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Abstract. We define and investigate versions of Silver and Mathias
forcing with respect to lower and upper density. We focus on proper-
ness, Axiom A, chain conditions, preservation of cardinals and adding
Cohen reals. We find rough forcings that collapse 2ω to ω, while others
are surprisingly gentle. We also study connections between regularity
properties induced by these parametrized forcing notions and the Baire
property.

1. Introduction

Forcings consisting of tree conditions are the dramatis personae exten-
sively studied in descriptive set theory and set theory of the reals. The orig-
inal interest on this type of forcings was mainly due to their applications in
resolving problems of independence arisen from the study of cardinal char-
acteristics, infinitary combinatorics and regularity properties. Through the
years, the study of the combinatorial properties of tree-forcings has been
intensified and has been interesting on its own.

From the forcing point of view, trees can be thought as conditions whose
stem decides a finite fragment of the generic real, and the rest of the tree
above describes the possible paths of the generic real. In this sense, Co-
hen forcing can be understood as the simplest tree-forcing notion, whose
conditions decide a finite fragment of the generic and then leave all paths
extending the stem possible. In general, the fatter the tree, the more free-
dom the path of the generic real; the slimmer the tree, the more restrictive
the conditions on the path of the generic real. Under this point of view a
Sacks tree can be seen as the other extreme, since in this case the tree can be
shrunk as much as desired, and the only requirement is to keep perfectness.

Many other tree-forcings in between have been introduced and extensively
studied, among them Silver and Mathias trees1. In this paper we focus on
studying some variants where the set of nodes above the stem are governed
by restrictions imposed on the density of the set of splitting nodes. Imposing
fatness or slimness conditions though, may result in a non-proper forcing.

1The nodes of the Mathias (or Silver) tree p are all t ∈ 2<ω that are initial segments of
one of the possible generic branches that are compatible with a Mathias condition (s, A)
(or a Silver condition fp).
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Each condition in Mathias forcing and in Silver forcing, when conceived
as a tree, comes with an infinite set Ap such that any node t of p whose
length is in Ap is a splitting node. In [19] Rosłanowski introduces a version
of Sacks forcing in which conditions are just the Sacks trees p that come with
an infinite set Ap of uniform splitting levels. A similar construction could
be made for Miller forcing. In Bukovský-Namba forcing the conditions with
uniform splitting levels are even dense, see e.g. [4, Theorem 2.2].

We let the Ap range over prescribed families that are sets of positive lower
or upper density in ω. There is some work on forcings of this type. Grigorieff
[9] parametrised Silver forcing by having the Ap range over a P -point and
Halbeisen [10, Ch 24] generalised this to P -families. Mathias forcing with a
Ramsey ultrafilter [15] is a versatile notion of forcing. Farah and Zapletal
[8, Ch. 9] used the coideal of the density zero ideal as a reservoir for the
infinite component of Mathias conditions.

In Sections 2 to 5 we investigate whether the variants we introduce of
Silver and of Mathias forcing are proper at all. We show that Mathias with
lower density ≥ ε is equivalent to a disjoint union of σ-centered forcings (see
Proposition 3.6) and that Silver forcing with positive lower density collapses
2ω to ω (see Theorem 5.1). We also show that the lower density is far
from the notion of a measure (see Proposition 5.3). This result fits in the
framework presented in [14].

In Section 6 and 7 we are concerned with regularity properties of these
forcings. Regularity properties of tree-forcings by themselves are a well
studied field in mathematics. The following table illustrates which of the
most popular regularity properties of a subset of 2ω correspond to which
tree-forcing P.

Tree-forcing P P-measurable
Cohen C Baire property

Random B Lebesgue measurable
Silver V completely doughnut [16]
Sacks S Marczewski set [20]

Mathias MA completely Ramsey

In many cases adding a Cohen real is enough to establish a dependence be-
tween Baire property and the measurability given by the tree-forcing. This
was made explicit in [13, Proposition 3.1.]. Proposition 7.1 is an improve-
ment of this result.

In Section 8 we construct a model in which all Onω-definable sets are
V+

ε -measurable but Σ1
2(C) fails. In particular Σ1

2(V+
ε ) ⇒ Σ1

2(C) fails.
In the remainder of this introduction, we set up our notation.
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Definition 1.1. Let X be non-empty.
(a) We let X<ω = {s : (∃n < ω)(s : n → X)}. The set X<ω is par-

tially ordered by the initial segment relation ⊴, namely s ⊴ t if
s = t↾dom(s). We use ◁ for the strict relation.

(b) A set p ⊆ X<ω is called a tree if it is closed under initial segments,
i.e. (t ∈ p ∧ s ⊴ t) → s ∈ p. The elements of p are called nodes.

(c) A node is called a splitting node if it has at least two immediate
successors in p. We write Split(p) for the set of splitting nodes of p.

(d) A tree p is called perfect if for every s ∈ p there is a splitting node
t ⊵ s.

(e) For t ∈ p, we write splsuc(t) for the shortest splitting node extending
t. When t is splitting, then splsuc(t) = t.

(f) The stem of p, short stem(p), is the ⊴-least splitting node of p if it
exists.

(g) For n < ω we let Splitn(p) consist of all splitting nodes t in p such
that there are exactly n splitting nodes preceding t i.e., stem(p) =
t0◁t1◁ · · ·◁tn−1◁t, in particular Split0(p) = {stem(p)}. Analogously,
we define Split≤n(p).

(h) For n < ω, let Levn(p) := {t ∈ p : |t| = n}.
(i) For t ∈ p we let p↾t = {s ∈ p : s ⊴ t ∨ t ◁ s}.
(j) Let p ⊆ X<ω be a tree such that for any t ∈ p and any n there is

s ∈ p, t ⊴ s such that |s| > n. The body or rump of a tree p, short
[p], is the set {f ∈ Xω : (∀n)(f↾n ∈ p)}.

Definition 1.2. A partial ordering (P,≤) is called a tree-forcing, if there is
a non-empty set X such that

- All conditions p ∈ P are perfect trees on X<ω.
- For all p ∈ P and t ∈ p the restriction p↾t is again a condition in P.
- The partial order is the inclusion i.e., q ≤ p iff q ⊆ p.

We are interested in tree-forcings P defined over 2<ω or ω<ω with the
following additional property.

Definition 1.3. Let p be a perfect tree defined over 2<ω or ω<ω. The tree
p is called uniformly splitting, if there is an infinite set Ap ∈ [ω]ω such that

∀s ∈ p(|s| ∈ Ap ⇔ s ∈ Split(p)).
A tree-forcing P is called uniformly splitting tree-forcing, if all conditions
p ∈ P are uniformly splitting.

In this paper we study two well-known examples of uniformly splitting
tree forcings: The Mathias forcing MA and the Silver forcing V.

Example 1.4. (1) The Mathias forcing is given by conditions (s,A) ∈
MA if s ∈ [ω]<ω and A ∈ [ω]ω and max(s) < min(A). (t, B) ≤ (s,A)
if t \ s ⊆ A, t ⊇ s, and B ⊆ A. Now a Mathias tree p = p(s,A)
is given by p ⊆ 2<ω and t ∈ p if t is the characteristic function
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of s ∪ s′ for some finite s′ ⊆ A. Of course, now Ap = A, and
stronger conditions correspond to subtrees. All trees are perfect and
restrictions p↾t are again conditions.

(2) A condition f is a Silver condition if there is an infinite set A such
that f : ω \A → 2. So we get a Silver tree p ⊆ 2<ω by letting

t ∈ p ↔ (∀n ∈ |t| \A)(t(n) = f(n)).
Then Ap = A. Stronger conditions are extensions and again corre-
spond to subtrees.

Definition 1.5. For a set A ⊆ ω we define the upper density d+(A) and
lower density d−(A) of A via:

(1) d+(A) := lim sup
n→∞

|A∩n|
n ,

(2) d−(A) := lim inf
n→∞

|A∩n|
n .

Definition 1.6. Let P be a uniformly splitting tree-forcing defined over 2<ω

or ω<ω. For ε ∈ (0, 1] we define two subforcings P+
ε and P−

ε , and we define
the upper and lower positive density versions:

(1) p ∈ P+
ε if p ∈ P and Ap has upper density ≥ ε.

(2) p ∈ P−
ε if p ∈ P and Ap has lower density ≥ ε.

(3) p ∈ P+ if p ∈ P and Ap has upper density > 0.
(4) p ∈ P− if p ∈ P and Ap has lower density > 0.

In all forcing orders, a condition q is stronger than p iff q is a subset of p.

We focus our attention on MA+
ε , MA−

ε , MA+, MA− and the same for
Silver. We order our investigation now in pairs, according to the density
requirement. Some steps work also for general P.

2. Upper density ≥ ε

Definition 2.1. A notion of forcing (P,≤) has Axiom A if there are partial
order relations ⟨≤n : n < ω⟩ such that

(a) q ≤n+1 p implies q ≤n p , q ≤0 p implies q ≤ p,
(b) If ⟨pn : n < ω⟩ is a fusion sequence, i.e., a sequence such that for any

n, pn+1 ≤n pn, then there is a lower bound p ∈ P, p ≤n pn.
(c) For any maximal antichain A in P and and n ∈ ω and any p ∈ P there

is q ≤n p such that only countably many elements of A are compatible
with q. Equivalently, for any open dense set D and any n, p, there
is a countable set Ep of conditions in D and q ≤n p such that Ep is
predense below q.

A notion of forcing (P,≤) has strong Axiom A if the set of com-
patible elements in (c) is even finite.

Axiom A entails properness and strong Axiom A implies ωω-bounding
(see, e.g., [18, Theorem 2.1.4, Cor 2.1.12]).
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Remark 2.2. Let p ∈ P+
ε . We define an increasing sequence ⟨kp

n ∈ ω : n ∈
ω⟩ as follows:
n = 0 : We put kp

0 := min(Ap),
n > 0 : We let kp

n := min{k ∈ ω : (k > kp
n−1 ∧ |Ap ∩ k| ≥ k(ε− 2−n))}.

Such a sequence has the following property for n ∈ ω:
|Ap ∩ kp

n|
kp

n
≥ ε− 2−n,

and therefore witnesses d+(Ap) ≥ ε.

We use the sequences ⟨kp
n ∈ ω : n ∈ ω⟩ to define a stronger-n-relation ≤n

on P+
ε .

Definition 2.3. We define a decreasing sequence of partial order relations
⟨≤n : n ∈ ω⟩ on P+

ε as follows:
q ≤n p ⇔ q ≤ p ∧ kq

n = kp
n ∧Aq ∩ kq

n = Ap ∩ kp
n.

Observe that given two conditions satisfying q ≤n p we must have kq
i = kp

i
for i ≤ n.

Fact 2.4. Let P ∈ {MA,V}. Let ⟨qn : n ∈ ω⟩ be a fusion sequence in P+
ε .

Then, fusions exist. Especially, q =
⋂
qn is a condition in P+

ε .

2.1. Silver forcing with upper density ε > 0. We quickly establish that
the Silver forcing with positive upper density ε has strong Axiom A and
thus is a proper forcing that does not add unbounded reals. The proof is a
straightforward generalization of the standard case.
For the next proof we introduce the following notation: Let q ≤ p ∈ V be
two Silver trees and n < | stem(q)| a natural number. We prune the tree p
above level n in such a way that we only choose nodes in p that copy some
node in q above level n. We denote the resulting tree with copy(p, q, n).
More precisely copy(p, q, n) is the following set of nodes:
Lev≤n(p) ∪ {s ∈ p : |s| > n ∧ ∃t ∈ Lev|s|(q) ∀m ∈ [n, |s|) (s(m) = t(m))}.

Note that copy(p, q, n) is in fact a Silver tree and in case p, q ∈ V+
ε the

upper density of the corresponding set of splitting levels of copy(p, q, n) and
q coincide and thus copy(p, q, n) ∈ V+

ε as well.

Lemma 2.5. The forcing V+
ε has strong Axiom A.

Proof. We take the partial order relations ≤n as defined in Definition 2.3.
It is easy to see that the requirements (a) and (b) from Definition 2.1 are
fulfilled. We make sure that the strong version of (c) can be fulfilled as well.
So, fix an open dense set D ⊆ V+

ε , n ∈ ω and a condition p ∈ V+
ε . We have

to find a finite set Ep ⊆ D and a condition q ≤n p such that Ep is predense
below q.
To this end, let ⟨kp

m : m < ω⟩ be the sequence associated to the condition p as
given in Remark 2.2. Let k := |Ap ∩kp

n| denote the number of splitting levels
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up to kp
n and {ti ∈ Split(p) : i < 2k} enumerate all splitting nodes of length

exactly kp
n. We construct a decreasing sequence p =: q0 ≥ q1 ≥ · · · ≥ q2k =: q

such that qi+1↾ti ∈ D, i < 2k. Fix i < 2k. Now, pick pi ≤ qi↾ti in D and
copy pi into qi above level kp

n, i.e., we let qi+1 := copy(qi, pi, k
p
n).

It is clear that the resulting tree q satisfies q↾t ∈ D, whenever t ∈ q is of
length at least kp

n. Moreover, since we have pruned the tree q only above kp
n

we also made sure that
kp

n = kq
n ∧Ap ∩ kp

n = Aq ∩ kp
n,

especially q ≤n p. For the finite set Ep we can simply put Ep := {q↾t : t ∈
Levkp

n
(q)}. This completes the proof. □

Corollary 2.6. The forcing V+
ε is proper and ωω-bounding for each ε ∈

(0, 1].

2.2. Mathias forcing with upper density ε > 0. In the following, we
investigate the differences between MA+

ε and the classical Mathias forcing
MA and Mathias forcing MA(F) with respect to a filter F . The decisive
difference to the classical forcing is that MA+

ε adds Cohens. From MA(F)
it already differs by the fact that the set {A ⊆ ω : d+(A) ≥ ε} is not closed
under finite intersection and thus not a filter. Note that this does not yet
imply that the two forcing are not forcing equivalent.

Definition 2.7. Let F be a filter over ω. The partial order MA(F) consists
of all p ∈ MA such that the set of splitting levels Ap is an element of the
filter F . MA(F) is ordered by inclusion.

Remember that a filter F over ω is called Canjar, if the corresponding
Mathias forcing MA(F) does not add dominating reals. See for instance [5],
where Michael Canjar constructed an ultrafilter U under the assumption
d = c such that MA(U) does not add dominating reals. The following
lemma shows that MA+

ε cannot be equivalent to MA(F), for F Canjar.

Lemma 2.8. MA+
ε adds dominating reals.

Proof. Let G be MA+
ε -generic over V and let xG =

⋃
{s : ∃A((s,A) ∈ G)}

denote the the MA+
ε -generic real. Observe that xG has upper density ε in

the generic extension V [G]. Therefore, the following function is well defined
in V [G]:

f(n) := min
{
k : |xG ∩ k|

k
≥ ε− 2−n

}
.

Remember that in Remark 2.2 we assigned to each condition p ∈ MA+
ε a

sequence ⟨kp
n ∈ ω : n < ω⟩. That f is dominating now follows from the

following two facts:
(i) ∀p ∈ MA+

ε , p ⊩ ∀n < ω(f(n) ≥ kp
n),

(ii) ∀g ∈ ωω∀p ∈ MA+
ε ∃q ≤ p, q ⊩ ∀∞n(kq

n ≥ g(n)).
□
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There is a more general reason why MA+
ε and MA(F) for any filter F

cannot be forcing equivalent. Since F is a filter, any two conditions p, q ∈
MA(F) with the same stem are compatible and in particular MA(F) is σ-
centered.
The following lemma follows from the well-known fact that there is an almost
disjoint family of size c of sets of upper density 1.

Lemma 2.9. MA+
ε does not satisfy the countable chain condition.

Now we turn our attention to a comparison with the classical Mathias
forcing MA. Usually the first step in showing that a given forcing satisfies
pure decision (compare [1, Lemma 7.4.5]) is to show that the forcing satisfies
quasi pure decision (compare [1, Lemma 7.4.6]). We will see that although
MA+

ε fails to satisfy pure decision it still satisfies quasi pure decision.

Lemma 2.10. MA+
ε satisfies quasi pure decision i.e., given a condition

p = (s,A) ∈ MA+
ε and an open dense set D ⊆ MA+

ε there is B ⊆ A such
that the following holds:

If there is (t, C) ≤ (s,B) and (t, C) ∈ D, then (t, B \ (max(t) + 1)) ∈ D.

Proof. The proof is a straightforward generalization of [1, Lemma 7.4.5.].
To make sure that the final set B has upper density ≥ ε we have to use
finite sets bn instead of singletons.
We construct B =

⋃
{bn ∈ [ω]<ω : n ∈ ω} together with a decreasing

sequence {Bn ⊆ A : n ∈ ω}. We start with B0 = A and b0 = min(A).
So, assume we have constructed all sets up to Bn and bn. Let {t0, . . . , tk−1}
enumerate all subsets of

⋃
{b0, . . . , bn}. We construct Bn+1 as a decreasing

sequence Bn =: B0
n+1 ⊇ · · · ⊇ Bk

n+1 =: Bn+1. Let j < k be given.

Case 1: There exists C ⊆ Bj
n+1 \ (max(tj) + 1) such that (s ∪ tj , C) ∈ D.

Then put Bj+1
n+1 := C.

Case 2: Otherwise put Bj+1
n+1 := Bj

n+1.
Finally put Bn+1 := Bk

n+1. Since Bn+1 has upper density ≥ ε we can find
kn+1 ∈ ω such that

|(
⋃

j≤n bj ∪Bn+1) ∩ kn+1|
kn+1

≥ ε− 2−n−1

and set bn+1 := Bn+1 ∩ kn+1. □

Corollary 2.11. The forcing MA+
ε has Axiom A.

Proof. We take the partial order relations ≤n as defined in Definition 2.3
and also recall the sequences ⟨kp

n : n < ω⟩ from Remark 2.2. The crucial
part is to make sure that the requirement (c) from Axiom A (Definition 2.1)
is fulfilled. So, fix an open dense set D ⊆ MA+

ε , n < ω and a condition
p = (s,Ap) ∈ MA+

ε . Let N be big enough and {ti ∈ [ω]<ω : i < N}
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enumerate all subsets of Ap ∩ kp
n. We define a decreasing sequence Ap ⊇

B0 ⊇ B1 ⊇, . . . ,⊇ BN such that for i < N :
∀(t, C) ∈ D

(
(t, C) ≤ (s ∪ ti, Bi) → (t, Bi+1 \ (max(t) + 1)) ∈ D

)
.

We start with B0 := Ap \ (max(t0) + 1). To get the sets Bi for i > 0, simply
apply Lemma 2.10 to the condition (s ∪ ti−1, Bi−1) and the open dense set
D.
Finally, we set B := (A ∩ kp

n) ∪BN and
Ep := {(t, B \ (max(t) + 1)) : ∃C ∈ [ω]ω((t, C) ≤ (s,B) ∧ (t, C) ∈ D)}.
Then, (s,B) ≤n (s,A) and Ep is a countable predense set below (s,B). □

Proposition 2.12. MA+
ε adds a Cohen real.

Proof. Take N ∈ ω such that 1/N < ε. Divide ω into N + 1 disjoint sets
ai ⊆ ω, i < N + 1 of density 1/(N + 1) i.e., d+(ai) = d−(ai) = 1/(N +
1), i < (N + 1). Then each set A ⊆ ω with upper density ≥ 1/N cannot be
completely contained in a single set ai. Furthermore there is at least one
i < N + 1 such that both A ∩ ai and A \ ai are infinite. Let xG be the
canonical name for the MA+

ε -generic real and ⟨nk : k ∈ ω⟩ enumerate all
integers n such that xG(n) = 1. We define a MA+

ε -name ċ via:

ċ(k) :=
{

0, ∃i < (N + 1){n2k, n2k+1} ⊆ ai

1, else.

Below any MA+
ε -condition there are two incompatible conditions who differ

in the decision of ċ(k) for at least one k. Hence ċ is not in the ground model.
We claim that ċ is Cohen. For this purpose, fix t ∈ 2<ω, (s,A) ∈ MA+

ε .
W.l.o.g. we can assume that |s−1({1})| is even. Let r ∈ 2<ω maximal such
that (s,A) ⊩ r ⊴ ċ (such r exists since ċ is not in the ground model). We
have to find (s′, A′) ≤ (s,A) with the property (s′, A′) ⊩ r⌢t ⊴ ċ. We
construct (s′, A′) as a decreasing sequence (s,A) =: (s0, A0) ≥ (s1, A1) ≥
· · · ≥ (s|t|, A|t|) = (s′, A′) such that |si

−1({1})| + 2 = |si+1
−1({1})|, i < |t|

and (si, Ai) ⊩ r⌢t↾i ⊴ ċ. We only carry out the first step of the construction.
Take i < (N + 1) such that both A0 ∩ ai and A0 \ ai are infinite. Put
m := min(A0 ∩ ai). There are two cases:

t(0) = 0 : Define M := min((A0 ∩ ai) \ (m+ 1)) and put s1 := s0
⌢m⌢M,

A1 := A0 \ (M + 1). Then (s1, A1) ⊩ r⌢t(0) ⊴ ċ.

t(0) = 1 : Define M := min(A0 \ ((m+ 1) ∪ ai)) and put s1 := s0
⌢m⌢M,

A1 := A0 \ (M + 1). Then (s1, A1) ⊩ r⌢t(0) ⊴ ċ.

The rest of the construction is carried out analogously.
□

Thus, in contrast to MA we get.

Corollary 2.13. MA+
ε does not satisfy pure decision.
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3. Lower density ≥ ε

In this section we investigate the Mathias forcing with lower density ≥ ε.
The first observation is.

Observation 3.1. The family of sets F1 := {A ⊆ ω : d−(A) = 1} is a
filter.

So, MA−
1 is in fact equivalent to Mathias forcing MA(F1) with respect to

the filter F1.
Thus, we get:

Fact 3.2. MA−
1 satisfies the countable chain condition.

Now, we will see that the forcing MA−
ε is a disjoint union of σ-centred

forcings.

Definition 3.3. Let A,B ⊆ ω. The lower density of B with respect to A is
defined by:

d−
A(B) := lim inf

n→∞
|A ∩B ∩ n|

|A ∩ n|
.

Lemma 3.4. Let B ⊆ A ⊆ ω, d−(A) > 0 and d−
A(B) < 1.

Then, d−(B) < d−(A).

Proof. Let B ⊆ A ⊆ ω be as in the lemma. Then, d−
A(B) < 1 implies

(∃n0 < ω)(∀k < ω)(∃m ≥ k)
( |B ∩m|

|A ∩m|
< 1 − 2−n0

)
.

So, we in fact get
(∃∞m)

(
|B ∩m| < (1 − 2−n0) · |A ∩m|

)
.

□

Corollary 3.5. If d−(A) = ε, then F(A) := {B ⊆ A : d−(B) = ε} is a
filter.

Proposition 3.6. Let ε ∈ (0, 1].
The forcing notion MA−

ε is equivalent to a disjoint union of σ-centred
forcings.

Proof. First, note that D := {p = (s,Ap) ∈ MA−
ε : d−(Ap) = ε} is an open

dense subset of MA−
ε . Fix a maximal antichain A ⊆ D. For each p ∈ A the

restriction of MA−
ε to p is denoted by MA−

ε ↾p = {q ∈ MA−
ε : q ≤ p}. Then,

each MA−
ε ↾p has the countable chain condition. Indeed, fix p = (s,Ap) ∈ A.

By Corollary 3.5 we know that the set {B ⊆ Ap : d−(B) = ε} is closed
under finite intersections. Thus, any two conditions q0, q1 ≤ p which have
the same stem, are compatible.

It follows that
⋃

p∈A MA−
ε ↾p is a dense subset of MA−

ε . □

Corollary 3.7. MA−
ε is proper for each ε ∈ (0, 1).
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Next, we show that MA−
ε has antichains of size the continuum, whenever

ε < 1.

Lemma 3.8. Let ε ∈ (0, 1). There is a family of sets {Af : f ∈ I} such
that

(1) I ⊆ 2ω has size continuum,
(2) d−(Af ) ≥ ε, for all f ∈ I,
(3) d−(Af ∩Ag) < ε, for all f ̸= g in I.

Proof. Let ε ∈ (0, 1). First, we fix a suitable set of indices I ⊆ 2ω. To this
end, let I be any family of functions of size continuum with the property

∀f, g ∈ I(f ̸= g → ∃∞i, j(f(i) = 1 > g(i) ∧ f(j) = 0 < g(j))).(3.1)

Next, we define for n ∈ ω the interval In := [2n+1, 2n+2) ⊆ ω. Then, all
intervals are pairwise disjoint and each interval In has size 2n+1. Now, we
define for each f ∈ I a function Ff ∈ ωω via

Ff (n) :=
n∑

i=0
f(i) · 2n−i.

Observe, that the functions Ff have the property that for n ∈ ω(Ff (n) ∈
[0, 2n+1)), in other words there are 2n+1 possible values for Ff (n).
We define the sets Af of lower density ≥ ε recursively over n as a disjoint
union Af =

⋃
nA

n
f , such that An

f ⊆ In. To this end, fix n and let k be the
closest natural number ≤ ε · 2n+1, so k := max{j ∈ ω : j ≤ ε · 2n+1}. We
differentiate two cases:
If 2n+1 + Ff (n) + k − 1 < 2n+2 : We set

An
f := {2n+1 + Ff (n), 2n+1 + Ff (n) + 1, . . . , 2n+1 + Ff (n) + k − 1}

Otherwise, there is j ≤ k− 1 such that 2n+1 +Ff (n) + j = 2n+2 − 1 and we
can set
An

f := {2n+1, . . . , 2n+1 + k − 1 − j} ∪ {2n+1 + Ff (n), . . . , 2n+1 + Ff (n) + j}
Finally we set Af :=

⋃
An

f . It follows directly from the definition that each
set Af has density ε and for n ∈ ω we get (Af ∩ In = An

f ).
It is left to show that for f ̸= g the set Af ∩ Ag has lower density < ε. So,
fix f, g ∈ I and let i0 be minimal such that f(i0) ̸= g(i0). W.l.o.g assume
f(i0) = 1 and g(i0) = 0, so in particular Ff (n) > Fg(n) for all n ≥ i0. By
property (3.1) of I there is i1 > i0 such that f(i1) = 1 and g(i1) = 0. Then,
for all n > i1 we have

|Ff (n) − Fg(n)| ≥ 2n−i0 + 2n−i1 − (
i1−1∑
i>i0

2n−i + 2n−i1 − 1) > 2n−i1+1.

Claim 3.9. There is a strictly positive constant c ∈ (0, 1) such that for all
n ∈ ω

|Af ∩Ag ∩ In|
|In|

≤ ε− c.
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Clearly, the claim above implies d−(Af ∩ Ag) < ε. So, fix n ∈ ω. Since
we are only interested in the size of Af ∩ Ag ∩ In, we might assume, by
a transformation argument, that g(i) = 0, i < n and f(0) = 0. Thus,
An

g consists of the first k elements of In i.e., {2n+1, . . . , 2n+1 + k − 1} and
Ff (n) − Fg(n) = Ff (n) < 2n. Again, we have to differentiate two cases:
If Ff (n) + 2n+1 + k − 1 < 2n+2: Then,

|An
f ∩An

g ∩ In|
2n+1 ≤ k − 2n−i1+1

2n+1 ≤ ε− 1
2i1
.

Otherwise Ff (n) + 2n+1 + k − 1 ≥ 2n+2. In this case we must have ε > 1/2
and we get:

|An
f ∩An

g ∩ In|
2n+1 ≤ 2n+1 − 2(2n+1 − k)

2n+1 ≤ 2 · ε− 1.

We can set c := min{2−i1 , (1 − ε)}. □

Corollary 3.10. MA−
ε has antichains of size continuum for ε ∈ (0, 1).

Proof. Take the family of sets {Af : f ∈ I} as in the lemma above. Then,
{(⟨⟩, Af ) : f ∈ I} ⊆ MA−

ε is an antichain of size continuum. □

Corollary 3.11. There is no filter F such that MA(F) and MA−
ε are forcing

equivalent.

Proof. This follows from the previous corollary, together with the fact, that
MA(F) is a σ-centered forcing for each filter. □

Analog to the upper density case MA+
ε we get that MA−

ε adds Cohen
reals.

Proposition 3.12. MA−
ε adds Cohen reals.

Proof. We can repeat the proof of Proposition 2.12. Again we divide ω into
N + 1 disjoint sets ai ⊆ ω, i < N + 1 of density 1/(N + 1), where N is such
that 1/N < ε. Now to carry out the rest of the construction it enough to see
that any set of lower density ε intersects at least two of the sets ai infinitely
often. □

Let xG be the generic real added by MA−
ε . Then, xG has lower density

0 and upper density ε in the generic extension. So one might try to use
the same recipe as in Lemma 2.8, where it was proven that MA+

ε adds
dominating reals. However, condition (ii) from the proof is not satisfied and
the following question remains open.

Question 3.13. Does MA−
ε add dominating reals?

Note, a negative answer to this question for ε = 1 would be a positive
answer to [17][Question 38] from Raghavan.
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4. Upper density > 0

In this section we investigate MA+ i.e., the forcing consisting of Mathias
conditions p ⊆ 2<ω such that the corresponding set of splitting levels Ap has
strictly positive upper density.

Definition 4.1. The density zero ideal Z is defined by:
Z := {A ⊆ ω : d+(A) = 0)},

and the corresponding coideal is denoted by Z+ = {A ⊆ ω : d+(A) > 0}.

Observe that for p ∈ MA we have p ∈ MA+ iff Ap ∈ Z+.

One might be tempted to think that the proof of Axiom A for MA+
ε

generalizes to MA+. The problem is to find the appropriate partial orders
≤n. If we simply use Definition 2.3 we can construct a decreasing sequence
p0 ≥0 p1 ≥1 . . . such that the set of splitting levels Ap of the “fusion”
p =

⋂
n pn has density 0.

Question 4.2. Does MA+ satisfy Axiom A?

We show that the forcing MA+ is proper. In order to do this, we need
the following Lemma (compare [8, Lemma 9.6.]).

Lemma 4.3. MA+ is forcing equivalent to the two step iteration of P(ω)/Z+∗
MA(Ḟ), where Ḟ is a P(ω)/Z+-generic filter.

For sake of completeness we sketch a proof.

Proof. We define a map i : MA+ −→ P (ω)/Z+ ∗ MA(Ḟ) via i((s,A)) :=
([A]Z+ , (s,A)), where [A]Z+ = {B ⊆ ω : A∆B ∈ Z} is the corresponding
equivalence class. It is not hard to see that i preserves being stronger and
being incompatible. We show that the range of i is dense. To this end, fix a
condition ([A]Z+ , (s, Ċ)). Then Ċ is a P (ω)/Z+-name for an infinite subset
of ω such that [A]Z+ ⊩ Ċ ∈ Ḟ . This implies [A]Z+ ⊩ A \ Ċ ∈ Z. So we get
i((s,A)) = ([A]Z+ , (s,A)) ≤ ([A]Z+ , (s, Ċ)). □

Corollary 4.4. MA+ is proper.

Proof. Let Fin denote the ideal of finite subsets of ω. In [7, Theorem 1.3.]
Farah proved that P (ω)/Z+ is forcing equivalent to the two step iteration
of P(ω)/Fin and a measure algebra of Maharam character c and therefore is
proper. So, MA+ is a finite iteration of proper forcings. □

Theorem 4.5. MA+ adds Cohen reals.

The Theorem follows from [8, Lemma 9.8.] and the fact that the coideal
Z+ is not semiselective (compare [6, Definition 2.1.]). However, since we
will make use of the explicit construction of the Cohen real, we also give a
proof. We freely identify sequences x ∈ 2≤ω with their corresponding sets
of natural numbers x ∈ [ω]≤ω via x 7→ {n : x(n) = 1}.
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Proof. We define maximal antichains An in (Z+,⊆∗) as follows: For n ∈ ω

let Ai
n := {k ∈ ω : k = i mod 2(n+1)} and put An := {Ai

n : i < 2(n+1)},
e.g. A0 consists of the even and odd numbers. Let xG ∈ 2ω be a MA+-
generic real. Then, in the generic extension V [xG], there is for each n ∈ ω

exactly one in < 2(n+1) such that xG ⊆∗ Ain
n . To simplify notations we

denote with An this unique Ain
n . We define two sequences ⟨ni : i ∈ ω⟩ and

⟨mi : i ∈ ω \ {0}⟩ as follows: We start with n0 := min(xG). When ni is
known, we put mi+1 := min(xG \ (ni + 1)). To define ni+1 we differentiate
two cases: If xG \ (mi+1 + 1) ⊆ Ami+1 we put ni+1 := mi+1. Otherwise we
put ni+1 := min(xG \ ((mi+1 + 1) ∪ Ami+1)). Observe that by definition we
have mi ≤ ni. We put

c(i) :=
{

0, if xG \ (mi+1 + 1) ⊆ Ami+1

1, else.

Observe that no condition (s,A) ∈ MA+ can decide all values of c(i). Be-
cause otherwise it would also decide all antichains An but then the set A
would have density zero. Which is a contradiction. Hence c is not in the
ground model. We show that c is Cohen. For this purpose, fix a condition
(s,A) ∈ MA+. By density we can assume that there is i < ω such that mi, ni

and c↾i are decided by (s,A) but none of the values of mi+1, ni+1 nor c(i).
We must have max(s) = ni. Fix j ∈ 2. It is enough to find (t, B) ≤ (s,A)
such that (t, B) ⊩ c(i) = j and in addition (t, B) does not decide mi+2, ni+2
or c(i+ 1). Depending on the value of j we distinguish two cases:
j = 0: Let m := min(A), t := s ∪ {m} and B := Am ∩A \ (m+ 1).
j = 1: Find m ∈ A such that A ̸⊆ Am (such an m always exists since A

has positive upper density and Am has density 2−(m+1)). Next, pick
n ∈ A\Am and put t := s∪{m}∪{n}. Finally, define B := A\(n+1).

In both cases we have max(t) = ni+1, (t, B) decides the value of c(i) to be j
but neither does it decide mi+2, ni+2 and nor c(i+ 1). □

Next, we show that MA+ adds dominating reals.

Theorem 4.6. MA+ adds dominating reals.

Proof. Let Z∗ = {A ⊆ ω : ω \A ∈ Z} be the dual filter of the density zero
ideal. In [11, Corollary 3] Hrušak and Minami showed that MA(F) adds
dominating reals, whenever F is a filter extending Z∗. We use Lemma 4.3.
Let Ḟ denote the P (ω)/Z+-generic filter. Then, in the generic extension
V [Ḟ ] the filter Ḟ extends (Z∗)V and therefore MA(Ḟ) adds dominating
reals over V . Specifically, MA+ adds dominating reals over V . □

5. Positive lower density

In this section we show that V− collapses the continuum to ω. We also
construct an uncountable antichain in the partial order consisting of sets
with strictly positive lower density ordered by inclusion.
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Theorem 5.1. The forcing V− collapses the continuum to ω.

We first prove a lemma:

Lemma 5.2. For each natural numbers k, k0 < ω, k > 0 there is a strictly
increasing function ℓ : ω ∪ {−1} → ω and a V−-name Ḟ for real F ∈ 2ω in
V [G] such that for all reals ϱ ∈ 2ω and all conditions p ∈ V− in the ground
model the following holds:((

d−(Ap) ≥ 2
k

∧ ∀n ≥ k0
|Ap ∩ [ℓ(n), ℓ(n+ 1))|

ℓ(n+ 1) − ℓ(n) ≥ 1
k

)
→(5.1)

∃qϱ ≤ p

(
d−(Aqϱ) ≥ 1

4 · k
∧ qϱ ⊩ (∀n ∈ ω)Ḟ (n) = ϱ(n)

))
(5.2)

Proof. Let k, k0 < ω be natural numbers and k0 > 0. The function ℓ is
defined recursively by

ℓ(n) =


0, if n = −1,
3k · (k0 + 1), if n = 0,
4k · ℓ(n− 1), if n > 0.

We let xG be the generic branch and define

f(n) = the closest natural number to |x−1
G [{1}] ∩ ℓ(n)|

ℓ(n) · 3k
4 .

We define in V [G] the following function:

F (n) =
{

0, if f(n) is even;
1, else.

So, assume that we are given a condition p ∈ V− that meets the premise of
the implication (5.1) for k and k0 i.e.,

d−(Ap) ≥ 2
k

and (∀n ≥ k0) |Ap ∩ [ℓ(n), ℓ(n+ 1))|
ℓ(n+ 1) − ℓ(n) ≥ 1

k
.

Let ϱ ∈ 2ω be given. Recall any Silver condition p is uniquely described by
a function fp : ω \ Ap → 2. By induction on n < ω we define an increasing
sequence of partial functions fp = fq−1 ⊆ fq0 ⊆ fq1 ⊆ . . . such that for all
n ≥ 0

(1) fqn↾ℓ(n− 1) = fqn−1↾ℓ(n− 1),
(2) fqn↾[ℓ(n− 1), ℓ(n)) ⊇ fqn−1↾[ℓ(n− 1), ℓ(n)),
(3) fqn↾[ℓ(n),∞) = fp↾[ℓ(n),∞),

From the three conditions above it already follows that each correspond-
ing tree qn will be a member of V−. Additionally, we make sure that the
following holds as well for n ≥ 0:

(4) |Aqn ∩[ℓ(n−1),ℓ(n))|
ℓ(n)−ℓ(n−1) ≥ 1

4k

(5) qn ⊩ ∀m ≤ nF (m) = ϱ(m).
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The conditions (1) − (4) together make sure that the decreasing sequence
⟨qn : n < ω⟩ has a lower bound in V−, namely q :=

⋂
n qn. Condition (5)

ensures that q ⊩ ∀n ∈ ωF (n) = ϱ(n). Thus, we can set qϱ := q and are
done.

Now for the step from n− 1 to n: We have
|Ap ∩ [ℓ(n− 1), ℓ(n))|

ℓ(n) − ℓ(n− 1) ≥ 1
4 .

This means we can add at most 3
4 · 1

k ·(ℓ(n)−ℓ(n− 1)) elements of [ℓ(n− 1), ℓ(n))∩
Ap to dom(fqn) and still make sure that condition (4) is met. We will later
choose which of them are mapped to 0 and which are mapped to 1 by fqn .

We define two approximations to f and F respectively, which do not
depend on the generic element xG. We let

f(n, p) = the closest natural number to
|f−1

p [{1}] ∩ ℓ(n)|
ℓ(n) · 3k

2 ,

and

F (n, p) =
{

0, if f(n, p) is even;
1, else.

Now at most 2
3 · ℓ(n)

k many new values are needed to change f(n, p) to
f(n, q) such that the quotient

|f−1
p [{1}] ∩ ℓ(n)|

ℓ(n) · 3k
2 ∈ ω

and such that F (n, q) coincides with ϱ(n). However, we have to be careful
not to contradict condition (4). Especially, the following must hold:

2
3 · ℓ(n)

k
≤ 3

4 · 1
k

· (ℓ(n) − ℓ(n− 1)) = 3
4 · (4k − 1)

4k · ℓ(n)
k
.

On the other hand, we need to ensure that qn decides F (n) to be F (n, qn).
By construction and in particular condition (4), we get that the amount of
digits that are in ℓ(n) \ dom(fqn) is ℓ(n)

4k . Hence we need
2
3 · ℓ(n)

k
> 2 · ℓ(n)

4k
Both inequalities are true since:

1
2 <

2
3 ≤ 3

4 · 15
16 .

□

Proof of the Theorem. In the generic extension V [G] we construct a function
H : ω3 → 2 as follows: For two natural numbers k, k0 with k0 > 0 let F k

k0
denote the real F ∈ 2ω ∩ V [G] from the lemma. We put

H(k, k0, n) =
{

0, if k0 = 0
F k

k0
(n), if k0 > 0
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Now it is easy to see that

⊩V− (∀ϱ ∈ V ∩ 2ω)(∃k > 0)(∃k0)(∀nH(k, k0, n) = ϱ(n)).

Simply fix p and ϱ. Compute k and k0 for p such that the prerequirement of
the implication (5.1) are fulfilled. This is always possible since d−(Ap) > 0.
Then construct qϱ ≤ p as in the lemma above.

Hence, ⊩V− (k, k0) 7→ H(k, k0, ·) is a surjection from ω × ω onto 2ω ∩ V .
□

5.1. MA− has large antichains. The following lemma establishes that
below any condition p ∈ MA− there is an antichain of size continuum.

Proposition 5.3. There is a family of sets {Af ⊆ ω : f ∈ I} such that

(1) I ⊆ 3ω has size continuum,
(2) d−(Af ) ≥ 1/2, for all f ∈ I.
(3) d−(Af ∩Ag) = 0, for all f ̸= g in I.

Proof. First, we fix a suitable set of indices I ⊆ 3ω. Therefore pick any
family of functions I of size continuum with the property, that for any two
different functions f, g ∈ I there are infinitely many n ∈ ω (f(n) ̸= g(n)). In
order to define the sets Af we will define three auxiliary sets B0, B1, B2 ⊆ ω
and a sequence ⟨kn

j : n ∈ ω, j ∈ 3 ∪ {−1}⟩ such that

i) kn
−1 < kn

0 < kn
1 < kn

2 = kn+1
−1 , for n < ω,

ii) kn
j−1
kn

j
< 2−n, for j < 3, n < ω,

iii) d−(Bi ∪Bj) ≥ 1/2, for i ̸= j,
iv) d−(Bi) = 0, for i < 3.

We construct the sets Bi recursively over n ∈ ω as a disjoint union of sets
{Bn

i }n such that each set Bn
i is a subset of [kn

−1, k
n
2 ). Start by defining

B0
i := ∅, i < 3 and k0

j := j + 1, j ∈ 3 ∪ {−1}. Now assume we have
constructed Bm

i and km
j for m < n, i < 3 and j ∈ 3 ∪ {−1}. We start with

kn
j . Let kn

−1 := kn−1
2 and choose kn

j , j < 3 big enough such that conditions
i) and ii) are fulfilled and additionally the difference kn

j − kn
j−1 is an even

natural number for each j < 3. We perform three construction steps to
define the sets Bn

i :

a) Divide the interval [kn
−1, k

n
0 ) evenly between the two sets Bn

1 and Bn
2

and avoid the set Bn
0 entirely i.e.,

[kn
−1, k

n
0 ) ∩Bn

0 := ∅,
[kn

−1, k
n
0 ) ∩Bn

1 := {kn
−1, k

n
−1 + 2, . . . , kn

0 − 2},
[kn

−1, k
n
0 ) ∩Bn

2 := {kn
−1 + 1, kn

−1 + 3, . . . , kn
0 − 1}.
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b) Divide the interval [kn
0 , k

n
1 ) evenly between the two sets Bn

0 and Bn
2

and avoid the set Bn
1 entirely i.e.,

[kn
0 , k

n
1 ) ∩Bn

1 := ∅,
[kn

0 , k
n
1 ) ∩Bn

0 := {kn
0 , k

n
0 + 2, . . . , kn

1 − 2},
[kn

0 , k
n
1 ) ∩Bn

2 := {kn
0 + 1, kn

0 + 3, . . . , kn
1 − 1}.

c) Divide the interval [kn
1 , k

n
2 ) evenly between the two sets Bn

0 and Bn
1

and avoid the set Bn
2 entirely i.e.,

[kn
1 , k

n
2 ) ∩Bn

2 := ∅,
[kn

1 , k
n
2 ) ∩Bn

0 := {kn
1 , k

n
1 + 2, . . . , kn

2 − 2},
[kn

1 , k
n
2 ) ∩Bn

1 := {kn
1 + 1, kn

1 + 3, . . . , kn
2 − 1}.

This completes the construction of the sets Bn
i and we can put Bi :=

⋃
nB

n
i .

We check that conditions iii) and iv) are fulfilled. Let i ̸= j be given. By
construction steps a) − c), we know that Bi ∪ Bj selects at least each sec-
ond natural number of each interval [kn

−1, k
n
2 ). Since the intervals [kn

−1, k
n
2 )

partition ω we get iii). Condition iv) follows from
|Bi ∩ kn

i |
kn

i

≤
kn

i−1
kn

i

< 2−n.

Now, we are in a position to define the setsAf , f ∈ I. For n ∈ ω and i ∈ 3, we
let An

i := Bn
i0 ∪Bn

i1 , where i0 and i1 are chosen such that {i, i0, i1} = 3. Then,
we set Af :=

⋃
nA

n
f(n). We have to verify that the sets Af satisfy conditions

(2) and (3). That each set Af has lower density ≥ 1/2 follows directly from
condition iii) for the sets Bi. So let f, g ∈ I be two different functions and
take n such that f(n) ̸= g(n). W.l.o.g. assume f(n) = 0 and g(n) = 1.
Then, from construction step c) it follows that B0 ∩ B2 ∩ [kn

1 , k
n
2 ) = ∅ and

thus
|Af ∩Ag ∩ kn

2 |
kn

2
≤ kn

1
kn

2
< 2−n.

Since f and g differ on infinitely many n we get d−(Af ∩Ag) = 0. □

The results of the previous sections are summarized in the table below.

P MA+
ε V+

ε MA−
1 MA−

ε V−
ε MA+ V+ MA− V−

proper ✓ ✓ ✓ ✓ ✓ ✗

c.c.c ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Cohen ✓ ✗ ✓ ✓ ✓ ✓

dominating ✓ ✗ ✓

6. Measurability

In this section we compare different notions of measurability. We first
establish some notations.
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Definition 6.1. Let X be a non-empty set and P be a tree-forcing defined
over X ω.

(1) A subset X ⊆ X ω is called P-nowhere dense, if
(∀p ∈ P)(∃q ≤ p)([q] ∩X = ∅).

We denote the ideal of P-nowhere dense sets with NP.
(2) A subset X ⊆ X ω is called P-meager if it is included in a countable

union of P-nowhere dense sets. We denote the σ-ideal of P-meager
sets with IP.

(3) A subset X ⊆ X ω is called P-measurable if
(∀p ∈ P)(∃q ≤ p)([q] \X ∈ IP ∨ [q] ∩X ∈ IP).

(4) A family Γ ⊆ P(X ω) is called well-sorted if it is closed under con-
tinuous pre-images. We abbreviate the sentence “every set in Γ is
P-measurable” by Γ(P).

We make two useful observations concerning the measurability of a set
X.

Observation 6.2. Let P be a tree-forcing and X ⊆ X ω a set of reals.
(1) If H is P-comeager, then X is P-measurable if and only if H ∩X is

P-measurable.
(2) If IP = NP, then X is P-measurable if and only if

(∀p ∈ P)(∃q ≤ p)([q] ⊆ X ∨ [q] ∩X = ∅).

For Sacks, Laver, Miller, Silver and Mathias forcing we have NP = IP. In
case of the Silver forcing the usual proof for IV = NV also works for V+

ε ,
since it only makes use of fusion sequences. But it is unclear whether we
can expect the same for the other versions of Silver forcing.
In case of the Mathias forcing however, we don’t have an equality in none
of the four versions of the forcing.

Theorem 6.3. (1) IV+
ε

= NV+
ε

,
(2) IP ̸= NP for P ∈ {MA+

ε ,MA−
ε ,MA+,MA−}.

Proof. (1) As we mentioned above, the first part of the Theorem is a straight-
forward generalization of the proof for the usual Silver forcing. The only
difference being that one has to use the partial orderings defined as in Def-
inition 2.3 to ensure that fusions exist in V+

ε .
(2) We divide the proof into cases.

(≥ ε) Let ε ∈ (0, 1] be given. The proof is closely intertwined with the fact
that the forcings MA+

ε and MA−
ε add Cohen reals. We quickly recall

the construction of the Cohen real from Lemma 2.12 and define a
function φ such that the image of the generic real is a Cohen real.
Fix ε > 0, N ∈ ω such that 1/N < ε and a partition {ai}i<N+1 of ω
such that each set ai has density 1/(N + 1). Now let H := {x ∈ 2ω :
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∃∞i(x(i) = 1)}. For x ∈ H let ⟨nx
k : k < ω⟩ enumerate all integers

n such that x(n) = 1. We define a function φ : H → 2ω as follows:

φ(x)(k) :=
{

0, ∃i < (N + 1){nx
2k, n

x
2k+1} ⊆ ai

1, else.
For n ∈ ω let Mn := {x ∈ H : ∀k ≥ n(φ(x)(k) = 0)}. It is not hard
to see that for P ∈ {MA+

ε ,MA−
ε }, and each n we have Mn ∈ NP,

but M :=
⋃

nMn ̸∈ NP.
(> 0) In this case the meager set which is not nowhere dense lies directly

at hand.

Claim 6.4. The set Z+ is P-meager but not P-nowhere dense, for
P ∈ {MA+,MA−}.

The proof works for both forcings analogously. We only check it
for MA+ explicitly. For n ∈ ω we define the sets Nn := {x ∈ 2ω :
d+(x) ≥ 1/n}. Let n ∈ ω and p ∈ MA+ be fixed. We can easily
find q ≤ p such that d+(Aq) < 1/n. Such a condition q satisfies the
property ∀x ∈ [q](d+(x) < 1/n) and in particular [q] ∩Nn = ∅. This
proves that each set Nn is MA+-nowhere dense and so Z+ =

⋃
nNn

is MA+-meager. To see that Z+ cannot be MA+-nowhere dense it
is enough to check that each condition p = (s,Ap) ∈ MA+ contains
a branch x of positive upper density. Clearly, the rightmost branch
(i.e. x(i) = 1 ⇔ i ∈ s ∪Ap) fulfills this requirement.

□

Since subsets of P-meager sets are P-meager as well, P-meager and P-
comeager sets are P-measurable we get the following.

Corollary 6.5. The sets Z,Z∗ and Z+ are P-measurable, P ∈ {MA+,MA−}.

Our next goal is to compare different notions of measurability. Let P be
any tree-forcing. The statement

“Γ(P) ⇒ Γ(C), for each well-sorted family Γ”
is true for various tree-forcings adding Cohen reals e.g. Hechler forcing D,
Eventually different forcing E, a Silver like version of Mathias forcing T
introduced in [13, Definition 2.1.] and the full-splitting Miller forcing FM
[12, Definition 1.1.]. In fact, it appears reasonable enough to ask.

Question 6.6. Does each tree-forcing P adding a Cohen real, necessarily
satisfy Γ(P) ⇒ Γ(C), for each well sorted family Γ?

A partial answer to this question was given in [13, Proposition 3.1.]. We
restate the proposition in a slightly modified version, that will allow us to
generalize the result later on.

Proposition 6.7. Let X be a set of size ≤ ω and P be tree-forcing defined on
X <ω. Equip X with the discrete topology and X ω with the product topology.
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Let φ∗ : X <ω → 2<ω and φ : X ω → 2ω be two mappings that satisfy the
following conditions:

(1) φ∗ is order preserving and φ∗(⟨⟩) = ⟨⟩,
(2) φ is continuous,
(3) (∀p ∈ P)φ[p] is open dense in [φ∗(stem(p))],
(4) (∀p ∈ P)∀t ⊵ φ∗(stem(p))∃p′ ≤ p(φ∗(stem(p′)) ⊵ t).

Then Γ(P) ⇒ Γ(C), for each well-sorted family.

To understand why Proposition 6.7 is a partial answer to Question 6.6,
it should be noted that given P, φ as in the proposition and xG a P-generic
real, we have that φ(xG) is Cohen.

Theorem 6.8. Γ(MA+
ε ) ⇒ Γ(C), for each well sorted family Γ.

Proof. Our aim is to apply Proposition 6.7. To this end let H∗ := {s ∈
2<ω : |s−1({1})| is even } denote the set of all finite sequences with an even
number of 1′s. For s ∈ H∗ let ⟨nk : k < |s−1({1})|⟩ enumerate s−1({1}).
Observe that H∗ is dense in 2<ω. Now fix N ∈ ω and a partition {ai}i<(N+1)
of ω such that ε > 1/(N+1) and such that each set ai has density 1/(N+1).
We define the function φ∗ as expected. Let k ∈ ω and s ∈ H∗ be such that
2k < |s−1({1})|. We define:

φ∗(s)(k) :=
{

0, ∃i < (N + 1)({n2k, n2k+1} ⊆ ai)
1, else.

Let H and φ : H → 2<ω be defined as in the proof of Theorem 6.3 (2).
Now, given x ∈ H let ⟨nx

k : k < ω⟩ enumerate x−1{1}. Then, φ∗(x↾nx
2k) is

defined for each k and φ(x) =
⋃

k φ
∗(x↾nx

2k).
Note that the same argument used in the proof to show that MA+

ε adds
Cohen reals, gives us φ[p] = [φ∗(stem(p))]. Especially, condition (3) from
the proposition is fulfilled. It is straightforward to check that the other three
conditions are satisfied as well and since the set H is MA+

ε -comeager, we
can apply the proposition. □

7. MA+-measurability

In this section we examine MA+-measurability and give a generalization
of Proposition 6.7.
By Theorem 4.5 we know that MA+ adds Cohen reals. So, it seems reason-
able enough to try the same method used in Section 6 to prove Γ(MA+

ε ) ⇒
Γ(C), with the forcing MA+. However, in doing so one encounters the fol-
lowing problem. The coding from Theorem 4.5 used to generate the Cohen
real, uses information of the whole condition and does not depend solely on
the stem. To make it clear what we mean, we quickly explain how using the
proof of Theorem 4.5 one gets a coding function defined on a MA+-comeager
set.
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7.1. Construction of the coding function φ. Recall that we defined
in the proof of Theorem 4.5 families An := {Ai

n : i < 2(n+1)}, where
Ai

n := {k ∈ ω : k = i mod 2(n+1)}. Each An is a maximal antichain in
(Z+,⊆∗) and each set Ai

n has density 2−(n+1). Now we define Dn := {A ∈
[ω]ω : ∃i < 2−(n+1)(A ⊆∗ Ai

n)}. Then for each n ∈ ω and (s,A) ∈ MA(Z+)
there is B ∈ Dn such that (s,B) ≤ (s,A). This already implies that the set
D :=

⋂
Dn is MA(Z+)-comeager and thus it is enough to find a suitable

coding function φ defined on D instead of 2ω. First, note that for x ∈ D
we also must have the property (∀n∃!in(x ⊆∗ Ain

n )) and we abbreviate Ain
n

with An. So, we can define for x ∈ D two sequences ⟨ni : i < ω⟩ and
⟨mi : i < ω \ {0}⟩ as in the proof of Theorem 4.5. Finally, φ : D → 2ω is
defined as

φ(x)(i) :=
{

0, if x \ (mi+1 + 1) ⊆ Ami+1

1, else.
This definition of the coding function φ seems promising. However, when one
takes a close look at possible candidates for a corresponding φ∗, it becomes
clear that φ∗ cannot depend solely on the stem of a condition. Especially,
we cannot apply Proposition 6.7 as it is stated in Section 6. We have to find
a generalization like the following.

Proposition 7.1. Let X ,Y be sets of size ≤ ω, P,Q be tree-forcings defined
on X <ω,Y<ω respectively. Equip X ,Y with the discrete topology and X ω,Yω

with the product topology. Let φ∗ : P → Q and φ : X ω → Yω be two mappings
that satisfy the following conditions:

(1) φ∗ is order preserving and φ∗(1P) = 1Q,
(2) φ is continuous,
(3) ∀p ∈ Pφ[p] is Q-open dense in [φ∗(p)],
(4) ∀p ∈ P∀q ≤ φ∗(p)∃p′ ≤ p(φ∗(p′) ≤ q).

Then Γ(P) ⇒ Γ(Q), for each well-sorted family Γ.

The key difference is that φ∗ is a map from P to Q, instead of being
defined for finite sequences.
Before we turn to the proof of the proposition we investigate further if we
might apply it to MA+ and C. To this end we already have defined a MA+-
comeager set D and a coding function φ : D → 2ω satisfying φ(xG) is Cohen,
where xG is MA+-generic. We want to define φ∗ : MA+ → C. Let ẋG be
the canonical name for the MA+-generic real. For p ∈ MA+ let rp ∈ 2<ω be
maximal such that p ⊩ φ(ẋG) ⊵ rp and put φ∗(p) := rp. Observe that we
have the following properties:

• φ∗ is order preserving and φ∗((⟨⟩, ω)) = ⟨⟩,
• φ is not continuous,
• It follows from the proof that φ(ẋG) is Cohen, that conditions (3)

and (4) of Proposition 7.1 are satisfied.
This shows that we almost get Γ(MA+) ⇒ Γ(C), for any well-sorted family
Γ. In fact, the only time we need φ to be continuous is to ensure that the
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pre-image of a regular set Y ∈ Γ is again regular. So, if we change the
requirement of Γ of being well-sorted and instead assume that the family of
sets Γ is closed under pre-images of the φ constructed above we get:

Corollary 7.2. Let φ be defined as in the beginning of this section and Γ be
a family of sets closed under pre-images of φ. Then Γ(MA+) ⇒ Γ(C) holds.

Now we prove Proposition 7.1. The key step is the following lemma.

Lemma 7.3. Let P,Q, φ, φ∗ be as in the Proposition and Y ⊆ Yω. Define
X := φ−1[Y ]. Assume there is p ∈ P such that X ∩ [p] is P-comeager in [p].
Then Y ∩ [φ∗(p)] is Q-comeager in [φ∗(p)].

Proof. We are assuming X ∩ [p] is P-comeager, for some p ∈ P. This implies
that there is a collection {An : n < ω∧An is P-open dense in [p]} such that⋂

nAn ⊆ [p] ∩X. W.l.o.g. assume An ⊇ An+1, for all n. Let q = φ∗(p). We
want to show that φ[X] ∩ [q] = Y ∩ [q] is Q-comeager in [q] i.e., we want to
find {Bn : n < ω} Q-open dense sets in [q] such that

⋂
nBn ⊆ Y ∩ [q]. Given

σ ∈ c<ω we recursively define on the length of σ a set {pσ : σ ∈ c<ω} ⊆ P
with the following properties:
1.: p⟨⟩ = p,
2.: ∀σ ∈ c<ω ⋃

i[φ∗(pσ⌢i)] is Q-open dense in [φ∗(pσ)],
3.: ∀σ ∈ c<ω∀i ∈ ω ([pσ⌢i] ⊆

⋂
k≤|σ|Ak ∧ pσ⌢i ≤ pσ).

Assume we are at step n. Fix σ ∈ cn arbitrarily and then put qσ = φ∗(pσ).
We first make sure that 2. holds. For this purpose, let {qi : i < c} enumerate
all conditions in Q below qσ. By condition (4) from Proposition 7.1 we can
find pi ≤ pσ such that φ∗(pi) ≤ qi. Since each Ak is P-open dense in [p] we
can find for each i < c an extension pσ⌢i ≤ pi such that [pσ⌢i] ⊆

⋂
k≤nAk.

This ensures that also 3. holds. Finally, we put Bn :=
⋃

{φ[[pσ]] : σ ∈ cn}.
We have to check that each set Bn is Q-open dense in [q] and

⋂
nBn ⊆ Y ∩[q].

So fix n ∈ ω and q′ ≤ q = φ∗(p). In the first construction step this q′ was
enumerated, say by i < c so q′ = qi and φ∗(p⟨i⟩) ≤ q′. Especially, φ∗(pσ) ≤
q′, whenever σ ∈ cn, σ(0) = i. By condition (3) from the Proposition φ[[pσ]]
is Q-open dense in [φ∗(pσ)]. This proves that Bn is Q-open dense in [q].
By construction of Bn+1 we know Bn ⊆ φ[

⋂
k≤n+1Ak] and hence⋂

Bn ⊆ φ[
⋂
n

An] ⊆ φ[[p] ∩X] ⊆ φ[p] ∩ Y ⊆ [q] ∩ Y.

□

Proof of the proposition. Let Y ∈ Γ be given and put X := φ−1[Y ]. Then
also X ∈ Γ, since Γ is well-sorted and φ is continuous. We now use the
lemma to show that for every q ∈ Q there exists q′ ≤ q such that Y ∩ [q′] is
Q-meager or Y ∩ [q′] is Q-comeager.

Observe that by conditions (1) and (4) we get φ∗[P] is dense in Q. Now
fix q ∈ Q arbitrarily and pick p ∈ P such that φ∗(p) ≤ q. By assumption X
is P-measurable, and so:
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• in case there exists p′ ≤ p such that X ∩ [p′] is P-comeager; put
q′ := φ∗(p′). By the lemma above, Y ∩ [q′] is Q-comeager in [q′];

• in case there exists p′ ≤ p such that X ∩ [p′] is P-meager, then apply
the lemma above to the complement of X, in order to get Y ∩ [q′]
be meager in [q′], with q′ := φ∗(p′).

□

Corollary 7.4. Let P,Q, φ∗ and φ be as in proposition. Then φ(xG) is
Q-generic, where xG is a P-generic real.

Proof of the Corollary. Fix an Q-open dense set D ⊆ Q. We want to show
that the conditions p ∈ P such that p ⊩ ∃q ∈ D(φ(xG) ∈ [q]) is dense in
P. To this end, fix a condition p ∈ P. Then, since D is dense in Q there is
q′ ∈ D below φ∗(p). By condition (4) of Proposition 7.1 there is p′ ≤ p such
that φ∗(p′) ≤ q′. By condition (3) we know that each condition r ∈ P forces
φ(xG) into [φ∗(r)] and hence p′ ⊩ φ(xG) ∈ [φ∗(p′)] ⊆ [q′].

□

In light of this one might also generalize Question 6.6 to the following.

Question 7.5. Let P,Q be two tree-forcings and assume P adds a Q-generic.
Does Γ(P) ⇒ Γ(Q) hold, for each well-sorted family Γ?

8. A model for Σ1
2(V+

ε ) ∧ ¬Σ1
2(C)

We construct a model in which the implication Γ(V+
ε ) ⇒ Γ(C) fails for

Γ = Σ1
2.

We recall that the shortest splitting node extending s ∈ 2<ω is denoted by
splsuc(s) (see Definition 1.1 (e)).

Lemma 8.1. Let ε ∈ (0, 1] and p ∈ V+
ε . Let φ̄ : Split(p) → 2<ω such that

φ̄(stem(p)) := ⟨⟩ and for every t ∈ Split(p) and j ∈ {0, 1},

φ̄(splsuc(t⌢⟨j⟩)) := φ̄(t)⌢⟨j⟩.

Let φ : [p] → 2ω be the expansion of φ̄, i.e. for every x ∈ [p], φ(x) :=⋃
n∈ω φ̄(tn), where ⟨tn : n ∈ ω⟩ is a ⊴-increasing sequence of splitting nodes

in p such that x =
⋃

n∈ω tn.
If c is Cohen generic over V , then

V [c] |= ∃p′ ∈ V+
ε ∧ p′ ⊆ p ∧ ∀x ∈ [p′](φ(x) is Cohen over V ).

Proof. For a finite tree T ⊆ 2<ω we define the set of terminal nodes Term(T ) :=
{s ∈ T : ¬∃t ∈ T (s ◁ t)}. Consider the following forcing P consisting of
finite trees T ⊆ 2<ω such that for all s, t ∈ T the following holds:

(1) If s, t ∈ Term(T ), then |s| = |t|.
(2) If s, t ̸∈ Term(T ) and |s| = |t|, then s⌢i ∈ T iff t⌢i ∈ T , i ∈ 2.

The partial order P is ordered by end-extension: T ′ ≤ T iff T ′ ⊇ T and
∀t ∈ T ′ \ T∃s ∈ Term(T )(s ⊴ t).
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Note P is countable and non-trivial, thus it is equivalent to Cohen forcing
C. Let pG :=

⋃
G, where G is P-generic over V . We claim that p′ := φ̄−1”pG

satisfies the required properties. It is left to show that:
(1) for every x ∈ [p′] one has φ(x) is Cohen generic, i.e., every y ∈ [pG]

is Cohen generic;
(2) p′ ∈ V+

ε .
For proving (1), let D be an open dense subset of C and T ∈ P. It is

enough to find T ′ ≤ T such that every t ∈ Term(T ′) is a member of D.
Let {tj : j < N} enumerate all terminal nodes in T and pick rN , so

that for every j < N , (tj⌢rN ∈ D). Then put T ′ := {t ∈ 2<ω : ∃tj ∈
Term(T )(t ⊴ tj

⌢rN }. Hence T ′ ≤ T and T ′ ⊩ ∀y ∈ [pG]∃t ∈ (T ′ ∩D)(t ◁ y).
Hence we have proven that

⊩C ∀y ∈ [pG]∃t ∈ D(t ◁ y),

which means every y ∈ [pG] is Cohen generic over V .
For proving (2), one has to verify that the resulting set of splitting levels

Ap′ has upper density ≥ ε. It is easy to see that given any condition T ∈ P
and n ∈ ω one can always find an end-extension Tn ≤ T such that

Tn ⊩ ∃k < ω

( |Ap′ ∩ k|
k

≥ ε− 2−n
)
.

□

Proposition 8.2. Let Cω1 be an ω1-product with finite support and let G
be Cω1-generic over the constructible universe L. Then, for every ε ∈ (0, 1]

L(R)L[G] |= “All Onω-definable sets are (V+
ε )-measurable” ∧ ¬Σ1

2(C).

Proof. The argument is the same as in the proof of [2, Proposition 3.7]. Fix
ε ∈ (0, 1]. Let for α ≤ ω1 Cα denote the forcing adding α Cohen reals. Let
G be Cω1-generic over L.

Let X be an Onω-definable set of reals, i.e. X := {x ∈ 2ω : ψ(x, v)} for a
formula ψ with a parameter v ∈ Onω, and let p ∈ V+

ε . We aim to find q ≤ p
such that [q] ⊆ X or [q] ∩X = ∅.

We can find α < ω1 such that v, p ∈ L[G↾α]. Let φ : [p] → 2ω be as
in Lemma 8.1. Let c = G(α) be the next Cohen real and write C for the
α-component of Cω1 . We let

b0 =
q
J(ψ(φ−1(c), v))KCα = 0

y
C and b1 =

q
Jψ(φ−1(c), v))KCα = 1

y
C.

Then, by C-homogeneity, b0 ∧ b1 = 0 and b0 ∨ b1 = 1. Hence, by applying
Lemma 8.1, one can then find q ≤ p such that q ⊆ b0 or q ⊆ b1 and for every
x ∈ [q], φ(x) is Cohen over L[G↾α]. We claim that q satisfies the required
property.

• Case q ⊆ b1: note for every x ∈ [q], φ(x) is Cohen over L[G↾α], and so
L[G↾α][φ(x)] |= ψ(φ−1(φ(x)), v). Hence L[G] |= ∀x ∈ [q](ψ(x, v)),
which means L[G] |= [q] ⊆ X.
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• Case q ⊆ b0: we argue analogously and get L[G] |= ∀x ∈ [q](¬ψ(x, v)),
which means L[G] |= [q] ∩X = ∅.

Moreover in L[G] it is well-known that Σ1
2(C) fails (see [3, Theorem 5.8] and

[1, 6.5.3, p. 313]). Hence in L[G] all Onω-definable sets are V+
ε -measurable,

but there is a Σ1
2 set not satisying the Baire property. As a consequence, in

particular we obtain L(R)L[G] |= Σ1
2(V+

ε ) ∧ ¬Σ1
2(C). □

We conclude this section by summarizing our results from Sections 6,7
and 8.

P MA+
ε MA+ V+

ε

IP = NP ✗ ✗ ✓

Γ(P) ⇒ Γ(C) for all Γ Γ = P(ω) Σ1
2(V+

ε ) ̸⇒ Σ1
2(C)
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