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Abstract. We extend a theorem of Todor¢evié: Under the assumption (K)
(see Definition 1 11),

5 any regular space Z with countable tightness such that
Z" is Lindeldf for all n € w has no L subspace

We assume p > w; and a weak form of Abraham and Todorcevi¢’s P ideal di
chotomy instead and get the same conclusion Then we show that p > w; and the
dichotomy principle for P ideals that have at most X; generators together with
X do not imply that every Aronszajn tree is special, and hence do not imply (K)
So we really extended the mentioned theorem

1. Introduction

A regular topological space X is an L space, if it is hereditarily Lindel6f
but not separable The following theorem is a classical fact about L spaces

THEOREM 1 1 (Szentmiklossy [13])  Assume MAy,, and let Z be a com
pact space with countable tightness Then Z has no L subspaces
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2 H MILDENBERGER and L. ZDOMSKYY

Using similar techniques as in [11], Todorcevi¢ extended Theorem 11 to
the following:

THEOREM 1 2 (Todorcevi¢ [16, Theorem 7 10]) X follows from (K)

The principle (K) follows from MA,, , Martin’s Axiom for w; dense sets,
and it implies that all Aronszajn trees are special, see [16, Remarks 7 16|
We will review the mentioned principles at the end of this section

We prove that the conclusion of Theorem 1 2 holds under another as
sumption (see Statement 1 12):

THEOREM 1 3 X follows from p > w1 and WPID

Let us note that neither p > w; nor WPID alone are sufficient in The
orem 1 3: as it was noted in [11, p 266]|, strong L spaces remain so in all
forcing extensions V' such that P has the Knaster property, which means
that for any A € [P]*! there exists a centred subcollection B € [A]*' There
is a Knaster forcing increasing p WPID is consistent with CH, and under
CH there are many constructions of regular topological spaces X all of whose
finite powers are L spaces (i e strong L spaces)

In the light of Theorems 1 2 and 1 3 it is natural to ask about the relations
between MA,, and the conjunction of p > w; and WPID Theorem 1 4 below
describing such relations is the main result of this paper

THEOREM 14 The following is consistent: PID (w; generated) and
p > wi, X, and there is a nonspecial Aronszajn tree  Therefore, PID (w;
generated) and p > wy does not imply (K)

If we assume the existence of a supercompact cardinal then the same is
true about the (full version of ) PID

Thus Theorem 1 3 adds more cases as compared with Todorcevié¢’s The
orem 12 In the other direction we have the following consequence of [15,
Theorem 7|, whose conclusion resembles WPID (w; generated)

THEOREM 15 MA,, implies that for every ideal Z on an uncountable
set S with w1 many generators, either there exists T € [S]" locally in T, or
there exists J € [Z]** such that \JJ' & I for any infinite J' C J

However, the following question remains open

QUESTION 1 6 Let P be one of the statements MA,, and (K), and Q
be one of WPID (w;y generated), WPID, PID (w; generated), PID,,, Does P
imply Q7

Since MA,,, does not put any upper bound on b, the following theorem
shows that MA,,, does not imply PID

THEOREM 1 7 (Todorcevi¢ [17]) PID implies b < wo

For the reader’s convenience we write a complete proof of Theorem 17
at the end of this section, which seems to be not available elsewhere
Theorems 1 1 and 1 2 arose from the following classical fact:
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L SPACES AND THE P IDEAL DICHOTOMY 3

THEOREM 1 8 (Kunen [11]) Assume MA,, If X is an L space, then
some of its finite powers is not hereditarily Lindelof

Theorems 1 3 and 1 2 imply the following statement, which extends The
orem 1 8:

COROLLARY 1 9 Assume that (p > w1 and WPID) or MA,,, Then every
L space of size w1 has a non Lindeldf finite power

Now we recall the relevant combinatorial principles

A family J of infinite subsets of w is cenired, if the intersection of any
finite subfamily of J is infinite We standardly denote by p the smallest size
of a centred subfamily of [w]” without infinite pseudo intersection

DEFINITION 1 10 Let S be an uncountable set and let [S]<* = KU K}
be a partition Then this is called a ¢ ¢ ¢ partition if all singletons are in Ky
and K is closed under subsets and every uncountable subset of Ky has two
elements whose union is in Ky

DEFINITION 1 11 The principle (K) (see [16, Ch 7]) says: For any c c ¢

partition (S, Ko, K1) there is an uncountable H € S such that [H]* € Ko If
we replace 2 by the finite number m in the dimension (still partitioning into
two parts) we get (KCp,)

It is easy to see that (IC) implies also p > wy: Given a centered subset F
of [w]” of size w1, take Px from Section 3 and partition [Pr]~* = Ko U K7,
{po,p1,---,pn} € Ky if there is an upper bound on thisset Thisisaccc par
tition and any uncountable homogeneous set will give a pseudo intersection
to an uncountable part of F, and hence, since F can assumed to be C*
descending, to all of F

An ideal Z on a set S is a P ideal, if for every countable J C Z there
exists [ € T such that J C* [ for all J € J We say that T" C S is locally in
(resp orthogonal to) the ideal Z, if [T]* C T (resp 2(T)NT = [T]™*) We
consider the ideals containing all singletons We shall use the following two
statements:

WPID: For every P ideal on an uncountable set S, either S contains an
uncountable subset locally in Z, or an uncountable subset orthogonal to Z

PID: For every P ideal on an uncountable set S, either S contains an
uncountable subset locally in Z, or S can be decomposed into countably many
pieces orthogonal to 7

The principle PID (abbreviated from P ideal dichotomy) was introduced
in [17] We write PID,, for the restriction of PID for sets S of size at most &
and we write PID (w; generated) for the the restriction of PID for P ideals
7 with at most w; generators Similarly with WPID (here “W” stands for
“weak”), but WPID,, is obviously equivalent to WPID,,, for every cardinal
k  The WPID (w; generated) was used in [6] in context of S spaces The
principle PID follows from PFA and is consistent with CH, see [17] PID,,
contradicts the existence of Jensen’s square sequence at we (ie O, ), and
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4 H MILDENBERGER and L. ZDOMSKYY

thus any of its consistency proof must involve large cardinals, see |17, p 258]|
Therefore MA does not imply PID,,

Finally, we present the proof of Theorem 17 It is a direct consequence
of Lemmas 112 and 1 13 below Lemma 1 12 is modelled after the second
paragraph of [17], while the proof of Lemma 1 13 can be found in [9, p 57§]
For the reader’s convenience we give a complete proof of Lemma 1 12, which
seems not to be available elsewhere Given a relation R on w and x,y € w®,
we denote the set {n € w: z(n) Ry(n)} by [zRy]

Let k, A be regular cardinals A (k,\) pregap <{f04}a<n’{gﬁ}ﬁ<)\> is a
pair of transfinite sequences (f, : @ < k) and (gg : § < A) of nondecreasing
sequences fq, gg of natural numbers such that fo, =* fo, =* gg, <* g, for
all o] S ag < kand B = P2 < A Asusual, f =* g means that the set [f > ¢]

is finite A (k, A) pregap is called a (k, \) gap, if there is no h € w* such that
fa ¥ h <* gg for all a, 3

LEMMA 1 12 Suppose that there ezists a (k,\) gap such that k is regular,
b>k>wi, and A = wy Then PID) fails

PROOF Assume that such a gap ({fa}
to our claim, PID) holds Set

{9[5}/@</\> exists and, contrary

a<rk’

I:{Ae[)\]w: EIaEvaZaVnGw(HBEA: [fy>gg]Cn}|<w>}.

We claim that Z is a P ideal Indeed, let {4;: ¢ € w} be a sequence of
mutually disjoint elements of Z, a; be a witness for A; € Z, and a = sup {«; :
ic€w} FixyZa Let Bi(y)={B€A;: [fy>gp] Ci} Then B;(y)is a
finite subset of A; by the definition of Z Since k < b, there exists a sequence
(B; : i € w) such that each B; is a finite subset of A4; and for every v = a,
Bi(vy) C B; for all but finitely many 4

Set A= U,;c, Ai\ Bi and fix n €w and v 2 a If € A; is such that
[fy > gs] Cnandi=n, then § € Bi(y) Let j, 2 n besuch that B; D B;(7)
for all i = j, Then for every i 2 j, the set {3 € A4;: [f, >gs] Cn} is a
subset of B;, and hence

{peAa: [f,y>g/g]Cn}C{ﬁ€ UAW [f7>g/g]Cn}.

i<jy

Since v 2 a = sup;¢,, @, the latter set is finite

Applying PID, to Z we conclude that one of the following alternatives is
true:

1 There exists S € [A]** such that [S]* € Z Passing to an uncountable
subset of S if necessary, we can assume that S = {f¢ : { <wi} and f¢ < 3,
for any £ <n <w; For every £ we denote by S¢ the set {fc : ¢ < ¢}
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L SPACES AND THE P IDEAL DICHOTOMY 5

By the definition of Z for every & there exists a¢ € k witnessing for S¢ € 7
Let oo =sup{ag¢: £ <wi} There exists n € w such that the set C' = {f <wi:
[fa > 955] C n} is uncountable Let &y be the w th element of C' Then
a 2 ag, and for all £ € C'N&y we have [f, > ggg] Cn On the other hand,
Se¢, € T, and hence there should be only finitely many such £ € &, a contra
diction

2 A= Umew Sm such that S, is orthogonal to Z for all m € w This
means that for every m € w and o € s there exists 7, > a and n,, o € w such
that [f,, > gg] C num,q for all B € S, There is no (k,w) gap for kK < b (see
the proof of Theorem 29 8 on page 578 in [9]), and hence we assume that
cf (\) > w Therefore there exists m € w such that S, is cofinal in A Let
n € w be such that the set J = {a S I n} is cofinal in K For every
k let h(k) = max { f,,(k) : @« € J} From the above it follows that [gs < h]
C nfor all 8 € Sy, and hence h contradicts the fact that ({fa},- {gﬁ}ﬁ</\>
is a gap U

LEMMA 113 If b > wy then there is an (w2, ) gap for some uncount
able A

2. Proof of Theorem 1.3

We recall that a family V of subsets of a set X is point finite, if for every
x € X theset {V €V :x eV} is finite The following statement could be
classified as folklore

LEMMA 2 1 If a topological space T’ has an uncountable point finite fam
ily of open subsets, then it is not hereditarily Lindeldf

PROOF Assume that T is hereditarily Lindelof and there exists an un
countable point finite family V = {V,, : @ < w1} of open nonempty subsets
of T' Then we can construct a transfinite sequence (ag) of countable

ordinals such that for all g < wy,

U Vo = U Va.

azsup {ag: <6} ag>aZsup {ag: £<B}

B<w

Let ¢ =sup{a, : n € w} From the above it follows that V¢ C |J Va

for all n € w, and hence any point t € V¢ is a witness for the family {V :
a < wy} being not point finite, a contradiction O

Ant1>aZan

Let us recall some definitions A family U of subsets of a set X is an w
cover (resp 7 cover) of X [7],if X ¢ U and for every finite F' C X the set {U
€U : F CU} is nonempty (resp for every z € X the set {U el : x ¢ U}
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6 H MILDENBERGER and L. ZDOMSKYY

is finite ) It is clear that U is a 7 cover of X if and only if V={X\U:
U € U} is point finite A topological space X is called an ¢ space (resp a
v space) [7], if any open w cover of X contains a countable w subcover (resp
v subcover) It is easy to check [7] that X is an € space iff all finite powers
of X are Lindel6f We recall from [5] that a ¥ product of a family {X,
a € A} of topological spaces with base point (pa),c4 is the dense subspace
> of HaeA X, consisting of those points x for which x4, = p, for all but
countably many o’s In what follows we shall be interested in the X product
of w1 many unit intervals with the base point (0), and we denote this space
by ¥, The space ¥, has countable tightness [5]

Let B be the standard base of the topology of [0, 1]“? consisting of prod
ucts Ha€w1 Uy, where each U, is an open interval with rational end points,
and U, = [0, 1] for all but finitely many «

Given any topological space X with a base C, let us denote by Zx ¢ the
set of all at most countable point finite subfamilies of C

LEMMA 22 Let Vo, Vi, Va be three models of ZFC such that wVO = wYI

—wl ,VoC Vi C Vs, and w NV =w’NVy Then there is no € subspace
X e Vy of ¥y, containing a dense subspace Y € Vo with the following prop
erties:

(1) Y is an L subspace in Vo (and hence in Vo and V1 );
(ii) Vo F “Zy gy is a P ideal’;
)

(iii) Vi E “WPID is true for YB\Y”7

(iv) Vo E “Bvery countable w cover of Y by elements of B|Y contains a
v subcover”; and
(v) for every « there exists x € Y such that zo =1

PROOF Assume that such X and Y exist Let us note that 80 = B and
(BIY) = (BIY)"" = (B]Y)"?, where B|Y = {BNY : Be B} Indeed, the
first equality follows from the fact that there are no new reals in Vy, while the
second is a consequence of Y € Vi Therefore we can simply write B|Y in what
follows For every a € wy let U, = pr;(1/2,1]NY and O, = pr;'[0,1/2)
NX  Applying (in Vi) WPID to the P ideal (Zypgy )" restricted to the
family {U, : a € w1}, we conclude that one of the subsequent alternatives
holds

1 There is an uncountable family W € V; of {U, : a € w1} such that

each countable subset U € Vy of W belongs to (IY,B‘Y)VO Since V] and Vj

have the same reals, this means that in Vi, W is a point finite family of open
subsets of Y of size w; Applying Lemma 2 1, we conclude that Y is not an
L space in Vi, a contradiction
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2 There exists A € [wi]** NV such that no infinite subset of {U, :

a € A} belongs to (IKBD/)VO {Oq : a € A} is an w cover of X, and hence
there exists a countable I C A, I € V3, such that {O, : a € I} is an w cover
of X Since A € V1 and le = wYQ, there exists a countable subset I’ € V; of
A containing I, and therefore I’ € Vi Consequently, {O, NY : a €'} is a
countable w cover of Y in V), and hence it contains a countable v subcover
This means that there exists a countable subset I” € V of I’ such that
{0, NY : a€ 1"} isa~ cover of Y, and hence {U, : a € I"} € (IY’B‘Y)VO,
which contradicts the choice of A O

COROLLARY 2 3 Assume that WPID holds Then there is no & space
X with countable tightness containing an L subspace Y with the following
properties:

(1) Zy+ is a P ideal, where T is the topology of Y ; and

(i1) Y is a v space

PROOF Assume that that there are such X and Y Without loss of
generality [10], Y = {yo : @ € w1}, Y3 := {ya: o < [} is closed in Y for all
B <wi, and Y is dense in X Set Fj = cly(Y3) From the above it follows
that FsNY =Yz Since X has countable tightness, X = Js_,,, Fp

For every a < w; there exists an open neighbourhood U, of y, such that
clx(Uy)NFy =0 Let fo : X — [0,1] be a continuous function such that f|F,
=0and f(ya) =1, and f: X — [0,1]** be the diagonal product of f,’s, ie
f(x), = fa(xz) Then f(X) and f(Y) fulfil all the conditions of Lemma 2 2
with V = Vy =V} = V5, a contradiction O

We recall that b is the minimal cardinality of an unbounded subset of w®
with respect to =* Tt is well known (and easy) that p < b

PrOOF OF THEOREM 1 3 Follows from Corollary 2 3 and the following
well known observations

Cramm 24 Let |[T| < b, F a family of subsets of T, and \V the family
of all at most countable point finite subfamilies of F Then V is a P ideal
on F

PROOF Let us fix any {V,, : n € w} CV There is no loss of generality to
assume that each V, is infinite Let V,, = {V,,, : m € w} be a bijective enu
meration of V,, Using the point finiteness of V,’s, for every t € T' find a num
ber sequence (mt(n))nEw such that ¢t € Vj, ,, for all n € w and m 2 my(n)

Since |T| < b, there exists a number sequence (m(n)) new Such that for ev

ery t € T the inequality my(n) < m(n) holds for all but finitely many n € w
A direct verification shows that V = {me m 2 m(n)} €¢Vand V, C*V
for all n € w, which finishes our proof O

CLAIM 2 5 Ewvery countable w cover V of a set T' of size |T'| < p contains

a vy subcover
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PROOF Since V is an w cover, the family {{V €V:z2€V}: zeT}
is a centred family of infinite subsets of V of size < p, and hence it has a
pseudo intersection V' Then V' is a v cover of T O

Proor oF COROLLARY 19 Follows from Theorem 1 3 and the follow
ing fact: For every L space T of size w; there exists a continuous surjection
f: T — Z onto some L space Z of countable tightness The latter can be
proved using the same arguments as in the second paragraph of Corollary 2 3

O

3. Proof of Theorem 1.4

Todor¢evié’s result, that (K) implies that all Aronszajn trees are special,
gives the second part of the theorem For the proof of the first part, we build
on a deep work by Hirschorn [8] and on a preservation theorem by Abraham
[1] and just add an epsilon to it

The following notion was introduced by Shelah for his proof [12, Ch IX]
that the non existence of Souslin trees does not imply that all Aronszajn trees
are special

DEFINITION 3 1 [12, Definition IX 4 5] We call a forcing notion P (7', 5)
preserving if the following holds: T is an Aronszajn tree, S € wi, and for ev
ery A > (2‘P‘+N1)+ and countable N < (H()\), E) such that P,T,S € N and
d=NNuw; ¢85, and every p € N NP there is some g = p (bigger conditions
are stronger) such that

(1) ¢ is (N,P) generic; and

(2) forevery z € Ty, if (1 € A — (Jy <rz)y € A) forall Ae Z(T)NN,
then ¢ lI-p (z € A—Fy<aye A) for every P name A € N such that IFp A
cT

Let F be a centred family of infinite subsets of w of size |F| = w; For such
an F we let P = (P,<p) be defined by P = { (s, F) : F € [F]™“, s € [w]**}
(t,G)zp (s, F)ift2s,t~sCNFand G2 F

LEMMA 3 2 Let T be an Aronszajn tree, S =0, and F be a centred sub
family of [w]” of size w1 Then the forcing Pr is (T, S) preserving

PROOF Let F ={aq: a <wi} and g = (go : @ < wi) be a sequence of
infinite subsets of w such that g, is a pseudo intersection of ag, 8 < a Fix
an N < (H(A\),e)withT, S, P,g,p=(s,F) € N Let 6 = NNw; We take
§* =sup{p(d)+1: ¢ €N, ¢(d) is an ordinal < w; }

We show that ¢ = p is as desired Let ¢1 = ¢q, ¢1 € P We show that
there is some ga > q; such that -z & A or ol By <pz)(y € A) 1If
g lFxé A then we can choose ¢ = q1 Otherwise there is ¢3 = qi,
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L SPACES AND THE P IDEAL DICHOTOMY 9

g3lFx e A We take any ¢4 = (s(q4),F(q4)) 2 g3 and show that ¢4 can be
extended to a condition that forces y € A for some y <p 2 Then by density
it follows that g3 forces (r € A — (Jy <r x)y € A)

The proof is an adaption of the steps given on pp 456 457 in [12] We
define a function f: T — w U {w;} as follows:

f(y) =sup {a € wy : there are pairwise disjoint nonempty finite ¢;, i € w,
t; C go such that Vi 3F;; (ti U s(q), FLZ-) Iy e A)}

f € N, as it is defined by a first order formula in (H()), €) with parameters
in N Let

A ={yeT: fly) =w}.

A* € N is a set, not just a name for a set
Let f*: w1 — w; be defined by

@) =sup{f(y) +1:y €T fly) <wi}.

By the definition of 6*, f*(d) < ¢* The condition ¢4 exemplifies that
f(z) = 0%, since we can take witnesses t; that are just pairwise disjoint
nonempty finite subsets of (| F'(q4) N ge, where & > §* is any countable ordi
nal above all 7 such that a, € F(q4) So f(x) =wi and z € A* Now we use
the hypothesis and get some y <p z, y € A* Say the highest index in one
of the members of F(q4) is g Then since f(y) = w; there are oy > v and
pairwise disjoint nonempty finite ¢;, ¢ € w, all subsets of g,,, such that for
every ¢ for some F ;

(tiUs(qu), Fr;) IFy € A

But then some of the t; is not only a subset of the pseudo intersection
9oy & [ F(qq) but really a subset of () F'(q4) and hence for this ¢; we have

(ti U 3(Q4)7F1,i U F(q4)) IFy e A and (ti U s(qq), Fi; U F(Q4)) > qa [l
Now we prove Theorem 14 Assume that GCH holds in the ground
model We will use an iterated forcing construction <IP’B,@Q : B S we,a < wa)
which takes care about all posets of the form Pz defined before Lemma 3 2,
along the odd a’s This way we shall guarantee p > w; in VP2  Concern
ing even a’s (those of the form 2 - (), Q, is the P, name of the Abraham
Todorcevic forcing Qr, (again [2, p 172|) corresponding to an w; generated
P ideal I, in VPo This is a proper wy ¢ ¢ forcing of size wo (provided GCH
holds in the ground model) which does not add reals and such that the P
ideal dichotomy for I, holds in the extension [2] This forcing satisfies the
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10 H MILDENBERGER and L. ZDOMSKYY

wg properness isomorphism condition by |2, Lemma 3 6], and hence the re
sulting poset P, has the wa c ¢, see [12, Ch V| Combining Lemma 3 2 with
the two deep results below, we conclude that every non special Aronszajn
tree in V remains non special in V2

THEOREM 3 3 (Hirschorn [8]) Let T be an Aronszajn tree and let S = ()
The Abraham Todorcevié forcing is (T,S) preserving

THEOREM 3 4 (Abraham [1]) If every iterand Q, is forced to be (T, S)
preserving, then the countable support iteration is (T, S) preserving

A standard book keeping of all possible w; generated P ideals allows us
to get PID (w; generated) in VFv2 1In order to get X in addition, we need
to be a little bit more careful when we set up our book keeping We use an
auxiliary Lemma 3 5 for this

A subset C of an ordinal is called w; closed if it is closed under increasing
limits of cofinality w1 An w; club (in we) is an unbounded subset (of wa)
that is wy closed A set is called wy stalionary if it intersects every wi club

LEMMA 35 Let (]P’g,@a : B S wa, 0 < ws) be a countable support iter

ation of proper iterands such that CH holds in V'8 for all B < wa, p > wy

holds in VF2 P, has the wy ¢ ¢, and the iterands at even stages force the
P ideal dichotomy for ideals with w1 generators

Let 3 < wy and let X € VF8 be a subspace of ¥, of size w1 Let 9(X)
= “Ixpx 15 a P ideal, and each countable w cover of X contains a

subcover” Then the set of all those a < wo such that Ve (X)) is wy closed
and unbounded in wo

PrOOF The closure under increasing w; sequences is proved as in model
theory Just note that there are no new names for countable w covers in the
limit model Now for the unboundedness: Let ag be given We choose a

continuously increasing sequence «;, ¢ < wi, such that in VP%‘H, Px |x is
a P ideal and each countable w cover of X in VFe: (by the CH there are at

most wi tasks here) contains a v subcover Then ay,, := sup,.,, «; is in the
set g

By [4, Lemma 5 2| for every subspace Y of ¥, of size w; in VF«2 there
exists # <wp and a Pgname Y of Y Let Y,, o < wg, enumerate all such

subspaces in VF»2 and assume that Y, has a Pg, name Y, (which is also a
P, name for all € € [3,,ws]) Let Cy be an wy club of £ = (3, such that ¥(Yy)
holds in V¢ (as in the lemma before) We divide {a < ws : cof (a) = w1 }

into wy pairwise disjoint w; stationary sets (as in [9, p 94]) (Sa: @ < wa)
Now, if our book keeping was arranged in such a way that the P¢ name
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L SPACES AND THE P IDEAL DICHOTOMY 11

sza B|Ya1 is used for some & = &, € Sy N [Ba,w2) N Cq, the extension VFe

has the required properties Indeed, assume that in V2 there exists an

space X of countable tightness and an L subspace Y of X By the same argu

ment as in the proof of Corollary 2 3 we can assume that X C X, |Y] = wi,
and for every B € w; there exists y € Y such that yg =1 Let oo € wo be
such that Y =Y, Now Vp = V¥, Vi = VPt Vy=VPFer X and Y ful

fil the premises of Lemma 2 2, a contradiction This finishes the proof of
Theorem 1 4 O

4. Applications in C)-theory

The properties of a topological space X appearing in Section 2 have coun
terparts among the properties of C,(X), the space of all continuous functions
f: X — R endowed with the topology of pointwise convergence Namely:

e A regular space X is a 7 space if and only if Cp(X) has the Fréchet
Urysohn property, see [7]  We recall that a topological space Y has the
Fréchet Urysohn property if for every y € Y and A C Y such that y € A,
there exists a sequence of elements of A convergent to y

e The existence of an uncountable point finite family of open subsets of
a topological space X is equivalent [14] to the existence of a copy in Cp(X)
of the one point compactification avw; of wy with the discrete topology

e The methods of [3| imply that for a perfectly normal (= every open sub
set is F,;) space X, the ideal Py ; is a P ideal iff Cp(X) has the property a;
(Here 7 denotes the topology of X ) Recall that a topological space Y has
the property aq at a point y € Y, if for every countable family A of conver
gent to y sequences and for each A € A there exists B4 € [A]= such that
Uaca(A\ Ba) converges to y Y has the property aq, if it has this property
at every y € Y

Therefore it could be possible to apply some ideas from previous sections
to the space of continuous functions We illustrate this by giving a simple?
(modulo the equivalences above) proof of Corollary 1 9 based on the following
straightforward observation: A topological space Y has the property a; at a
point y € Y if and only if the family of all countable subsets of Y converging
to y constitutes P ideal

LEMMA 4 1 (PID) Let Y be a topological space If Y has the property
a1 at a point y €Y, then either Y contains o copy Z of awy with y being
the unique non isolated point of Z, or' Y \ {y} can be written as a countable

e
Te for every Pe generic filter G¢ the interpretation in 5y coincides with the Abraham

Todor¢evi¢ forcing corresponding to the P ideal Iy, g|y, computed in V[G¢]
2The price for the simplicity of that proof is that we use PID there instead of WPID
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union | J, e, Yn such that for every n there is no convergent to y sequence of
elements of Y,

If, in addition, Y has the Fréchet Urysohn property at y, then none of
Y, ’s contains y in its closure, 1 e Y has countable pseudo character at y

O
Applying Lemma 4 1 to C,(X), we obtain the following

PrOPOSITION 4 2 (PID) Let X be a Tychonov space If C,(X) has the
property oy and the Fréchet Urysohn property, then either C,(X) contains a
copy of awr, or X is separable

ProoF If Cp(X) does not contain a copy of awy, then Cp(X) must have
countable pseudo character by Lemma 4 1 The above means that we can find
a sequence (F,,ep), ., where F, € [X]** and &, > 0, such that a continu
ous function f: X — R coincides with 0 provided ‘f(a:)‘ <epforall x € F,

and n € w Together with regularity of X this clearly implies that (J, ., F
is dense in X 0

ALTERNATIVE PROOF OF COROLLARY 1 9 Assume, to the contrary, that
X is an L space of size wy and, in addition, X is an € space Since p >
w1, Cp(X) has the Fréchet Urysohn property (every open w cover contains a
countable w subcover by the definition of an € space, and every open w cover
of X contains a 7 subcover by Claim 2 5, and therefore X is a = space) In
addition, C},(X) has the property oy by Claim 2 4 and [3, Theorem 11| From
the above it follows that X fulfills the premises of Proposition 4 2 Since X
is an L space, it is not separable, and hence Cp(X) contains a copy of aw;
Therefore there exists [14] an uncountable point finite family of open subsets
of X, which contradicts Lemma 2 1 O
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