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We answer the first question in Problem 28.1 in the article [1] and also

several questions on cardinal characteristics from the same article.

Problem 28.1

A subset S C [N]¥ such that (VX € S)(VY)(X\Y finite — Y € §) is called
a semifilter. Every B C [N] generates a semifilter S ={a+b:a € A,b € B}.

Theorem A.1. The semifilter S generated by {A+ A : A € [N]*} is comeagre.

PROOF — Let N C [N]¥ be not meagre. We show that (the semifilter gen-
erated by {A+ A : A € [N]*}) NN # (. Then the semifilter generated by
{A+ A: A € [N]“} has no non-meagre complement, and hence is comeagre.
We assume that (the semifilter generated by {A + A : A € [N*}) NN = 0.
Since semifilters are closed under supersets, we can assume that IV is closed
under subsets.

For n € w we choose a part of a real z,, such that z, : [227 22nF2) —
2, 2,(2%) = 1, 2,(2°" +2%) = 1 for i = 0,---n; on the other points in
[227227+2) x. can be arbitrary.

We use the following characterizations of meagreness from [2;2.2.4]: A set
M is meagre if there is an increasing function f : w — w ans a sequence
(T 1 n <w), Ty : [f(n), f(n+1)) — 2, such that

M= {a €2 : (¥n)(a | [f(n), f(n+1)) # an)}.

Now we apply this with f(n) = 22" and x,, above, to the non-meagre set N

and get
(Fz € N)(F*n)(@ I [f(n), f(n+1)) = an).

We fix such an x € N and enumerate the infinitely many n such that = |
[f(n), f(n+1)) = z, in increasing order, say by (n; : i € w), and let A = {2 :
i <w}. Then A+ A C {m: (In)(x(m) = x,(m) = 1)}, and hence, since N is
the complement of a semifilter, and by assumption closed under subsets, we get
A+ A ={2"42" :{<j<w} € N and hence {A+A: A€ [N*}HNN #0. O

Please, check if
the close bracket is correct.
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Problem 28.2

Now we change the topic. We go over to the table in the last section of [1].
Theorem A.2. In the Cohen model gy = ;.

PRrROOF — This follows from Blass’ work [3]. The proof of [3; Theorem 2]
actually wotks with groupwise dense ideals. So Corollary there gives that in
the Cohen model and in the random model gy = 8. O

Theorem A.3. In the Cohen model g, = N;.

PrROOF — From [6; Prop. 2.1.¢] it follows g, < mcf. And from Canjar’s
thesis [5] it follows that in the Cohen model mef = Ry. O

Since gf < gu, we thus get anotehr proof of the previous theorem.
Theorem A.4. In the model called Blass, we have s = Ny.

PRrROOF — Both Cohen forcing and Miller forcing preserve C¢°"*™  from
[2; 6.3.15], see [2; 6.3.18 and 7.3.46]. Hence by [2; 6.3.20] in the final model V4
is not meagre and s < unif(M) = R;. O

For Problem 28.3 we remark that in the model from [4] we have 22° near

coherence classes of ultrafilters, so also so many coherence classes of semifilters.
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