1-closed (that is, every descending

sequence of conditions of countable length has a lower bound) and adds a

stable ordered-union ultrafilter U on the set F.

In order to state a preservation property of M(U ), we need the following

definition.

Definition 3.4. Let U be a filter on F. The core of U is the filter Φ(U )

such that
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X ∈ Φ(U ) iff (∃FU(c̄) ∈ U )(
⋃

n∈ω

cn ⊆ X).

If U is ultra on F, then Φ(U ) is not diagonalised (see [9, Prop. 2.3]) and

also all finite-to-one images of Φ(U ) are not diagonalised (same proof). So

Φ(U ) is not meagre.

The Rudin-Blass ordering on filters on ω is defined as follows: Let F ≤RB

G iff there is a finite-to-one f such that f(F ) ⊆ f(G ). The following

property of stable ordered-union ultrafilters U will be important for our

proof:

Theorem 3.5. (Eisworth [9, “→” Theorem 4, “←” Cor. 2.5, this direction

works also with non-P ultrafilters]) Let U be a stable ordered-union ultra-

filter on F and let V be a P -point. Iff V 6≥RB Φ(U ), then V continues to

generate an ultrafilter after we force with M(U ).

In the decomposition M = P ∗M(U
˜

), the stable ordered-union ultrafilter

U in the intermediate model fulfils Φ(U ) 6≤RB V for any P -point V in the

ground model, and hence by Theorem 3.5, M preserves P -points.

We shall not add U by forcing, but work with a v∗-descending sequence

c̄α, α < ℵ1, with the property that FU(c̄α), α < ℵ1, generates an ultrafilter

U on F. Then this is a stable ordered-union ultrafilter.

4. Filters with pseudo-intersections

In this section we work with some properties of filters on ω, in the direction

of building a non-meagre non-nearly-ultra filter A .

Definition 4.1. Let A ⊆ [ω]ℵ0 be such that for all n for all X0, . . . ,

Xn ∈ A ,
⋂

i≤n Xi is infinite. This is called “A is centred” or “A has

the finite intersection property”.

(a) By fil(A ) we denote the filter on ω generated by A ∪ {ω r n : n < ω}.

Later, when we are working in the context of an intermediate forcing

extension Vα, the non-absolute definition fil(A ) is to be interpreted in

that Vα.

(b) X ∈ [ω]ℵ0 is a pseudo-intersection of A (or diagonalises A ) if for all

A ∈ A , X ⊆∗ A.

Note that X ∈ [ω]ℵ0 is a pseudo-intersection of A if it is a pseudo-

intersection of fil(A ). Only centred sets can have pseudo-intersections.

Definition 4.2.
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(1) R∗ = {R ⊆ ω × ω : (∀m)(∃<ℵ0n)(mRn) ∧ (∀n)(∃<ℵ0m)(mRn)}. The

quantifier ∃<ℵ0 means that there are finitely many and at least one.

(2) For R,S ∈ R∗ we let R−1 = {(n,m) : (m,n) ∈ R} and we let R ◦

S = {(m, r) : (∃n)((m,n) ∈ R ∧ (n, r) ∈ S)}. Note that the order

is different from the one known in the composition of functions: We

first “map” with R then with S. For R ⊆ R∗ and S ∈ R∗ we let

S ◦R = {S ◦R : R ∈ R}.

(3) For A ⊆ ω, R ∈ R∗ we let R(A) = {n : mRn,m ∈ A}.

(4) For c̄ = 〈cn : n ∈ ω〉 ∈ (F)ω, R ∈ R∗ we let R(c̄) = 〈R(cn) : n ∈

ω〉. This can be meshed or even be not pairwise disjoint (that is not

unmeshed), but it does not matter.

Note that R−1 and R ◦ S are also in R∗. The next definition will play a

crucial rôle in the iteration.

Definition 4.3. We say (c̄,R) is a witness over A when:

(a) A ⊆ [ω]ℵ0 is centred,

(b) c̄ ∈ (F)ω,

(c) R is a countable subset of R∗,

(d) R 6= ∅,

(e) for every R ∈ R, the set R(set(c̄)) is a pseudo-intersection of A .

The purpose of R ∈ R∗ is to increase infinite sets in a gentle manner, as

with finite-to-one functions: f(F ) = {X : f−1X ∈ F} = {X : R(X) ∈

F}, where xRy iff f(y) = x. Since f is a finite-to-one function, we have

R ∈ R. Iff for every R ∈ R∗ there is some X ∈ F such that R(X) 6∈ V

then F is not Rudin-Blass below V . We shall use the “if”-direction of this

criterion for F = Φ(U ) and V = E in the final section.

However, our main use of R∗ is the following: We use countable subsets

R of R∗ to map pseudo-intersections of Aα to other pseudo-intersections of

Aα, as in the definition of “witness”. The union of all used countable parts

(that is
⋃

ε<ℵ1
Rε from Lemma 5.4; note we require ζ < ε → Rζ ⊆ Rε)

at a limit step α ∈ S2
1 does not exhaust (R∗)Vα , since Aα is centred and

there are {(n, 2n) : n ∈ ω} and {(n, 2n + 1) : n ∈ ω}, which never can be

both elements of R such that there is a c̄ ∈ (F)ω with (c̄,R) witnessing over

Aβ for some β < α. However, it does so modulo composition with “shifts”

Rc̄,d̄ = {(m,n) : (∃i)(m ∈ ci∧n ∈ di)} for c̄, d̄ ∈ (F)ω. This will follow from

the technical requirement (γ) in the proof of Lemma 5.4.

Lemma 4.4. (1) Assume that V is a transitive class in V+. If in V,

(c̄,R) is a witness over A , then this holds also in V+.
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(2) (c̄,R) witnesses over A iff for every A ∈ A , (c̄,R) witnesses over

{A}.

(3) If (c̄,R) witnesses over A iff (c̄,R) witnesses over fil(A ).

(4) If (c̄,R) witnesses over A and d̄ v∗ c̄ then (d̄,R) witnesses over A .

(5) If R ⊆ R∗ and c̄, d̄ ∈ (F)ω and R = Rc̄,d̄ = {(m,n) : (∃i)(m ∈ ci∧n ∈

di)}, then R(c̄) = d̄ and R−1 = Rd̄,c̄ and ((d̄, Rd̄,c̄ ◦R) witnesses over

A iff (c̄,R) witnesses over A ).

Proof. (1) The definition of witnessing contains only bounded quantifiers

and an existential quantifier. Items (2), (3), and (4) are obvious. Proof of

(5): We compute R−1(dk) = {(n,m) : ∃i(m ∈ di ∧ n ∈ ci)}(dk) = ck so

R−1 = Rd̄,c̄. Although R◦R−1 = {(n,m) : (∃i)(n,m ∈ ci)} is in general not

a subset of the diagonal, we have (R ◦R−1)(cn) = cn. Now (R−1 ◦S)(dk) =

{(m, r) : ∃n((m,n) ∈ R−1 ∧ (n, r) ∈ S)}(dk) = S(R−1(dk)) = S(ck).

So we have: (∀A ∈ A )(∀S ∈ R)(S(set(c̄)) ⊆∗ A) iff (∀A ∈ A )(∀S ∈

R)(R−1 ◦ S(set(d̄)) ⊆∗ A). �

5. The iteration

We start with a ground model V that fulfils CH and ♦(S2
1) (and hence

2ℵ1 = ℵ2).

In a countable support iteration of proper forcings of iterands size ≤

ℵ1 each real appears in a Vα for some α with countable cofinality, and a

reflection property ensures that each ultrafilter U in the final model has

ℵ1-club many α ∈ ℵ2 such that U ∩ Vα has a Pα-name and is an ultrafilter

in Vα (see [6, Item 5.6 and Lemma 5.10]). A subset of ℵ2 is called ℵ1-

club if it is unbounded in ℵ2 and closed under suprema of strictly ascending

sequences of lengths ℵ1. By well-known techniques based on coding Pα-

names for ultrafilters as subsets of ℵ2 (e.g., such a coding is carried out in

[15, Claim 2.8]) and based on the maximal principle (see, e.g., [12, Theorem

8.2]) it is safe to assume that an enumeration 〈f
˜

α : α < ℵ2〉 exists and

that the ♦(S2
1)-sequence 〈S

˜
α : α ∈ S2

1〉 gives ℵ1-club often a Pα-name S
˜

α

for an ultrafilter in VPα such that for any ultrafilter U ∈ V Pℵ2 there are

stationarily many α ∈ S2
1 with U ∩ V Pα = Sα. For names x

˜
and objects x

we use the rule x
˜
[G] = x.

We fix a diamond sequence 〈S
˜

α : α ∈ S2
1〉. Only Sα gets a second letter:

Sα = D to make clearer that it is an ultrafilter. We also fix a P -point

E ∈ V that will be preserved throughout our iteration. Let f
˜

α, α ∈ ℵ2 rS2
1 ,

be an enumeration of all Pℵ2
-names for finite-to-one, monotone, surjective

functions from ω to ω, each appearing cofinally often, such that f
˜

α is a
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Pα-name. We assume that π
˜

α is a Pα-name such that for all evaluations fα,

πα of f
˜

α, π
˜

α respectively, πα(0) = 0, πα(n + 1) = max(f−1
α (n)) + 1.

We construct (carefully) by induction on α ≤ ℵ2 a countable support

iteration of proper forcings 〈Pα, Q
˜

β : β < ℵ2, α ≤ ℵ2〉 and two sequences of

names 〈A
˜

α : α ∈ ℵ2 r S2
1〉 and 〈X

˜
α : α ∈ S2

1〉 such that

(P1) For all α < ℵ2, Pα “Q
˜

α is proper”.

(P2) For all α ≤ ℵ2, Pα “fil(E ) is ultra”.

(P3) For α ∈ ℵ2 r S2
1 , A

˜
α is a Pα+1 name. We write Aα = A

˜
α[Gα+1]. For

each α ∈ ℵ2 rS2
1 , {Aβ : β ∈ αrS2

1} is centred and fα(Aα) 6=∗ ω. We

let Aα = fil({Aβ : β ∈ α r S2
1}). So Aα shows that fα(Aα+1) is not

the Fréchet filter.

(P4) For α ∈ S2
1 , X

˜
α is a Pα+1-name. Let A

˜
α be a Pα-name for Aα. If

α ∈ S2
1 and if S

˜
α is a Pα-name D

˜
for an ultrafilter in V Pα , then Pα+1

“D
˜

and fil(E ) are nearly coherent, and X
˜

α is a pseudo-intersection of

A
˜

α”.

(P5) For β < γ, β, γ ∈ ℵ2 r S2
1 , if Gγ ⊆ Pγ is generic over V and Gβ =

Pβ ∩Gγ then

if Vβ |= “(c̄,R) is a witness over Aβ”

then Vγ |= “(∃d̄)(d̄ v∗ c̄ ∧ (d̄,R) is a witness over Aγ)”.

Now we prove that such an iteration exists. We start with the Fréchet

filter A0 ∈ V0. We say “〈Pγ , Q
˜

δ : γ ≤ α′, δ < α′〉 and 〈Aγ : γ ∈ α′ r S2
1〉

and 〈Xγ : γ ∈ α′ ∩ S2
1〉 have properties (P1) to (P5)” if all requirements

(P1), (P3), and (P4) hold for α < α′ and (P2) holds for α ≤ α′ and (P5)

holds for β < γ ≤ α′.

The following lemma is for the successor steps α 7→ α + 1 for α 6∈ S2
1 .

Lemma 5.1. Assume that α ∈ ℵ2 r S2
1 and that 〈Pγ , Q

˜
δ : γ ≤ α, δ < α〉

and 〈A
˜

γ : γ ∈ αrS2
1〉 and 〈X

˜
γ : γ ∈ α∩S2

1〉 are defined with the properties

(P1) to (P5). Then there are some Q
˜

α, A
˜

α such that

(a) Pα “Q
˜

α is proper and preserves P -points, so in particular fil(E ),

(b) Pα “{A
˜

α} ∪A
˜

α is centred”,

(c) Pα “A
˜

α is disjoint from infinitely many intervals [π
˜

α(n), π
˜

α(n + 1))”.

(d) Property (P5) still holds.

Proof. We let Q
˜

α be the Pα-name for Blass-Shelah forcing [6] or M or Miller

forcing or any proper forcing that preserves that fil(E ) is a P -point and adds

〈mi : i < ω〉 ∈ ωω, such that

(5.1) (∀f ∈ (ωω)Vα)(∃∞i)(f(mi) < mi+1).
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Then we let A
˜

α be a name for

(5.2) Aα =
⋃

i∈ω

[πα(mi + 1), πα(mi+1)).

Then claim (c) is true, because Aα ∩
⋃

i∈ω[πα(mi), πα(mi + 1)) = ∅.

For claim (b) we let B ∈ Aα, actually B ∈ [ω]ℵ0 ∩Vα is sufficient. We

thin out B to C ∈ [B]ω that contains at most one point in each interval

[πα(n), πα(n + 1)) and no point in [0, πα(2)). We let fC : ω → C be its

increasing enumeration and let f̃C be the iteration of fC , that is, f̃C(0) = 0,

f̃C(n + 1) = fC(f̃C(n)). The by (5.1) applied to f̃C ◦ πα, we get

(∃∞i)(f̃C(πα(mi)) ∈ C ∩ [πα(mi + 1),mi+1) ⊆ [πα(mi + 1), πα(mi+1))),

and hence Aα ∩ C is infinite.

Now we check property (P5). The only new cases are β ≤ α and γ = α+1.

By induction hypothesis and by transitivity of v∗ we need to consider only

β = α. If Vα |= “(c̄,R) witnesses over A
˜

α[Gα]”, then Vα+1 |= “there is

some d̄ v∗ c̄ such that (d̄,R) witnesses over A
˜

α+1[Gα+1]”: We work in Vα.

Let R be enumerated as Rn, n ∈ ω. First we thin out c̄ to 〈c′k : k < ω〉

such that

(5.3) (∀k ∈ ω)(∀i ≤ k)(Ri(c
′
k) ∩ πα(k + 1) = ∅).

We let c̄′ = 〈c′k : k < ω〉. In Vα+1 let

w = {n < ω : (∀k ≤ n)(Rk(c
′
n) ⊆ Aα)}.

From R ⊆ Vα and (5.1), applied to f(k) = min{` > k + 1 : (∀i ≤

k)(Ri(c
′
k) ⊆ πα(`))}, together with Equation (5.3) it follows that there are

infinitely many i such that (∀k ≤ mi)(Rk(c′mi
) ⊆ [πα(mi + 1), πα(mi+1))).

Since mi + 1 < mi+1, we have that for these i, by Equation (5.2), ∅ 6=

[πα(mi + 1), πα(mi+1)) ⊆ Aα, and hence w is infinite.

We let d̄ = 〈c̄′n : n ∈ w〉. Then d̄ v∗ c̄ and if C ∈ A
˜

α+1[Gα+1] then: First

case, if C ∈ A
˜

α[Gα], then (∀R ∈ R)(R(set(d̄) ⊆ R(set(c̄′)) ⊆∗ C). Second

case, if C = Aα, then (∀R ∈ R)(R(set(d̄)) ⊆∗ C) by the choice of w. Hence

we have for all C ∈ fil({Aα} ∪Aα)), (∀R ∈ R)(R(set(d̄)) ⊆∗ C). Obviously

Pα+1 preserves P -points. �

Now we consider two kinds of limit steps, those with countable cofinality,

and those with cofinalities ℵ1 or ℵ2. For (P2) we use a well-known preserva-

tion theorem: The countable support limit of forcings preserves each P -point

that is preserved by all approximations [6, Theorem 4.1]. We also use that

the countable support limit of proper forcings is proper [18, III, 3.2]. So our
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iteration preserves ℵ1. It preserves ℵ2, because any collapse would appear

at some intermediate step Pα, but Pα has size ℵ1 and the ℵ2-c.c.

Lemma 5.2. Let α = limn αn be the limit of a strictly increasing sequence

of ordinals in ℵ2. If for each n, 〈Pγ , Q
˜

β : β < αn, γ ≤ αn〉 and the two

sequences of names 〈A
˜

γ : γ ∈ αn r S2
1〉 and 〈X

˜
γ : γ ∈ αn ∩ S2

1〉 fulfil

(P1) to (P5), then also 〈Pγ , Q
˜

β : β < α, γ ≤ α〉 and the sequence of names

〈A
˜

γ : γ ∈ α r S2
1〉 and 〈X

˜
γ : γ ∈ α ∩ S2

1〉 fulfil (P1) to (P5).

Proof. Again we have to check property (P5) for the new instance β ∈ αrS2
1

and α itself. Given β < α and a witness (c̄,R) over Aβ in Vβ. By induction

hypothesis we may possibly increase β and assume that αn0
= β for some

n0. Then we choose c̄n ∈ Vαn , n ∈ [n0, ω), in a v∗-descending manner using

(P5) between Vαn and Vαn+1
, all the time for the same R, and in the end

we find some d̄ such that for all n, d̄ v∗ c̄n. �

Lemma 5.3. Let α = limε<κ αε be the limit of a strictly increasing sequence

of ordinals in ω2 and let κ be ℵ1 or ℵ2. If for all ε, 〈Pγ , Q
˜

β : β < αε, γ ≤ αε〉

and two sequences of names 〈A
˜

γ : γ ∈ αε r S2
1〉 and 〈X

˜
γ : γ ∈ αε ∩ S2

1〉

fulfil (P1) to (P5), then also 〈Pγ , Q
˜

β : β < α, γ ≤ α〉 and the sequences of

names 〈A
˜

γ : γ ∈ α r S2
1〉 and 〈X

˜
γ : γ ∈ α ∩ S2

1〉 fulfil (P1) to (P5).

Proof. Property (P5) is vacuously true in limit steps. Properties (P3) and

(P4) are obviously true. �

Finally we carry out the successor step α 7→ α + 1 for α ∈ S2
1 :

Lemma 5.4. Let α ∈ S2
1 . Assume that 〈Pγ , Q

˜
δ : γ ≤ α, δ < α〉 and

〈A
˜

γ : γ ∈ α r S2
1〉 and 〈X

˜
γ : γ ∈ α ∩ S2

1〉 fulfil (P1) to (P5) and that

the member of the diamond sequence S
˜

α is a Pα-name for a non-principal

ultrafilter D on ω.

Then there are some Q
˜

α and X
˜

α, such that 〈Pγ , Q
˜

δ : γ ≤ α+1, δ < α+1〉

and 〈A
˜

γ : γ ∈ (α + 1) r S2
1〉 and 〈X

˜
γ : γ ∈ (α + 1) ∩ S2

1〉 have properties

(P1) to (P5).

Proof. Let Gα ⊆ Pα be generic over V and let Gβ = Pβ ∩ Gα for β < α.

We write Aα for A
˜

α[Gα]. Let 〈αε : ε < ω1〉 ∈ V be increasing continuous

with limit α, and each αε has cofinality ℵ0 for 1 ≤ ε < ω1 and let α0 = 0,

α1 = ω + ω.

Using Lemma 4.4(1), we can find a sequence 〈(ξε, d̄ε,R
′
ε, R

′
ε, Bε) : ε <

ω1〉, such that

(a) for every ζ < ω1, the sequence 〈(ξε, d̄ε,R
′
ε, R

′
ε, Bε) : ε < ζ〉 belongs to

Vαζ
, ξε < αε+1, and cf(ξε) = ℵ0,
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(b) R′
ε ∈ (R∗)Vξε ,

(c) in Vξε
we have d̄ε ∈ (F)ω and R′

ε ∈ ([(R∗)]ℵ0)Vξε and (d̄ε,R
′
ε) is a

witness over A
˜

ξε
[Gξε

],

(d) Bε ⊆ F,

(e) every such tuple (ξε, d̄ε,R
′
ε, R

′
ε, Bε) appears in the sequence ℵ1 times.

We now choose (c̄ε,Rε) by induction on ε < ω1 such that

(α) (c̄ε,Rε) ∈ Vαε is a witness over Aαε and idω ∈ R0,

(β) if ζ < ε then c̄ζ w
∗ c̄ε and Rζ ⊆ Rε,

(γ) for all ζ < ε, if (d̄ζ ,R
′
ζ) witnesses over Aξζ

, then there are some ζ ≤

ζ ′ ≤ ε and some c̄′ w∗ c̄ζ′ (the direction is not a mistake) and some

d̄′ v∗ d̄ζ such that Rd̄′,c̄′ = {(m,n) : (∃i)(m ∈ d′i ∧ n ∈ c′i)} and

Rd̄′,c̄′ ◦R′
ζ ⊆ Rζ′ ,

(δ) ω r R′
ε(set(c̄ε+1)) ∈ filVαε+1 (E ),

(ε) ω r R′
ε(set(c̄ε+1)) ∈ D ,

(ζ) FU(c̄ε+1) is included in Bε or disjoint from Bε.

We start the induction with α0 = 0, R0 = {idω}, and we take an arbitrary

c̄0 ∈ (F)ω. A0 is the Fréchet filter.

At limit steps ε we take the c̄ε v
∗ c̄ζ for all ζ < ε and we take Rε =⋃

ζ<ε Rζ . ((γ) is automatically fulfilled at limit steps.)

We carry out the successor step. Suppose (c̄δ ,Rδ), δ < ε, are given and

that ε is countable. We show how to fulfil (γ) in successor steps ε = ε′ + 1:

We enumerate all tasks for item (γ) as (ēn, R̂n, ζn), n ∈ ω, and we build

(c̄ε′ ,Rε) by induction in ω steps as the limit of (c̄ε′ ,R
n) that is increasing,

actually constant in the first component, in (≤∗,⊆) and witnessing over Aαε .

By the induction hypothesis (P5) below α, we may strengthen the ēζ and

increase the ξζ and hence we may assume that the ζn fulfil ξζn
= αε and

that (ēn, R̂n) witnesses over Aαε .

We start with R−1 = Rε′ .

We assume that

– (ēn, R̂n) is a witness over Aαε (this is the current task for (γ)),

– (c̄ε′ ,R
n−1) are already constructed witnessing over Aαε , and

– (γ) holds for (d̄ζ ,R
′
ζ) that are enumerated among the tasks (ēm, R̂m),

m < n, with R̂n−1 in the place of Rζ′ and with c̄′ = c̄ε′ and with

d̄′ = ēm.

Then R−1
ēn,c̄ε′

maps ēn into c̄ε′ . So (c̄ε′ , {Rēn,c̄ε′
◦ S : S ∈ R̂n}) witnesses

over Aαε . Hence we may let {Rēn,c̄ε′
◦ S : S ∈ R̂n} ∪Rn−1 = Rn.
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In the end we let Rε =
⋃

n∈ω Rn. Then (c̄ε′ ,Rε) witnesses over Aαε and

the property (γ) is carried on. Now we strengthen c̄ε′ three times in order

to fulfil items (δ), (ε), and (ζ), and we call the outcome c̄ε. For (ζ) we use

the mentioned stronger form of Hindman’s Theorem.

Now we let U = fil({FU(c̄ε) : ε < ω1}). It is a stable ordered-union

ultrafilter by (ζ) and (β). Then we take Qα = M(U ). It is σ-centred and

hence proper. So (P1) holds.

In Vα, the P -point E and the ultrafilter D are both not Rudin-Blass

above Φ(U ), as is secured by (δ) and (ε). All potential Rudin-Blass finite-

to-one maps are covered by the enumeration {R′
ε : ε ∈ ℵ1} = (R∗)Vα . By

Eisworth’s Theorem 3.5, the successor Qα preserves “fil(E ) is an ultrafilter”.

So (P2) holds also for Pα+1. Item (P3) is vacuous for α ∈ S2
1 .

Now we prove (P4), that Qα “D
˜

and fil(E ) are nearly coherent and A
˜

α

has a diagonalisation”. The near coherence comes from density arguments

for M(U ): Let the generic real Xα =
⋃
{w : (∃w)((w, c̄) ∈ Gα+1)} be

enumerated increasingly by eα. Then the generalised inverse of this enu-

meration gα(k) = min{n : eα(n) ≥ k}, is a finite-to-one function that

makes E and D nearly coherent: Given (w, c̄) ∈ M(U ) and E ∈ E and

D ∈ D we get by (δ) some E′ ⊆ E, E′ ∈ E and some d̄ ≥∗ c̄ such that E′

avoids set(d̄) and by (ε), we find some D′ ∈ D , D′ ⊆ D that avoids set(d̄).

Now, for two suitable k < k′, we have [max(dk),min(dk′)) ∩ D′ 6= ∅ and

[max(dk),min(dk′)) ∩ E′ 6= ∅. So (w, 〈dk, dk′ 〉̂ d̄ � [k′ + 1,∞)) is stronger

than (w, c̄) and it forces that gα(E) ∩ gα(D) 6= ∅. Since this works for any

two sets, E and D are nearly coherent by gα.

Second: Xα diagonalises Aα, since by property (α), (c̄ε, idω) is a witness

over Aαε , and this is a complicated way to say that set(c̄ε) is a pseudo-

intersection of Aαε . Since this holds for all ε < ω1, by genericity Xα diago-

nalises Aα.

Next we prove (P5) in the new cases, that is for some β ∈ α r S2
1 and

for α + 1: So assume that β < α, (d̄,R) is a witness over Aβ in Vβ and all

later models. For some ε0, we have β < αε0
. By (γ)1 we have some ε ≥ ε0

1Suppose we wanted to simplify (P5) to (P5)’: For β < γ, β, γ ∈ ℵ2 r S2
1 , if Gγ ⊆ Pγ

is generic over V and Gβ = Pβ ∩ Gγ then

if Vβ |= “ set(c̄) is a pseudo-intersection of Aβ”

then Vγ |= “(∃d̄)(c̄ ≤∗
d̄ ∧ set(d̄) is a pseudo-intersection of Aγ)”,

and dispense with the complex requirement (γ). Then we would get stuck just at this point

here, not knowing how to continue upwards for (P5)’ from an arbitrary d̄ with set(d̄) being

a pseudo-intersection of Aβ . And requirements (δ) to (ζ) lead to arbitrary d̄. So some

complexity is necessary, even if at first sight the various items of the list with the Greek

letters are not so intertwined and it seems that we carry the original (P5) and (γ) with
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and some d̄′ v∗ d̄ and some c̄′ w∗ c̄ε such that Rd̄′,c̄′ ◦ R ⊆ Rε. Then, by

the choice of U = the filter generated by FU(c̄δ), δ < ℵ1, and of the forcing

M(U ), a density argument shows that in Vα+1, for all R ∈ Rε, the set

R(set(c̄ε) ∩Xα) is a pseudo-intersection of Aα. So (c̄ε ∩Xα,Rε) witnesses

over Aα and since by the definition of the forcing order of M(U ) the set Xα

splits only finitely many of the cε,n, that is, there is an infinite set Y such

that Xα is almost the union over the cε,n, n ∈ Y , we get c̄ε∩Xα v
∗ c̄′. Since

Rd̄′,c̄′ ◦R ⊆ Rε, we have (c̄ε ∩Xα, Rd̄′,c̄′ ◦R) witnesses over Aα. Now look:

For all X, Rd̄′,c̄′(X) ⊇∗ Rd̄′,c̄ε
(X). So we have that

(5.4) (c̄ε ∩Xα, Rd̄′,c̄ε
◦R) witnesses over Aα.

We have Rd̄′,c̄ε
(d̄′∩Rc̄ε,d̄′(Xα)) =∗ c̄ε∩Xα, since Xα splits only finitely many

cε,n. We may write Rd̄′∩Rc̄ε,d̄′(Xα),c̄ε∩Xα
for Rd̄′,c̄ε

in (5.4), as this is equivalent

to it. Hence Lemma 4.4(5) fits literally and we get that (d̄′ ∩Rc̄ε,d̄′(Xα),R)

is a witness over Aα = Aα+1. Of course, d̄′ ∩Rc̄ε,d̄′(Xα) v∗ d̄. �5.4

Now we show that forcing with Pℵ2
gives with the filter A generated by

{Aα : α ∈ ℵ1 r S2
1} a counterexample to the filter dichotomy principle:

If f(A ) were ultra, then f would appear in some intermediate step, say

in Pα0
. By known reflection properties of countable support iterations of

proper forcings, at an ℵ1-club of later steps α we would have that f(Aα)

is ultra in Vα. Hence there is some α ∈ S2
1 such that the member S

˜
α

diamond sequence would guess this ultrafilter Sα = D = f(Aα). But Xα

diagonalises Aα and hence f(Xα) diagonalises f(Aα) and this contradicts

the fact that as shown in the proof of Lemma 5.4 there is a finite-to-one

gα ∈ Vα+1 coming from the inverse function of the enumeration of Xα with

gα(f(Aα)) = gα(D) = gα(E ) being a P -point.

The filter A is not meagre, as fα(Aα) 6=∗ ω by (P3), and fα, α < ℵ2,

enumerates all finite-to-one functions in Vℵ2
.

By (P4) and the guessing strength of the diamond, all ultrafilters are

nearly coherent to E . So NCF holds in Vℵ2
.

So we have proved the main theorem.

6. The values of some cardinals in our models

For the definitions of the cardinal characteristics we refer the reader to

[1] or [4]. The generic real r added by Blass-Shelah forcing is not split by

us only for having more technique. Something like (P5)’ is needed, because otherwise Aα

could become nearly ultra for some α ∈ S2
1 and by bad luck be in addition nearly coherent

to Sα. Then we could not diagonalise Aα and make Sα and fil(E ) nearly coherent without

destroying E .
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any real in the ground model [1, Lemma 7.4.25]. So in the type of models

we get when increasing s we have b = u = r = cov(M) = cov(N ) = g = ℵ1

and s = unif(M) = unif(N ) = d = ℵ2. This follows from the well-known

inequalities in Cichoń’s diagramme and from Vojtǎś’ inequalities that r is

greater or equal both covering numbers [20] and its dual s is less or equal

both uniformities.

However, in the type of models built from Matet iterands M or Miller

iterands in stages α 6∈ S2
1 we do not know the splitting number nor the

uniformities.

We have in the iteration of M and M(U ) b = u = r = cov(M) =

cov(N ) = g = ℵ1 and d = ℵ2. From NCF and not FD it follows that in

both kinds of models u = g = gf and mcf = ℵ2. gf is the smallest number of

groupwise dense ideals whose intersection is empty and mcf is the minimal

cofinality of the ultrapower (ωω,≤U ) for a non-principal ultrafilter U . Note

that Brendle constructed a model of κ = g < gf = b = κ+ by a c.c.c. forcing

[8].

Acknowledgement: We thank the referee for a very detailed report and

many helpful hints.
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