
Appendix to “The Coherence
of Semifilters: a Survey”

The Semifilter Generated by {A + A : a ∈ [N]ω} Is
Comeagre and Pinning Down Some Cardinals

Heike Mildenberger





Appendix to “The Coherence of Semifilters” 101

We answer the first question in Problem 28.1 in the article [1] and also
several questions on cardinal characteristics from the same article.

Problem 28.1

A subset S ⊆ [N]ω such that (∀X ∈ S)(∀Y )(X \Y finite → Y ∈ S) is called
a semifilter. Every B ⊆ [N]ω generates a semifilter S = {a + b : a ∈ A, b ∈ B}.

Theorem A.1. The semifilter S generated by {A+A : A ∈ [N]ω} is comeagre.

Proof – Let N ⊆ [N]ω be not meagre. We show that (the semifilter gen-
erated by {A + A : A ∈ [N]ω}) ∩ N 6= ∅. Then the semifilter generated by
{A + A : A ∈ [N]ω} has no non-meagre complement, and hence is comeagre.
We assume that (the semifilter generated by {A + A : A ∈ [N]ω}) ∩ N = ∅.
Since semifilters are closed under supersets, we can assume that N is closed
under subsets.

For n ∈ ω we choose a part of a real xn such that xn : [22n, 22n+2) →
2, xn(22n) = 1, xn(22n + 22i) = 1 for i = 0, · · ·n; on the other points in
[22n, 22n+2), xn can be arbitrary.

We use the following characterizations of meagreness from [2; 2.2.4]: A set
M is meagre if there is an increasing function f : ω → ω ans a sequence
〈xn : n < ω〉, xn : [f(n), f(n + 1)) → 2, such that

M =
{
x ∈ 2ω : (∀∞n)(x � [f(n), f(n + 1)) 6= xn)

}
.

Now we apply this with f(n) = 22n and xn above, to the non-meagre set N

and get

(∃x ∈ N)(∃∞n)(x � [f(n), f(n + 1)) = xn).

We fix such an x ∈ N and enumerate the infinitely many n such that x �

[f(n), f(n+1)) = xn in increasing order, say by 〈ni : i ∈ ω〉, and let A = {2ni :
i < ω}. Then A + A ⊆ {m : (∃n)(x(m) = xn(m) = 1)}, and hence, since N is
the complement of a semifilter, and by assumption closed under subsets, we get
A+A = {2ni +2nj : i ≤ j < ω} ∈ N and hence {A+A : A ∈ [N]ω})∩N 6= ∅. Please, check if

the close bracket is correct.
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Problem 28.2

Now we change the topic. We go over to the table in the last section of [1].

Theorem A.2. In the Cohen model gf = ℵ1.

Proof – This follows from Blass’ work [3]. The proof of [3; Theorem 2]
actually wotks with groupwise dense ideals. So Corollary there gives that in
the Cohen model and in the random model gf = ℵ1.

Theorem A.3. In the Cohen model gu = ℵ1.

Proof – From [6; Prop. 2.1.c] it follows gu ≤ mcf. And from Canjar’s
thesis [5] it follows that in the Cohen model mcf = ℵ1.

Since gf ≤ gu, we thus get anotehr proof of the previous theorem.

Theorem A.4. In the model called Blass, we have s = ℵ1.

Proof – Both Cohen forcing and Miller forcing preserve vCohen from
[2; 6.3.15], see [2; 6.3.18 and 7.3.46]. Hence by [2; 6.3.20] in the final model V0

is not meagre and s ≤ unif(M) = ℵ1.

For Problem 28.3 we remark that in the model from [4] we have 22ω

near
coherence classes of ultrafilters, so also so many coherence classes of semifilters.
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