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Abstract. We investigate two variants of splitting tree forcing, their ideals
and regularity properties. We prove connections with other well-known no-
tions, such as Lebesgue measurablility, Baire- and Doughnut-property and the
Marczewski field. Moreover, we prove that any absolute amoeba forcing for
splitting trees necessarily adds a dominating real, providing more support to
Hein’s and Spinas’ conjecture that add(ISP) ≤ b.

1. Introduction

Trees and their associated forcing notions have been a crucial ingredient in set
theory of the reals, specifically in questions concerning cardinal characteristics and
regularity properties. The most popular such forcings are certainly S, M, V, L
and MA (Sacks, Miller, Silver, Laver and Mathias), but also other notions have
played an important role; among them, there is some tradition in studying tree-
forcing adding an ω-splitting real1. Spinas [14] introduced splitting tree forcing SP,
which has recently been studied also in [6]. We also investigate another form of
splitting-tree forcing (called FSP, Definition 1.3) somehow related to Spinas’ one.

A notion of an ideal of small sets can be introduced when dealing with any
tree-forcing notion, as specified in 3.1. For any such ideal one can associate the
common cardinal characteristics, namely the covering, the additivity, the cofinality
and the uniformity number. Furthermore, a notion of measurability (and weak-
measurability) generalizing the well-known Lebesgue-measurability and Baire prop-
erty can be established when dealing with any type of tree-forcing notion (Defini-
tion 3.1). It is well-known that in Solovay model any subset of the real line is
P-measurable, for a large variety of tree-forcing notions P, including SP and FSP.

In the analysis of the associated additivity numbers a crucial role is played by
the so-called amoeba forcings, which are posets adding generic trees, see Definition
3.6. In our paper we address a question raised in [6] by Hein and Spinas related
to the additivity number of the ideal ISP and the amoeba forcing for SP. Even if
we do not obtain a complete answer to the conjecture posed by Hein and Spinas,
in Section 3, Proposition 3.7 and in Remark 3.9 we give more evidence to support
such a conjecture, by showing that not only the natural amoeba for SP adds a
dominating real, but that any absolute amoeba necessarily adds a dominating real.

Section 4 contains a brief digression on Silver forcing, and connections between
Silver-amobea and Cohen reals, in line with [15].

In Section 5, we show some differences between the ideal IFSP and the ideal of
null sets.

1An ω-splitting real is a real x in the forcing extension such that for any set {rn : n < ω} in
the ground model that contains infinite sets rn, for each n we have that rn ∩ x and rn ∩ xc are
both infinite.
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Our results in section 6 pertain only to the fat splitting forcing. We show that
for any f -slalom in the ground model there is an FSP-name that evades it. This is
a strong negation of the Sacks property.

We prove in section 7 that actually the weak form of SP- and FSP-measurability
for all sets of reals can be reached in a much simpler model, namely the L(R) of
the forcing extension obtained by a countable support iteration of Cohen forcing.
We conclude with an application of Shelah’s amalgamation of forcing method to
fat splitting trees. Using evasion for slaloms of width n 7→ 2kn, k ≥ 1 we separate
the regularity properties of FSP from others.

In the remainder of this introduction, we set up our notation and end with one
property of fat splitting.

Definition 1.1.
(a) Let X be a non-empty set. We let X<ω = {s : (∃n ∈ ω)(s : n → X)}.

The set X<ω is partially ordered by the initial segment relation E, namely
s E t if s = t�dom(s). We use / for the strict relation. For s ∈ X<ω we let
dom(s) = |s| be its domain.

(b) A set p ⊆ 2<ω is called a tree if it is closed under initial segments, i.e. t ∈
p ∧ s E t→ s ∈ p. The elements of p are called nodes.

(c) For a node s ∈ p we let Sucp(s) = {t ∈ p : (s / t ∧ |t| = |s| + 1)} be the set
of immediate successor nodes. A node is called a splitting node if it has two
immediate successors in p.

(d) A tree p is called perfect if for every s ∈ p there is a splitting node t D s.
(e) We write Split(p) for the set of splitting nodes of p.
(f) For t ∈ p, we write splsuc(t) for the shortest splitting node extending t. When

t is splitting, then splsuc(t) = t.
(g) The stem of p, short stem(p), is the E-least splitting node of p.
(h) We define the splitting degree otp : Split(p)→ ω recursively as follows:

- otp(stem(p)) = 0
- for every i ∈ {0, 1} and t ∈ Split(p) with otp(t) = n, put

otp(splsuc(tai)) = n+ 1.
(i) For n ∈ ω let Splitn(p) = {t ∈ Split(p) : otp(t) = n} and Split≤n(p) = {t ∈

Split(p) : otp(t) ≤ n}.
(j) For n ∈ ω, let Levn(p) := {t ∈ p : |t| = n}.
(k) For t ∈ p we let p�t = {s ∈ p : s E t ∨ t / s}.
(l) For F ⊆ p we let p�F = {s ∈ p : (∃t ∈ F )(s E t ∨ t / s)}.

(m) For F ⊆ p we let ter(F ) = {s ∈ F : (¬∃t ∈ F )(s / t)}. This is the set of
terminal nodes of F .

(n) For each perfect tree p ⊆ 2<ω we have a canonical splitting and lexicographical
order preserving homomorphism

h : Split(p)→ 2<ω

that is defined by induction on n for arguments in Splitn(p) as follows
h(stem(p)) =∅

h(splsucp(tai)) =h(t)ai for t ∈ Split(p), i ∈ 2.
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(o) We let H̄ denote h−1 and we let its lifting H : 2ω → [p] be defined by H(f) =⋃
{H̄(f�n) : n < ω}.

(p) The body or rump of a tree p ⊆ 2<ω, short [p], is the set {f ∈ 2ω : (∀n)(f�n ∈
p)}.

Spinas [14] introduced splitting trees in order to analyse analytic splitting fami-
lies.

Definition 1.2. A tree p ⊆ 2<ω is called splitting tree, short p ∈ SP, if for every
t ∈ p there is k ∈ ω such that for every n ≥ k and every i ∈ {0, 1} there is t′ ∈ p,
t E t′ such that t′(n) = i. We denote the smallest such k by Kp(t). The set SP is
partially ordered by q ≤SP p iff q ⊆ p.

Of course, every splitting tree is perfect.
Now we introduce a relative of splitting tree forcing that has stronger splitting

properties.

Definition 1.3. A perfect tree p ⊆ 2<ω is called a fat splitting tree (p ∈ FSP) iff
for every t ∈ p there is k ∈ ω such that for every n ≥ k − 1 there is t′ ∈ Levn(p�t)
such that t′ ∈ Split(p). We denote the smallest such k by Kp(t). Again subtrees
are stronger, i.e., smaller, conditions.

Definition 1.4. Let X,S ∈ [ω]ω. We say S splits X if S ∩X and X \ S are both
infinite.

Proposition 1.5. The forcing FSP adds a generic real

xG =
⋃
{stem(p) : p ∈ G}

such that for any infinite set {{ni, ni + 1} : i < ω} in the ground model there are
infinitely many i such that

|xG ∩ {ni, ni + 1}| = 1.

Proof. We prove only the latter part. Let p ∈ FSP and {{ni, ni + 1} : i < ω}
and k ∈ ω be given. After possibly strengthening p we can assume | stem(p)| > k.
We take i such that ni ≥ Kp(stem(p)) − 1 ≥ k. Then there is s ∈ Split(p) such
that |s| = ni + 1. Assume that s(ni) = 0. There is sa1 ∈ Sucp(s). We let
q = p�sa1. The other case is symmetric. Since k was arbitrary, we have p 

(∃∞i)(|xG ∩ {ni, ni + 1}| = 1), as claimed. �

We do not know whether SP has the same property.

Question 1.6. Does SP add a real ẋ ⊆ ω such that for any infinite set {{ni, ni+1} :
i < ω} in the ground model there are infinitely many i such that |ẋ∩{ni, ni+1}| = 1?

Remark 1.7. (1) Any fat splitting tree is a splitting tree, and the function Kp in
the sense of the fat splitting is an upper bound to a function witnessing split-
ting. We use the same function symbol Kp for the forcing orders SP and FSP,
although the interpretation of the symbol depends on the underlying forcing
order. The technical treatment of the Kp is the same in both interpretations.

(2) For P ∈ {SP,FSP}, Kp in the respective meaning, Kp(s) ≤ Kp(t) for s E t.
(3) For P ∈ {SP,FSP} we have that Kp(t) = Kp(splsuc(t)) for every condition

p ∈ P and node t ∈ p.
(4) For P ∈ {SP,FSP}, Kp(t) ≤ Kq(t) for q ≤ p ∈ P and t ∈ q.
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Proof. We prove (2).
P = FSP This is seen as follows: Let s E t ∈ p. We choose witnesses for Kp(t), i.e.,

a sequence t̄ = 〈tn : n ∈ [Kp(t) − 1, ω)〉 such that t E tn, tn ∈ Levn(p) ∩
Split(p). Then, by definition this sequence t̄ witnesses Kp(s) ≤ Kp(t).

P = SP This time we take a sequence of tuples t̄ = 〈(tn,0, tn,1) : n ∈ [Kp, ω)〉 such
that tn,i D t, tn,i ∈ Levn(p) and tn,i(n − 1) = i for i ∈ 2. As in the item
above the sequence t̄ witnesses Kp(s) ≤ Kp(t).

Item (4) follows analogously because a witness t̄ for Kq(t) witnesses Kq(t) ≥ Kp(t).
�

2. Axiom A and dividing a condition into two

We provide some basic properties of FSP whose analogues for SP were proved by
Hein and Spinas [6]. In the beginning of the section we show that FSP has strong
Axiom A and that we can arrange lower bounds for the Kp values. We build on
Hein’s and Spinas’ techniques for splitting trees and develop them further, both for
SP and for FSP.

Definition 2.1. A notion of forcing (P,≤) has Axiom A if there are partial order
relations 〈≤n : n < ω〉 such that
(a) q ≤n+1 p implies q ≤n p , q ≤0 p implies q ≤ p,
(b) If 〈pn : n < ω〉 is a fusion sequence, i.e., a sequence such that for any n,

pn+1 ≤n pn, then there is a lower bound p ∈ P, p ≤n pn.
(c) For any maximal antichain A in P and and n ∈ ω and any p ∈ P there is

q ≤n p such that only countably many elements of A are compatible with q.
Equivalently, for any open dense set D and any n, p, there is a countable set
Ep of conditions in D and q ≤n p such that Ep is predense below q.

A notion of forcing (P,≤) has strong Axiom A if the set of compatible
elements in (c) is even finite.

Axiom A entails properness and strong Axiom A implies ωω-bounding (see, e.g.,
[11, Theorem 2.1.4, Cor 2.1.12]).

Definition 2.2. For P = FSP, we define a decreasing sequence of partial orderings
〈≤n : n ∈ ω〉 by q ≤n p if

q ≤ p ∧ (Split≤n(p) = Split≤n(q) ∧ (∀t ∈ Split≤n(p))(Kq(t) = Kp(t)).

Hein and Spinas [6, Lemma 3.9] introduce a countable notion of forcing:

Definition 2.3. Let P ∈ {SP,FSP} and let p ∈ P. We define Pp: Conditions in Pp
are finite trees F ⊆ p such that there is gF ∈ ω such that ter(F ) ⊆ 2gF .

We let F ′ ≤Pp F if
(a) F ′ ⊇ F and
(b) ∀s ∈ F , Kp�F ′(s) = Kp�F (s).

By Lemma 2.4, the forcing P is atomless. Hence also Pp is atomless and equiv-
alent to Cohen forcing. The union of a Pp-generic condition is a condition pG in P
again. Our Lemma 2.4 is based on Hein’s and Spinas’ proof of [6, Lemma 3.9].

Lemma 2.4. Let k ∈ ω, p ∈ FSP, m ∈ ω, D open dense in FSP. Then for t ∈
Splitk(p), j = 0, 1 there is pt,j and a finite set Et,j with the following properties:
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(1)
pt,j ≤0 p�t ∧ Et,j ⊆ D ∧ Et,j is predense below pt,j∧

Kpt,j (t) = Kp(t) ∧
∧
j=0,1

Kpt,j (ta1) > Kpt,j (ta0) ≥ m

(2) For j = 0, 1 we let

pj :=
⋃
{pt,j : t ∈ Splitk(p)}.

Then we have pj ≤k p and p0 ⊥ p1 (even p0 ∩ p1 is finite) and p0 ∪ p1 ≤k p.
There is a finite set of strengthenings of pj that is a subset of D and predense
below pj.

(3) For each j = 0, 1 separately, the
{Kpj (splsuc(tai)) : t ∈ Splitk(pj) = Splitk(p), i = 0, 1}

are ordered lexicographically according to the splitting preserving homomorphic
image of {tai : t ∈ Splitk(p), i = 0, 1} in (2k+1,≤lex).

Moreover, for each t ∈ Splitk(pj), i = 0, 1, Kpj (splsuc(tai)) is strictly
larger than max{Kpj (s) : s ∈ Split≤k(pj)}.

Proof. We recall, h is defined in Def. 1.1(n). We go along the lexicographic order
≤lex of h(t) for t ∈ Splitk(p). Suppose the construction has already been performed
for t′ ∈ Splitk(p) such that h(t′) ≤lex h(t).

We assume that m > max{Kpj (s) : s ∈ Split≤k(pj)}.
Thinning out above ta0:

Let
Kt

0 = max({Kp(t′a0),Kp(t′a1) : t′ ∈ Splitk(p), h(t′) ≤lex h(t)} ∪ {m}).
For any s ∈ LevKt

0
(p�ta0), j ∈ 2, there is ps,j such that

(2.1) ps,j ≤ p�(splsuc(s)aj) ∧ ps,j ∈ D.
Note that all the ps,j contain splsuc(s)aj and do not contain splsuc(s)a(1− j).

Thinning out above ta1:
Let

Kt
1 = max{Kps,j (splsuc(s)aj) : s ∈ LevKt

0
(p�ta0), j ∈ 2}+ 1.

For any s ∈ LevKt
1
(p�ta1) there is ps,j such that

(2.2) ps,j ≤ p�(splsuc(s)aj) ∧ ps,j ∈ D.
Again all the ps,j contain splsuc(s)aj and do not contain splsuc(s)a(1− j). We let

pt,j =
⋃
{ps,j : s ∈ LevKt

0
(p�(ta0))} ∪

⋃
{ps,j : s ∈ LevKt

1
(p�(ta1))}.

For j = 0, 1, a finite subset Et,j of D that is predense below pt,j is

Et,j = {ps,j : s ∈ LevKt
0
(p�(ta0))} ∪ {ps,j : s ∈ LevKt

1
(p�(ta1))}.

Then pj�(ta0) (by reserving enough splitting in the interval above Kt
1) and pj�(ta1)

(for the interval below Kt
1) together witness that we have Kpt,j (t) = Kp(t). As

stated, we let pj =
⋃
{pt,j : t ∈ Levk(p)}. Thus we have pj ≤k p. By construction,

for any j = 0, 1, t ∈ Splitk(p),
Kpt,j (splsuc(ta1)) ≥ Kt

1 > Kpt,j (splsuc(ta0)) ≥ Kt
0 ≥ m



6 GIORGIO LAGUZZI, HEIKE MILDENBERGER, BRENDAN STUBER-ROUSSELLE

and the lexicographic order is carried on.
We turn to property (2). A finite subset of D that is predense below pj is given by⋃
{Et,j : t ∈ Splitk(p)}. Finally, properties (2.1) and (2.2) guarantee p0 ⊥ p1. �

Corollary 2.5. For any p ∈ FSP there are 2ω mutually incompatible conditions
stronger than p.

Proof. By in induction on dom(s) we construct for j = 0, 1, psaj ≤|s| ps. The
successor step is like the previous lemma with ps = p and psaj = pj from there.
Now that ps for s ∈ 2<ω are defined, we let for b ∈ 2ω, pb =

⋂
{pb�n : n < ω}.

Since pb�n, n < ω, is a fusion sequence, pb is a condition. �

Corollary 2.6. The set of fat splitting trees p ∈ FSP with the property such that
there is a splitting preserving homomorphism h from Split(p) onto 2<ω such that
for every s, t such that |h(s)| = |h(t)| and h(s) ≤lex h(t) we have

Kp(s) < Kp(t)

is dense.

Proof. Let p ∈ FSP. We construct a fusion sequence 〈pn : n ∈ ω〉 according to
Lemma 2.4 by letting j = 0 all the time. �

Proposition 2.7. The expanded fat splitting forcing (FSP,≤, (≤n)n) has strong
Axiom A. The same holds for SP.

Proof. The result for SP is already known by work of Shelah and Spinas (see [14]).
The fusion property follows from the definition of ≤n. By Lemma 2.4, the forcing
order FSP together with ≤n according to Definition 2.2 has strong Axiom A. �

3. Amoeba forcing and dominating reals

In the section we deal with a question addressed by Hein and Spinas, giving
more evidence to support their conjecture.

Definition 3.1. Let P be a forcing whose conditions are perfect trees ordered by
inclusion, in particular P could be SP, FSP.
(1) A subset X ⊆ 2ω is called P-nowhere dense, if

(∀p ∈ P)(∃q ≤ p)([q] ∩X = ∅).

We denote the ideal of P-nowhere dense sets with NP.
(2) A subset X ⊆ 2ω is called P-meager if it is included in a countable union of

P-nowhere dense sets. We denote the σ-ideal of P-meager sets with IP.
(3) A subset X ⊆ 2ω is called P-measurable if

(∀p ∈ P)(∃q ≤ p)([q] \X ∈ IP ∨ [q] ∩X ∈ IP).

(4) A subset X ⊆ 2ω is called weakly P-measurable if

(∃q)([q] \X ∈ IP ∨ [q] ∩X ∈ IP).

Notice that these notions generalize some well-known ones:
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P IP P-measurable
C meager ideal Baire property
B null ideal measurable
V Doughnut null Doughnut-property [5]
S Marczewski ideal [16] Marczewski field

Remark 3.2. In general the two ideals do not coincide IP 6= NP, for instance when
P is the Cohen forcing. In many other cases however, they do coincide IP = NP, for
instance when P ∈ {S,L,M,V,MA}. When the latter occurs X is P-measurable if
and only if:

(∀p ∈ P)(∃q ≤ p)([q] ⊆ X ∨ [q] ∩X = ∅).
In our specific case for P ∈ {SP,FSP} the ideal of P-nowhere dense sets is in fact
a σ-ideal and so IP = NP. The proof is a fusion argument and is a consequence
of Lemma 2.4. In fact, let X ⊆

⋃
nXn with Xn ∈ NP, for n ∈ ω. Fix a condition

p ∈ P and recursively apply Lemma 2.4 with D = {q ∈ P : [q] ∩Xn = ∅} in order
to construct a fusion sequence p = p0 ≥0 p1 ≥1 . . . with the property that for every
n ∈ ω, [pn] ∩Xn = ∅. And so, the fusion q =

⋂
n pn is such that [q] ∩X = ∅.

Remark 3.3. Weak-P-measurability is a weaker statement than P-measurability,
and if referred to a single set, it is not even a regularity property, as a given set can
contain the branches through a tree p ∈ P but being very irregular outside of [p].
However classwise staments about weak measurability are in some cases sufficient
to obtain measurability. More precisely, let Γ be a family of subsets of reals and

Γ(P) := “all sets in Γ are P-measurable”
Γw(P) := “all sets in Γ are weakly P-measurable”.

If Γ is closed under continuous pre-image and intersection with closed sets, for P ∈
{S,V,M,L,MA} one has Γ(P)⇔ Γw(P) (see [3, Lemma 2.1] and [4, Lemma 1.4]).
Hence, we can obtain some straightforward implications, such as Γ(L)⇒ Γ(M) and
Γ(V)⇒ Γ(S).
Definition 3.4. Let P be the splitting forcing or the fat splitting forcing, and let
Kp(t) be minimal with the properties in the definitions. We define d : P → ωω as
follows:

dp(n) := min{Kp(tai) : i ∈ 2, t ∈ Splitn(p)}.
Note that the definition of the function dp differs slightly from the one given in

[6, Definition 3.11]. Nonetheless, the function dp shares the same crucial properties,
as the following lemma illustrates.
Lemma 3.5. Let P ∈ {SP,FSP}. The following holds.

(1) For q ≤ p ∈ P we have dq ≥ dp.
(2) Given f ∈ ωω and p ∈ P, there exists q ≤ p such that f ≤ dq, i.e.,

f(n) ≤ dq(n) holds for all n < ω

Proof. A proof of (1) and (2) for SP can be found in [6, Lemma 3.12, Lemma 3.14]
(keep in mind that they used a slightly different version of dp).

The proofs can be translated to our setting without difficulties. As an example
we prove (1) and (2) for P = FSP.

(1) So let q ≤ p be two fat splitting trees and n < ω. We show that dq(n) ≥ dp(n).
By definition we have

dq(n) = min{Kq(tai) : i ∈ 2, t ∈ Splitn(q)}
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So let t ∈ Splitn(q) and i ∈ 2 such that Kq(tai) = dq(n). Since q ≤ p there is
s ∈ Splitn(p) such that s E t. Choose j ∈ 2 such that saj E tai. Then by items
(2) and (4) from Remark 1.7 we get

Kp(saj) ≤ Kq(saj) ≤ Kq(tai).
This shows that dq(n) ≥ dp(n).

(2) Let p ∈ FSP and f ∈ ωω be given. Using Lemma 2.4 we can build a fusion
sequence 〈qn : n < ω〉 with the properties:

(1) q0 = p
(2) qn ≤n qn+1
(3) For all t ∈ Splitn(q), Kqn(t) ≥ f(n− 1), for n > 0

The fusion q =
⋂
n qn satisfies dq(n) ≥ f(n) for all n < ω. �

Definition 3.6. We say that q is an absolute P-generic tree over V iff q ∈ P and
all its branches are P-generic over V in any extension, more precisely such that for
any ZF-model extension N ⊇ V we have

N |= q ∈ P ∧ ∀x ∈ [q](x is P-generic over V ).
An absolute amoeba forcing for P is a poset adding an absolute P-generic tree.

We remark that every amoeba forcing in literature, at least to our knowledge,
satisfies this property including the natural amoeba for SP as defined in (see [6,
Definition 3.15.]). Other examples would be the versions of amoeba for Laver and
Miller (see [13, pp 709 and 714]) as proven in [13, Lemma 1.1.7, Lemma 1.1.8,
Remark 1.1.10].
The main idea of using an amoeba forcing is to add a large set of generic reals.
However, we must be careful that this notion is sufficiently absolute, otherwise we
might end up with a useless amoeba. For example, if G is a Sacks-generic filter
over V , then it is well-known that in V [G] there is a perfect set P of Sacks-generic
reals. But if we take H a Sacks-generic filter over V [G], then in V [G][H] the set
P is no longer a perfect set of Sacks-generic reals. Moreover, in V [G][H] the set of
Sacks-generic reals over V is in the Marczewski ideal IS.
The known application of an amoeba forcing to blow up the additivity number like
in [13, Theorem 1.3.1] uses an absoluteness argument which justifies Definition 3.6.
In light of that, the following proposition provides more support to Hein’s and
Spinas’ conjecture that add(ISP) ≤ b and that any reasonable amoeba for SP adds
a dominating real.

Proposition 3.7. Let P ∈ {SP,FSP} and let V ⊆ N be models of ZFC. If
N |= “There is an absolute P-generic tree over V ”

then
N |= “There is a dominating real over V ”.

Hence any absolute amoeba forcing for P adds a dominating real.

Proof. We construct an ω sized family {dk : k ∈ ω} that dominates all f ∈ V ∩ωω.
Note that this is enough since we can use a standard diagonal argument and define
x ∈ ωω as

x(n) := sup{dk(n) : k ≤ n}+ 1.
Then x almost dominates all f ∈ V ∩ ωω.

Let q ∈ N be the P-generic tree over V .
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Now let H̄ : 2<ω → Split(q) be as in Definition 1.1 (o), i.e., H̄(∅) = stem(q) and
H̄(σai) = splsuc(H̄(σ)ai), for every σ ∈ 2<ω, i ∈ {0, 1}; and H : 2ω → [q] be its
natural associated extension. Then consider ċ the canonical C-name for a Cohen
real over N . Note that for every Cohen real c over N we have

N [c] |= H(c) ∈ [q] ∧H(c) is P-generic over V .
Let Gc be the filter associated with H(c) that is P-generic over V , i.e., N [c] |=
H(c) =

⋂
{[p] : p ∈ Gc}. Hence for any P-open dense set D ∈ V there is p ∈

D ∩ Gc, and so N [c] |= H(c) ∈ [p]. This implies that there is σD,p ∈ C such that
σD,p 
 H(ċ) ∈ [p]

So we get the following:
for every P-open dense D of P in V there exists p ∈ D and σ ∈ 2<ω such that

for each Cohen real c extending σ
N [c] |= H(c) ∈ [p] ∩ [q�H̄(σ)].

(3.1)

Claim 3.8. From (3.1) it follows that q�H̄(σ) ≤ p.

To prove the claim we argue by contradiction, so assume t ∈ q�H̄(σ) \ p. Pick
τ D σ such that H̄(τ) D t. Now fix any Cohen real c extending τ . Then H(c)
extends t and therefore H(c) ∈ [q�H̄(σ)] \ [p]. This contradicts 3.1.

Now we finish the proof of Proposition 3.7. Let {qk : k ∈ ω} enumerate {q�H̄(σ) :
σ ∈ C}. We claim that {dqk : k ∈ ω} dominates all f ∈ V ∩ ωω. In fact, fix
f ∈ V ∩ ωω. By Lemma 3.5, for every f ∈ V ∩ ωω we pick a P-open dense Df ⊆ P
in V such that for every p ∈ Df , f ≤∗ dp. Then pick σ ∈ C and p ∈ Df as in (3.1).
Take k ∈ ω such that qk = q�H̄(σ). Note that by Claim 3.8 we have that qk ≤ p
and so for all but finitely many n ∈ ω, dqk(n) > f(n).

�

Remark 3.9. Recall that the bounding number, b, is the minimal size of an ≤∗-
unbounded family. Beyond what we prove in Proposition 3.7, in [6] Hein and Spinas
addressed also the following parallel question: is add(ISP) ≤ b provable in ZFC?
In a previous version of the paper, we tried to use the method implemented in
Proposition 3.7 in order to prove add(IP) ≤ b, for P ∈ {SP,FSP}. We deeply thank
Otmar Spinas to find a gap in the argument and write us in a private communica-
tion. The point where our proof specifically works in this case is that the P-generic
tree q is covered by any P-open dense from the ground model V , but when trying
to use a similar argument for proving add(IP) ≤ b one needs a finer argument to
obtain H(c) be caught by a tree p in a given P-open dense set in N .

4. A brief digression on the Silver amoeba and Cohen reals

Spinas [15] showed that the ideal of meager sets M Tukey-embeds into the
σ-ideal IV corresponding to Silver forcing, in symbols M ≤T IV. This result
is surprising because it is in sharp contrast with the other popular non-ccc tree
forcings: see [10] and [9] for Sacks, [13] for Laver and Miller, and for Mathias is
folklore. Spinas’ brilliant proof idea essentially involves two key steps: 1) a quite
technically demanding investigation of the Silver antichain number; 2) a coding by
Hamming weights of a Cohen real inside a Silver tree. This result concerning the
existence of such a Tukey embedding is in parallel with the fact that any amoeba
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for Silver necessarily adds Cohen reals. In fact, given any absolute amoeba AV for
Silver and assume AV is proper. Then, a countable support iteration of length ω2,
blows up add(IV). Now using Spinas’ result of the Tukey-reducibility one gets in
the generic extension ℵ1 < add(IV) ≤ add(M) and thus one deduces that Cohen
reals must have been added during the iteration. However, it remains unclear,
whether a single step of the amoeba AV necessarily adds a Cohen. For instance,
the following situation may occur: First AV adds half a Cohen but no Cohen reals
and second AV ∗ AV adds a Cohen real. Forcings with these two properties exist
(see [17, Theorem 1.3]).

In this section we give a direct proof that any absolute amoeba for Silver adds
Cohen reals. We still use the coding from part 2), but replace the argument about
Silver antichains with an alternative method based on Cohen forcing as in the proof
of Proposition 3.7.

We do not go through the details of the coding (by Hamming weights) and we
refer the reader to [15, Coding Lemma 6 and Thinning-Out Lemma 7] for the proofs.
We only recall from [15] the definition and the main result we need in our proof
below.

Definition 4.1. For n, k < ω we define d(n, k) ∈ 2 by letting d(n, k) = 0 iff the
unique j < ω such that n ∈ [j · 2k, (j + 1) · 2k) is even. Let e(n) be the minimal
k < ω with 2k > n. Let c(n) = 〈d(n, k) : k < ω〉 and c∗(n) = c(n)�e(n).

For σ ∈ 2<ω the Hamming weight of σ is defined as HW (σ) := |{i < |σ| : σ(i) =
1}|.

As usual we denote with C = (2<ω,⊆) the Cohen forcing.

Lemma 4.2. ([15, Thinning-Out-Lemma 7]) Given {Dj : j < ω} a family of open
dense sets Dj ⊆ C and p ∈ V, there exists q ∈ V such that q ≤ p and for every
n < ω and σ ∈ Splitn+1(q), if m = |τ | for any τ ∈ Splitn(q) and k = HW (σ), then
wac∗(k) ∈ Dj for every w ∈ 2≤m and j ≤ n.

The property given in the Thinning-Out-Lemma is not only dense, but even
open, i.e., for every p ∈ V there exists q ≤ p such that every q′ ≤ q satisfies the
property of the Thinning-Out-Lemma (see [15, Remark 8]).

Proposition 4.3. Let V be the Silver forcing and let V ⊆ N be models of ZFC. If
N |= “There is an absolute V-generic tree over V ”

then
N |= “There is a Cohen real over V ”.

Hence any absolute amoeba forcing for V adds a Cohen real.

Proof. The proof follows the line of that one for Proposition 3.7. First of all, given
E ⊆ C open dense, we apply Spinas’ Thinning-Out-Lemma with {Dj : j < ω} such
that Dj = E, for all j ∈ ω, in order to get a V-open dense set DE ⊆ V such that
for every q ∈ DE

(4.1) (∀n < ω)(∀w ∈ 2≤mn)(waξn ∈ E),
where ξn := c∗(HW (σn)) with σn is the leftmost sequence in Splitn+1(q), and
mn ∈ ω is the length of any τ ∈ Splitn(q).

Let q ∈ N be an absolute V-generic tree over the ground model V . As in
Definition 1.1 (o), let H̄ : 2<ω → Split(q) be the E-preserving function and H :
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2ω → [q] its natural extension. Let c be a Cohen real over V . Like in the proof
of Proposition 3.7, we conclude that for every V-open dense set D ∈ V there
exists p ∈ D such that N [c] |= H(c) ∈ [p], and so there exists σ ∈ C such that
σ 
 H(c) ∈ [p]. As before we get the following claim.
Claim 4.4. For every V-open dense set D ∈ V there exists σ ∈ C and p ∈ D such
that q�H̄(σ) ≤ p.

So let {qk : k ∈ ω} enumerate all q�H̄(σ)’s, and let mk
n, ξkn be associated with qk

as in (4.1) above. Then put

z := ξ0
n0

a
ξ1
n1

a
. . .a ξknk

a
. . . ,

where the nk’s are chosen recursively as follows: n0 = 0 and for k ≥ 1, nk is such
that |ξ0

n0

a
ξ1
n1

a
. . .a ξk−1

nk−1
| ≤ mk

nk
.

We aim at showing that z is Cohen over V . Let E ⊆ C be open dense in V . Let
DE ⊆ V be a V-open dense set in V such that every p ∈ DE satisfies (4.1). By
Claim 4.4 there exists k ∈ ω such that qk ≤ p, for some p ∈ DE . By construction,
for every w ∈ 2≤m

k
nk we have waξknk ∈ E. Since |ξ0

n0

a
ξ1
n1

a
. . .a ξk−1

nk−1
| ≤ mk

nk
, it

follows ξ0
n0

a
ξ1
n1

a
. . .a ξk−1

nk−1

a
ξknk ∈ E.

Hence, for every E ∈ V open dense of C, there exists n ∈ ω such that z�n ∈ E,
which means z is Cohen over V .

�

5. Fatness versus measure

Let µ denote the standard measure on 2ω. Then, the Random forcing B consists
of all perfect trees p ⊆ 2<ω with positive measure, ordered by inclusion. We denote
the σ-ideal of measure zero sets with N .
In this section we compare FSP with B. We show that each random condition is
modulo a measure zero set equal to a fat splitting tree, but the converse does not
hold. In fact, we show that the set of fat splitting trees with measure zero is dense
in FSP. We conclude this section by scrutinizing the differences between the two
corresponding σ-ideals IFSP and N .
Lemma 5.1. B ∩ FSP is dense in B.
Proof. We call a level n of a tree p ⊆ 2<ω nowhere splitting if |Levn(p)| =
|Levn+1(p)|, i.e., if there is no splitting node s ∈ Levn(p). Let p ∈ B be given
and put N := {t ∈ p : µ([p�t]) = 0}. This is a countable set and therefore
µ(
⋃
t∈N [p�t]) = 0. So, q := p \ N is still a perfect tree with positive measure and

the additional property that for each t ∈ q (µ([q�t]) > 0). We claim that q is a
fat splitting tree. To reach a contradiction assume that there is a node t ∈ q with
no corresponding Kq(t), i.e., there are infinitely many n ∈ ω such that Levn(q�t)
is nowhere splitting. We fix such a node t ∈ q and an increasing enumeration
〈ni : i ∈ ω〉 of all nowhere splitting levels of q�t. It is enough to show that
µ([q�t]) ≤ 2−(i+1) holds for each i ∈ ω. Fix i ∈ ω. Since for each j < i we know
that Levnj (q�t) is nowhere splitting, we get that |Levni+1(q�t)| ≤ 2ni−i. Therefore
we get

µ([q�t]) ≤ µ
(⋃
{[s] : s ∈ Levni+1(q�t)}

)
≤ 2ni−i 1

2ni+1 = 2−(i+1).

�
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Lemma 5.2. Below any fat splitting tree p ∈ FSP we can find an antichain
{px ≤ p : x ∈ 2ω} such that µ([px]) = 0 and [px] ∩ [py] = ∅, whenever x 6= y.

Proof. Let p ∈ FSP be given. By induction on n ∈ ω we construct a set of conditions
{psn : n ∈ ω, s ∈ 2n} such that for any n ∈ ω:

(1) p
〈〉
0 = p,

(2) psn ≥n+1 p
sai
n+1, i ∈ 2,

(3) [psa0
n+1] ∩ [psa1

n+1] = ∅,
(4) µ([psain+1]) ≤ 1

2µ([psn]).
Let n ∈ ω and s ∈ 2n be given. We apply Lemma 2.4 to the condition psn to
get two incompatible fat splitting trees qsain+1, i ∈ 2 satisfying conditions (2) and
(3). We have to make sure that also (4) holds. Therefore we compare the two
measures of [qsain+1], i ∈ 2. W.l.o.g. assume µ([qsa0

n+1]) ≤ µ([qsa1
n+1]). Since the two

trees qsa0
n+1, q

sa1
n+1 have disjoint bodies, we must have µ([qsa0

n+1]) ≤ 1
2µ([psn]). Thus,

we can set psa0
n+1 := qs

a0
n+1. Now via the same argument as above this time for qsa1

n+1
instead of psn, we get a condition psa1

n+1 ≤n+1 q
sa1
n+1 such that µ([psa1

n+1]) ≤ 1
2µ([qsa1

n+1]).
This completes the construction.
Now for each x ∈ 2ω, we define px :=

⋂
n∈ω p

x�n
n . This is a fat splitting tree by (2)

and has measure zero by condition (4). Condition (3) ensures that for two different
x 6= y ∈ 2ω we have [px] ∩ [py] = ∅. �

Corollary 5.3. FSP ∩N is dense in FSP.

Corollary 5.4. N \ IFSP 6= ∅.

Proof. Any p ∈ FSP with measure zero is a witness for [p] ∈ N \ IFSP. �

Proposition 5.5. Assume cov(N ) = c. Then IFSP \ N 6= ∅.

Proof. The proof follows the idea in [1, 1.4]. Let 〈pα ∈ FSP : α < c〉 be an
enumeration of all fat splitting trees with measure zero. By Corollary 5.3 this is a
dense set in FSP. Now fix an enumeration 〈qα ∈ B : α < c〉 of the random forcing.
Our aim is to construct a sequence 〈xα ∈ 2ω : α < c〉 such that

i) xα 6∈
⋃
β<α[pβ ]

ii) xα ∈ [qα].
We first check that we can indeed find such a sequence and then verify that the
resulting set X := {xα : α < c} witnesses IFSP \ N 6= ∅. So fix α < c. Our
assumption cov(N ) = c implies that

⋃
β<α[pβ ] does not cover [qα] and therefore

we can pick xα satisfying conditions i) and ii). Condition ii) ensures that X 6∈ N
holds. So we are left to show that we can find for each p ∈ FSP a stronger condition
q ≤ p such that [q] and X are disjoint. Therefore, fix p ∈ FSP and pick α < c with
pα ≤ p. Now by Lemma 5.2 there is an antichain {p′β ∈ FSP : β < c} below pα
satisfying [p′β ]∩ [p′γ ] = ∅, whenever β 6= γ. Condition i) implies that |[pα]∩X| < c.
In particular, we can find some β with [p′β ] ∩X = ∅. �

Question 5.6. Does IFSP \ N 6= ∅ hold without the assumption cov(N ) = c?
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6. The Sacks property

We show that FSP does not have the Sacks property.

Definition 6.1.
(1) 〈Sn : n < ω〉 is called an f -slalom if Sn ⊆ [ω]f(n).
(2) A function f : ω → ω \ {∅} is called diverging if limn f(n) =∞.
(3) A forcing P has the Sacks property if for any diverging f : ω → ω \ {∅} it

has the following property:
For any P-name τ for a real and any condition p there is an f -slalom
〈Sn : n < ω〉 and there is q ≤ p such that q 
 (∀∞n)(τ(n) ∈ Sn).

We remark that in the definition of the Sacks property above, it is enough that
the forcing P has the property for some diverging f : ω → ω \ {∅}.

Lemma 6.2. For any function f : ω → ω \ {∅} there is a FSP-name τ such that
for any f -slalom 〈Sn : n < ω〉 ∈ V

FSP 
 (∃∞n)(τ(n) 6∈ Sn).

Proof. Fix f ∈ ωω ∩ V . We aim at finding ḣ ∈ ωω ∩ V FSP so that for every slalom
S ∈ ([ω]<ω)ω ∩ V , with |S(n)| ≤ f(n), we have h is not captured by S, i.e., there
is n ∈ ω such that h(n) /∈ S(n). We let ẋ be the name for the FSP-generic real, i.e.
the union

⋃
{stem(p) : p ∈ G}.

Let code: {2I : I ⊆ ω, I finite} → ω be an injective function.
We fix a partition {In : n ∈ ω} of ω, where each In is an interval, max In <

min In+1, and |In| > f(n). We define

ḣ := 〈code(ẋ�In) : n ∈ ω〉.

We aim to show that ḣ cannot be captured by any f -slalom in the ground model.
So fix an f -slalom S ∈ V and a condition p ∈ FSP. It is enough to find n ∈ ω, q ≤ p
such that q 
 ḣ(n) /∈ S(n). Pick n ∈ ω such that min(In) > Kp(stem(p)). Then for
every j ∈ In, there is t ∈ Split(p) such that |t| = j. Hence on level max(In) of p we
have at least |In| > f(n) nodes that are pairwise different in In. Let {tk : k ∈ |In|}
enumerate the first |In| of them. Then

p�tk 
 ḣ(n) = code(ẋ�In) = code(tk�In),

Since the tk�In are pairwise different and code is injective there are at least |In|
possibilities for p to decide h(n) and because |S(n)| ≤ f(n) < |In| there is some
k ∈ |In| such that

p�tk 
 code(ẋ�In) = code(tk�In) = ḣ(n) /∈ S(n).

So, q := p�tk ≤ p is the condition with the desired property. �

Corollary 6.3. FSP does not satisfy the Sacks property.

In the proof we made use of combinatorial properties that apply exclusively to
FSP. Hence, our proof does not work for SP. However, Jonathan Schilhan found
a totally different proof to show that SP does not have the Sacks property [12,
Theorem 2.8].

Proposition 6.4 (Schilhan). SP does not have the Sacks property.
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7. Splitting-measurability

Here we investigate the complexity of P-measurable sets. The first three results
hold for fat splitting trees and splitting trees, while the proof of Theorem 7.4
specifically uses Lemma 6.2, which only applies to FSP.

Note that if X is weakly FSP-measurable, then it is also weakly SP-measurable.
In fact, let X ⊆ 2ω be weakly FSP-measurable. Then, there is a condition p ∈ FSP
such that either X ∩ [p] ∈ IFSP or [p] \X ∈ IFSP. As IFSP = NFSP holds, Remark
3.2 applies and we can assume that [p] ∩X = ∅ or [p] ⊆ X. Now since p ∈ SP as
well, it follows that X is weakly-SP-measurable.

Proposition 7.1. For every set X ⊆ 2ω we have
(1) X has the Baire property implies X is weakly FSP-measurable.
(2) X is Lebesgue-measurable implies X is weakly FSP-measurable.

Proof. (1) Recall that X has the Baire property implies that X either is meager
or there is s ∈ 2<ω such that X ∩ [s] is comeager in [s]. Therefore, it is enough to
show that any for comeager set D there exists p ∈ FSP such that [p] ⊆ D. So fix a
comeager set D and let {Dn : n ∈ ω} be a ⊆-decreasing family of open dense subsets
such that

⋂
Dn ⊆ D. We aim at finding p ∈ FSP such that [p] ⊆

⋂
n∈ωDn. We will

do so by constructing an ⊆-increasing family of finite trees {Fn ⊆ 2<ω : n ∈ ω}
and taking p :=

⋃
n Fn. Consider the following recursive construction:

Step 0. For i ∈ 2, pick ti D 〈i〉 such that [ti] ⊆ D0, and |t1| > |t0|. For every
〈0〉 E s / t0, let s′j := saj, where j ∈ {0, 1} is chosen so that saj 5 t0.
Then pick t′j D s′j such that [t′j ] ⊆ D0 and |t′j | > |t1|. Let T0 be the set
containing t0, t1 and all such tj ′s and put N0 := max{|t| : t ∈ T0}. Finally
consider the set

F0 := {s ∈ 2≤N0 : ∃t ∈ T0(s E t ∨ t E s)}.

By construction, [F0] ⊆ D0 and

∀n < N0∃s ∈ Levn(F0)(s is splitting).

n+ 1. Assume we already constructed Fn and Nn. Then, for every t ∈ ter(Fn), we
can repeat the construction described at Step 0 starting with ti D tai, (i ∈
2) in order to construct F tn+1 satisfying the following properties:
• ∀t′ ∈ F tn+1 (t E t′ ∨ t′ E t),
• [F tn+1] ⊆ Dn+1.

Let Tn+1 :=
⋃
{ter(F tn+1) : t ∈ ter(Fn)} and Nn+1 := max{|t| : t ∈ Tn+1}.

We define

Fn+1 := {s ∈ 2≤Nn+1 : ∃t ∈ Tn+1(s E t ∨ t E s)}.

Finally let p :=
⋃
n∈ω Fn.

Using the sequence 〈Nn : n < ω〉 it is not hard to see that p ∈ FSP. In fact,
let t ∈ p be given. We check that Kp(t) is defined. There is n < ω such that
|t| ∈ [Nn, Nn+1). It follows from the construction that Kp(t) ≤ Nn+1.
Since we also made sure that [p] ⊆

⋂
n∈ωDn holds, we are done.

(2) Recall that if X is Lebesgue measurable then there is p ∈ B such that [p] ⊆ X
or [p] ∩X = ∅. By Lemma 5.1 there is p′ ⊆ p such that p′ ∈ FSP.

�
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Proposition 7.2. Let G be Cω1 -generic over V . Then
V [G] |= All Onω-definable sets are weakly-FSP-measurable.

In order to prove Proposition 7.2 we need the following result.

Lemma 7.3. Cohen forcing adds a FSP-tree consisting of Cohen branches, i.e. C
adds a tree q ∈ FSP such that


C ∀x ∈ [q](x is Cohen over V ).

Proof. First recall Definition 1.1 (l), where we defined p�F = {s ∈ p : (∃t ∈ F )(s E
t ∨ t / s)}. for any perfect tree p and any subset F ⊆ p.
Consider the forcing P defined as follows: F ∈ P iff

(1) F ⊆ 2<ω is a finite tree,
(2) ∀s, t ∈ ter(F )(|s| = |t|).

The partial order on P is given by:
F ′ ≤ F ↔F ⊆ F ′ ∧ ∀t ∈ F ′ \ F∃s ∈ ter(F )(s� t)

∧ ∀s ∈ ter(F )∀n ∈ [ht(F ),ht(F ′))∃t ∈ Levn((p�s)�F ′)(ta0, ta1 ∈ F ′).
Given two conditions F1 ≤ F0. Let n be maximal such that each s ∈ ter(F0) has
at least n splitting predecessors. The partial order ≤ satisfies the following: For
pi := {t ∈ 2<ω : ∃s ∈ ter (Fi)(t � s ∨ s � t)}, we have p0, p1 ∈ FSP and p1 ≤n p0.
Specifically, taking a P-generic filter G and defining pG :=

⋃
G, we also get that

pG is a fat splitting tree (in the generic extension).
Note that P is a countable atomless forcing order and so equivalent to C. In fact,
to see that P is atomless let F ∈ P be given. We have to find two incompatible
extensions F0, F1 of F . Let n = ht(F ). We construct Fi, i ∈ 2 in three steps:

F ′i := F ∪ {t ∈ 2n+1 : ∃s ∈ ter(F )(s� t)},
F ′′i := F ′i ∪ {t ∈ 2n+2 : ∃s ∈ ter(F ′i )(s� t ∧ (s(n) = 0→ t(n+ 1) = i))}
Fi := F ′′i ∪ {t ∈ 2n+3 : ∃s ∈ ter(F ′′i )(s� t ∧ (s(n) = 1→ t(n+ 2) = i))}.

By the above we make sure that the terminal nodes of F0 and F1 are disjoint and
in particular they are incompatible in P. This proves that P is atomless.
Let pG :=

⋃
G, where G is P-generic over V . It is left to show that every branch

in [pG] is Cohen.
So let D be an open dense subset of C and F ∈ P. It is enough to find F ′ ≤ F

such that every t ∈ ter(F ′) is a member of D.
Therefore fix arbitrarily t ∈ ter(F ) and consider the following construction. Pick

t0 � ta0 such that t0 ∈ D and put
F0(t) := F ∪ {s ∈ 2<ω : ta0 � s� t0} ∪ {s ∈ 2<ω : ta1 � s ∧ |s| ≤ |t0|}.

Then for every s ∈ ter(F0(t)) with s� ta1, pick ts � s such that ts ∈ D. Note that
since D is open dense and we only deal with finitely many s ∈ ter(F0(t)), we can
pick the ts’s with the same length, say Nt. We then define
F1(t) := F∪{r ∈ 2<ω : t0�r∧|r| ≤ Nt}∪{r ∈ 2<ω : ∃s ∈ ter(F0(t))(ta1�s�r�ts)}.

Now we let F ′′ :=
⋃
{F1(t) : t ∈ ter(F )}. We are almost done, we only have

to make sure that all terminal nodes are of the same length. Therefore let N :=
max{Nt : t ∈ ter(F )} and define F ′ := {s ∈ 2≤N : ∃r ∈ ter(F ′′)(r � s)}. By
construction, F ′ ≤ F and ter(F ′) ⊆ D.
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�

Proof of Proposition 7.2. The argument follows the line of the proof of [4, Propo-
sition 3.7]. Let G be Cω1 -generic over V . In V [G], let X be an Onω-definable set
of reals, i.e. X := {x ∈ 2ω : ϕ(x, v)} for a parameter v ∈ Onω. We aim to find
p ∈ FSP such that [p] ⊆ X or [p] ∩X = ∅.

First note that we can absorb v in the ground model, i.e, we can find α < ω1
such that v ∈ V [G�α]. So, without the loss of generality we can pretend that α = 0,
i.e., v ∈ V .
Let c be Cohen over V . Then there is s0 ∈ C such that s0 
 ¬ϕ(c, v) or there is
s1 ∈ C such that s1 
 ϕ(c, v). In either case we can find p ∈ FSP as in Lemma 7.3
such that [p] ⊆ [s0] or [p] ⊆ [s1] and every x ∈ [p] is Cohen over V . We claim that
p satisfies the required property.

• Case [p] ⊆ [s1]: note every x ∈ [p] is Cohen over V , and so V [x] |= ϕ(x, v).
Hence V [G] |= ∀x ∈ [p](ϕ(x, v)), which means V [G] |= [p] ⊆ X.

• Case [p] ⊆ [s0]: we argue analogously and get V [G] |= ∀x ∈ [p](¬ϕ(x, v)),
which means V [G] |= [p] ∩X = ∅.

�

Theorem 7.4. Assume there exists an inaccessible cardinal. There is a model for
ZF+DC where all sets are V-measurable (and so S-measurable as well, by Remark
3.3) but there is a set which is not FSP-measurable.

Proof. The key idea is to get a complete Boolean algebra B and a B-name Y for a
set of elements in 2ω such that in the corresponding extension V [G], for a B-generic
filter G, the following hold:

(1) every subset of 2ω in L(ωω, Y ) is V-measurable
(2) Y is not FSP-measurable.

Hence, we obtain that in L(ωω, Y )V [G] every subset of 2ω is V-measurable, but
there is a set which is not FSP-measurable.

We start with a definition.

Definition 7.5. A complete Boolean algebra B is (V, Y )-homogeneous, if for every
Silver algebras B0, B1 l B and any isomorphism ϕ : B0 → B1, there exists an
automorphism ϕ+ ⊇ ϕ of B such that


B ϕ+[Y ] = Y.

To construct a (V, Y )-homogenous Boolean algebra, we use Shelah’s amalgama-
tion. We start by sketching out such Shelah’s procedure.

One basic amalgamation step consists of ω substeps and looks as follows. Given
a Boolean algebra B = Am0(B,ϕ), two complete subalgebras B0, B1 l B and an
isomorphism ϕ : B0 → B1, the amalgamation process provides us with the pair
(Am(B,ϕ), ϕ1) such that B l Am(B,ϕ), there are two isomorphic copies e0[B],
e1[B]lAm(B,ϕ) of B and ϕ1 ⊇ ϕ such that ϕ1 : e0[B]→ e1[B] is an isomorphism.
Such a procedure can be repeated, now with ei[B], ϕ1 and Am(B,ϕ) = Am1(B,ϕ),
and thus we get Am2(B,ϕ) and ϕ2. At the limit stage ω we take the smallest
complete superalgebra Amω(B,ϕ) of Amn(B,ϕ), n < ω, as described in details in
[7, p.10], or more briefly in [8, p.736]. We let ϕω =

⋃
ϕn. The corresponding

automorphism ϕω : Amω(B,ϕ)→ Amω(B,ϕ) fulfills ϕω ⊇ ϕ.
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We construct B by a recursive construction of length κ for a strongly inaccessible
cardinal κ. We partition κ into four cofinal sets Si, i = 0, 1, 2, 3. By induction on
α ≤ κ we choose Bα and Yα. We start with B0 = {0}, Y0 = ∅.
(a) For α ∈ S0, we let

Bα+1 = Bα ∗ A(V),
Bα+1 
 Ẏα+1 = Ẏα.

The amoeba for Silver forcing is denoted by A(V). It is a forcing for adding
a Silver tree consisting of V-generic branches, and it is used in the variant of
Solovay’s Lemma in order to obtain V-measurability.

(b) For α ∈ S1, we use a standard book-keeping argument to hand us down all
situations of the following kind: Bα l B′ l Bκ and Bα l B′′ l Bκ are such
that Bα forces (B′ : Bα) ≈ (B′′ : Bα) ≈ V and ϕα : B′ → B′′ an isomorphism
s.t. ϕα � Bα = IdBα . So suppose that ϕα : B′ → B′′, where B′ and B′′ are
two Silver algebras of Bα, is handed down by the book-keeping. Then we let

Bα+1 = Amω(Bα, ϕα),
Bα+1 
 Ẏα+1 = Ẏα ∪ {ϕjα(ẏ), ϕ−jα (ẏ) : ẏ ∈ Yα, j ∈ ω}.

(c) For α ∈ S2, we let

Bα+1 := Bα ∗
∏

p∈FSPVBα

˙FSPp,

where
∏
p∈FSPVBα

˙FSPp is the full support product and FSPp := {q ∈ FSP :
q ≤ p} and

Bα+1 
 Ẏα+1 := Ẏα ∪ {ẏp : p ∈ FSPVBα },

where ẏp is the standard name for the FSPp-generic real over VBα .
(d) For α ∈ S3, we let

Bα+1 := Bα ∗ Coll(ω, α),
and Bα+1 
 Ẏα+1 := Ẏα. Here Coll(ω, α) is the Lévy collapse of α to ω, i.e.,
the set of p : n→ α, n ∈ ω, ordered by end-extension.

(e) Finally, for any limit ordinal λ ≤ κ, we take the direct limit Bλ = limα<λBα
and Bλ 
 Ẏλ =

⋃
α<λ Ẏα.

We let B = Bκ and Y = Yκ and show that they are as in (1) and (2).
When amalgamating over Silver forcing (as in the construction [8, pp. 740-741])

in order to get V-measurability, we need to isolate a particular property shared by
the FSP-generic reals (namely unreachability, i.e., reals which are not captured by
any ground model slalom (introduced in [8, Def. 12])), which is both preserved
under amalgamation ([8, Lemma 15]) and under iteration with Silver forcing ([8,
Lemma 16]).

We recall here the definition of unreachability and some main remarks for the
reader convenience.

Definition 7.6.
• Γk = {σ ∈ HFω : ∀n ∈ (|σ(n)| ≤ 2kn)}} and Γ =

⋃
k∈ω Γk, where HF

denotes the hereditary finite sets;
• g(n) = 2n·n;
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• {Jn : n ∈ ω} is defined via J0 = {0} and Jn+1 =
[∑

j≤n g(j),
∑
j≤n+1 g(j)

)
,

for every n ∈ ω;
• Given x ∈ 2ω, define hx(n) = x�Jn.
• One says that z ∈ 2ω is unreachable over V if

∀σ ∈ Γ ∩V∃n ∈ ω(hz(n) /∈ σ(n)).

By Lemma 6.2, applied for each k ≥ 1 to fk(n) = 2kn, with our modification Jn
instead of Ik,n we have for the generic ẏp of FSPp: For each p ∈ FSP the real ẏp is
unreachable over V .

The proof of Theorem 7.4 is concluded as follows:
Let G be a Bκ-generic filter over V. Then

V[G] |= “ Y is not FSP-measurable”.

One has to prove that for every p ∈ FSP, both Y ∩ [p] 6= ∅ and [p] 6⊆ Y .
The proof follows the line of [8, Lemma 28]. More specifically, to prove the part

Y ∩ [p] 6= ∅ it is enough to use item (c) of the construction, by choosing α < κ
sufficiently large so that p ∈ V [G�α] (possible by κ-cc) and then picking a FSPp-
generic real over V [G�α], call it y ∈ Yα+1 ∩ [p]. The part [p] 6⊆ Y follows from
the fact that if p ∈ V [G�α] then any new real added at stages β > α in [p] cannot
be in Y ; the elements that enter Y under clause (b) come from former stages and
hence are not identical to the new real unless there were identical elements already
in a former stratum of Y , and the elements entering Y under clause (c) are not in
V [G�α]. For a more detailed proof we refer to [8, Lemma 29]. The argument is
similar to the proof of [7, Theorem 6.2], specifically in the part to show that the
set Γ cannot have the Baire property, where the property of “being unreachable”
replaces the property of “being unbounded”.

To see that every subset of the reals in L(ωω, Y ) is V-measurable, we use the fact
that any isomorphism between copies of smaller Silver algebras can be extended to
an automorphism of B that fixes Y . This is a slightly more complex variant of the
usual homogeneity of Levy Collapse, providing us with a way to apply a variant
of Solovay’s Lemma (e.g., see [7, Theorem 6.2.b] for Lebesgue measurability or
[8, Lemma 24] for Silver measurability) in order to show that (V, Y )-homogeneity
implies that all sets in L(ωω, Y ) are Silver measurable. �
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