A rigid Boolean algebra that admits the elimination of Q_1^2

by

Heike Mildenberger (Bonn)

Abstract. Using \diamond , we construct a rigid atomless Boolean algebra that has no uncountable antichain and that admits the elimination of the Malitz quantifier Q_1^2 .

1. Introduction. Malitz quantifiers are introduced in [Mag-Mal]. Let us recall the semantics of Q_{α}^{n} , $n \geq 1$, $\alpha \in \text{ORD}$: $\mathfrak{A} \models Q_{\alpha}^{n} \overset{n}{x} \phi(\overline{a}, \overset{n}{x})$ iff there is a subset H of A such that $\operatorname{card}(H) \geq \aleph_{\alpha}$ and $\mathfrak{A} \models \phi(\overline{a}, h)$ for all pairwise different $h_{0}, h_{1}, \ldots, h_{n-1} \in H$. Such a set H is called a *homogeneous set* for $\phi(\overline{a}, \overset{n}{x})$. Baldwin and Kueker [Bal-Ku], Rothmaler and Tuschik [Ro-Tu], Bürger [Bü] and Koepke [Ko] consider the question of elimination of some of these quantifiers in certain theories or structures. [Ro-Tu] shows that any saturated model allows the elimination of all $Q_{\alpha}^{n}, \alpha \in \text{ORD}, n \geq 1$.

Saturated models with two elements of the same type are not rigid. On the other hand, there are $\mathcal{L}_{\omega\omega}(Q_1^2)$ -sentences ϕ that have only rigid models and that are satisfiable under CH (see [Ot], [Mil]). We consider

$$\phi := \text{ "the structure is a Boolean algebra with } 0 \neq 1 \text{'}$$
$$\wedge \forall x (x \neq 0 \to Q_1 y \, y \subseteq x) \land \neg Q_1^2 x y \, x \not\subseteq y \, .$$

[Ba-Ko, Theorem 5(a)] shows that all models of ϕ are rigid. The search for a model of ϕ that contains two different elements of the same $\mathcal{L}_{\omega\omega}(Q_1^2)$ -type leads, under \diamond , to a model of ϕ that admits the elimination of Q_1^2 and in which therefore any two elements $\neq 0, 1$ have the same $\mathcal{L}_{\omega\omega}(Q_1^2)$ -type.

In ZFC + \diamondsuit and even in ZFC + CH there are various constructions of uncountable Boolean algebras with no uncountable antichains and with some other algebraic properties (see [Ba-Ko], [Sh], [Ru], but also [Ba]). In the course of showing that additional tasks may be fulfilled along the way given in [Ba-Ko], we get a partition of all formulas $\phi(z, x, y) \in \mathcal{L}_{\omega\omega}(Q_1^2), r \in \omega$, into two classes Φ_1 and Φ_2 such that 1. The methods of [Ba-Ko] are applicable to any $\phi(\overset{r}{z}, x, y) \in \Phi_1$. They will allow us to show that the homogeneous sets for any $\phi(\overset{r}{z}, x, y) \in \Phi_1$ will grow only during countably many steps in the chain which we build in the next section.

2. For any Boolean algebra \mathfrak{A} with $\mathfrak{A} \models \forall x \neq 0 Q_1 y y \subseteq x$ and any $\phi(\overset{r}{z}, x, y) \in \Phi_2$: $\mathfrak{A} \models \exists \overset{r}{z} Q_1^2 x y \phi(\overset{r}{z}, x, y)$.

" $\phi(z, x, y) \in \Phi_1$ " will be shown to be equivalent under the first order theory of atomless Boolean algebras to a first order formula with its free variables among $z_0, z_1, \ldots, z_{r-1}$. The consideration of the possible quantifierfree types of the z leads to a procedure for eliminating Q_1^2 .

2. The construction

Notation. We will use \mathfrak{A} , \mathfrak{B} , \mathfrak{B}_{α} to denote Boolean algebras. Boolean algebras are considered as τ_{BA} -structures with $\tau_{BA} = \{\cap, \cup, -, 0, 1\}$. $x \subseteq y$ is written for $x \cap y = x$, \subset means strict inclusion, $x \setminus y$ is used for $x \cap (-y)$. $\mathcal{P}(\omega)$ denotes the powerset algebra of ω . For $\mathfrak{A} \subseteq \mathcal{P}(\omega)$ we often write A for \mathfrak{A} . The interpretations of the τ_{BA} -symbols in $\mathcal{P}(\omega)$ are denoted by the symbols themselves.

 $a, b \in A$ are comparable (in \mathfrak{A}) iff $a \subseteq^{\mathfrak{A}} b$ or $b \subseteq^{\mathfrak{A}} a$. $C \subseteq \mathfrak{A}$ is a chain (an antichain) iff any two distinct elements of C are comparable (not comparable). For $a \subset^{\mathfrak{A}} b \in A$ let $(a, b)_A := \{c \in A \mid a \subset^{\mathfrak{A}} c \subset^{\mathfrak{A}} b\}$.

Using \diamond , we shall construct a Boolean algebra \mathfrak{B} such that \mathfrak{B} is a model of the sentence ϕ from the introduction and \mathfrak{B} admits the elimination of Q_1^2 . As the construction of our Boolean algebra \mathfrak{B} follows the pattern of [Ba-Ko], we restrict ourselves to a short description, heavily referring to [Ba-Ko].

Inductively on $\alpha \in \omega_1$, we shall build a chain $(\mathfrak{B}_{\alpha}, M_{\alpha})_{\alpha \in \omega_1}$, where the \mathfrak{B}_{α} are countable atomless subalgebras of $\mathcal{P}(\omega)$ and each $M_{\alpha+1}$ is a countable collection of pairs $(M, \phi(\bar{c}, x, y))$, where $M \subseteq B_{\alpha}$ and $\phi(\bar{c}, x, y)$ is a quantifierfree (qf) $\mathcal{L}_{\omega\omega}[\tau_{BA}]$ -formula with a property that will be defined later on, and \bar{c} are elements of B_{α} . At limit steps we take unions. $\mathfrak{B}_{\alpha+1}$ will be the Boolean algebra that is generated by $B_{\alpha} \cup \{x_{\alpha}\}$ in $\mathcal{P}(\omega)$, where the x_{α} is chosen by the same forcing $\mathcal{P}(B_{\alpha})$ as in [Ba-Ko], namely: $\mathcal{P}(B_{\alpha}) =$ $\{(a,b)_{B_{\alpha}} \mid a \subset b \in B_{\alpha}\}, (a',b')_{B_{\alpha}} \leq^{\mathcal{P}(B_{\alpha})} (a,b)_{B_{\alpha}}$ iff $a \subseteq a' \subset b' \subseteq b$.

We shall define $D_A(M, \phi(\overline{c}, x, y), e, f)$ and $M_{\alpha+1}$. Then we take a $\{D_A(M, \phi(\overline{c}, x, y), e, f) \mid e, f \in B_\alpha, (M, \phi(\overline{c}, x, y)) \in M_{\alpha+1}\}$ -generic subset $\{(a_n, b_n) \mid n \in \omega\}$ of $P(B_\alpha)$ such that $\{(a_n, b_n) \mid n \in \omega\}$ additionally satisfies the properties described in [Ba-Ko] and set $x_\alpha = \bigcup \{a_n \mid n \in \omega\}$. In [Ba-Ko], $M_{\alpha+1}$ is chosen so that chains and antichains are countable. Our $M_{\alpha+1}$ differs from that of [Ba-Ko], because we also want all homogeneous sets for

any $\phi(z, x, y) \in \Phi_1$ to be countable. The next items are the generalizations of the corresponding points of [Ba-Ko].

DEFINITION 2.1. Let $A \subseteq \mathcal{P}(\omega)$ and $\overline{c}, e, f \in A$. Let $\phi(\overline{z}, x, y)$ be qf.

(i) $D_A(M, \phi(\overline{c}, x, y), e, f) := \{(a, b)_A \in P(A) \mid \text{for any } u \in (a, b)_{\mathcal{P}(\omega)} \text{ one of the following points is true:} \}$

- 1. $(u \cap e) \cup (f \setminus u) \in M$.
- 2. There is some $y \in M$ such that

 $\mathcal{P}(\omega) \vDash \neg \phi(\overline{c}, (u \cap e) \cup (f \setminus u), y) \lor \neg \phi(\overline{c}, y, (u \cap e) \cup (f \setminus u)) \}.$

(ii) M is called maximally homogeneous for $\phi(\overline{c}, x, y)$ in \mathfrak{A} iff $M \subseteq A$ is homogeneous for $\phi(\overline{c}, x, y)$ and for all $a \in A \setminus M$ there is some $b \in M$ such that $\mathfrak{A} \models \neg \phi(\overline{c}, a, b) \lor \neg \phi(\overline{c}, b, a)$.

(iii) $\phi(\overline{c}, x, y)$ is small in \mathfrak{A} iff for any $\emptyset \neq M \subseteq A$ that is maximally homogeneous for $\phi(\overline{c}, x, y)$ in $\mathfrak{A}, D_A(M, \phi(\overline{c}, x, y), 1, 0)$ is dense in P(A).

LEMMA 2.2. Let $\mathfrak{A} \subseteq \mathcal{P}(\omega)$ be atomless, $\overline{c} \in A^{<\omega}$, $\phi(\overline{c}, x, y)$ and small in $\mathfrak{A}, e, f \in A$ and $M \neq \emptyset$ be maximally homogeneous for $\phi(\overline{c}, x, y)$ in \mathfrak{A} . Then $D_A(M, \phi(\overline{c}, x, y), e, f)$ is dense in P(A) for any e, f in A.

Proof. [Ba-Ko, Lemmas 2.3 and 2.4].

Also the proof of the next lemma can be carried out as in [Ba-Ko]: just take a u for \mathfrak{A} and \overline{M} in the same way as they take x_{α} for \mathfrak{B}_{α} and $M_{\alpha+1}$.

LEMMA 2.3. Let $\mathfrak{A} \subseteq \mathcal{P}(\omega)$ be atomless and countable and let \overline{M} be a countable subset of

$$\{(M, \phi(\overline{c}, x, y)) \mid \overline{c} \in A^{<\omega}, \phi(\overline{c}, x, y) \in \mathcal{L}_{\omega\omega}[\tau_{BA}] \ qf, \ \phi(\overline{c}, x, y) \ small \ in \ A$$

and M is maximally homogeneous for $\phi(\overline{c}, x, y) \ in \ A\}$

Then for any $(a,b)_A \in P(A)$ there is a $u \in (a,b)_{\mathcal{P}(\omega)}$ such that:

1. $u \notin A$.

2. $[A \cup \{u\}]^{\mathcal{P}(\omega)}$, the subalgebra generated by $A \cup \{u\}$ in $\mathcal{P}(\omega)$, is atomless.

3. For any $(M, \phi(\overline{c}, x, y)) \in \overline{M}$ the set M is maximally homogeneous for $\phi(\overline{c}, x, y)$ also in $[A \cup \{u\}]^{\mathcal{P}(\omega)}$.

Now using Lemma 2.3 and \diamond , we can construct our \mathfrak{B} . Let $\langle S_{\alpha} | \alpha \in \omega_1 \rangle$ be a \diamond -sequence. Let $\langle a_{\xi} | \xi \in \omega_1 \rangle$ be an enumeration of $\mathcal{P}(\omega)$ in which each element of $\mathcal{P}(\omega)$ appears ω_1 times.

In step $\alpha + 1$, let $M_{\alpha+1} = M_{\alpha} \cup \{(\{a_{\xi} \mid \xi \in S_{\alpha}\}, \phi(\overline{c}, x, y)) \mid \{a_{\xi} \mid \xi \in S_{\alpha}\}$ is a maximally homogeneous set for $\phi(\overline{c}, x, y)$ in \mathfrak{B}_{α} and $\phi(\overline{c}, x, y)$ is small in \mathfrak{B}_{α} and $\overline{c} \in B_{\alpha}\}$. Apply Lemma 2.3 with $\mathfrak{A} = \mathfrak{B}_{\alpha}$ and $\overline{M} = M_{\alpha+1}$ to get an x_{α} . Define $B_{\alpha+1}$ as $[B_{\alpha} \cup \{x_{\alpha}\}]^{\mathcal{P}(\omega)}$. Let $\mathfrak{B} = \bigcup\{\mathfrak{B}_{\alpha} \mid \alpha \in \omega_1\}$. Take the x_{α} so that $\mathfrak{B} \models \forall x(x \neq 0 \rightarrow Q_1 y y \subseteq x)$. Then it is easy to see that for any $\phi(\overline{c}, x, y)$ which is small in every \mathfrak{B}_{α} with $\overline{c} \in B_{\alpha}$, we have $\mathfrak{B} \models \neg Q_1^2 xy \, \phi(\overline{c}, x, y)$. In particular, \mathfrak{B} is a model of ϕ from the introduction (because " $x \not\subseteq y$ " is small), hence \mathfrak{B} is rigid.

3. Large homogeneous sets. The aim of this section is to define a mapping

big :
$$\bigcup_{r \in \omega} \mathcal{L}_{\omega\omega}[\tau_{BA}](\overset{r}{z}, x, y) \to \bigcup_{r \in \omega} \mathcal{L}_{\omega\omega}[\tau_{BA}](\overset{r}{z}),$$
$$\phi(\overset{r}{z}, x, y) \mapsto \operatorname{big}(\phi(\overset{r}{z}, x, y))(\overset{r}{z}),$$

such that for every $\phi(\overset{r}{z}, x, y) \in \mathcal{L}_{\omega\omega}[\tau_{BA}]$

(*)
$$\mathfrak{B} \vDash \forall z \ (Q_1^2 x y \, \phi(z, x, y) \leftrightarrow \operatorname{big}(\phi(z, x, y))(z)) \,.$$

Then Φ_2 will be

 $\{\phi(\overline{z}, x, y) \mid big(\phi(\overline{z}, x, y))(\overline{z}) \text{ is valid in any atomless Boolean algebra} \}.$

In order to simplify the notation we tacitly assume that always the variables x and y are intended to be quantified by Q_1^2 .

Let \mathfrak{A} be any atomless Boolean algebra. Since \mathfrak{A} admits the elimination of \exists it is enough to define big for quantifierfree $\phi(\overset{r}{z}, x, y) \in \mathcal{L}_{\omega\omega}[\tau_{BA}]$.

For any $\overline{c} \in A$ and qf $\phi(\overline{c}, x, y)$ there is a qf $\psi(\overline{c}', x, y)$ such that \overline{c}' is an (injective) enumeration of the atoms of the subalgebra generated by \overline{c} , and $\mathfrak{A} \models \forall xy (\psi(\overline{c}', x, y) \leftrightarrow \phi(\overline{c}, x, y))$. Also if $\phi(\overline{z}, x, y)$ is a disjunction $\bigvee_i (\phi(\overline{z}, x, y) \wedge \psi_i(\overline{z}))$ then knowing $\chi_i = \operatorname{big}(\phi(\overline{z}, x, y) \wedge \psi_i(\overline{z}))(\overline{z})$ we can define $\operatorname{big}(\phi(\overline{z}, x, y))(\overline{z})$ to be $\bigvee_i \chi_i$. Hence it suffices to define $\operatorname{big}(\phi(\overline{z}, x, y))(\overline{z})$ only for those qf $\phi(\overline{z}, x, y)$ that imply that $\{z_0, \ldots, z_{r-1}\}$ is the set of atoms in the subalgebra generated by $\{z_0, \ldots, z_{r-1}\}$.

If H is an uncountable homogeneous set for $\phi(\tilde{c}, x, y)$, then there is an $\mathcal{L}_{\omega\omega}$ -1-type $t(\tilde{c}, x)$ over \tilde{c} and an uncountable $H_1 \subseteq H$ such that every element of H_1 has the $\mathcal{L}_{\omega\omega}$ -1-type $\operatorname{tp}(x/\tilde{c}) = t(\tilde{c}, x)$ over \tilde{c} . Hence it is enough to define big for the $\phi(\tilde{z}, x, y)$ with the above mentioned property and the additional property that there is an $\mathcal{L}_{\omega\omega}$ -1-type $t(\tilde{z}, x)$ over \tilde{z} (independent of the assignment \tilde{c} of \tilde{z} , because we consider only \tilde{c} that are atoms in the subalgebra generated by \tilde{z}) such that

$$\mathfrak{A} \vDash \forall x y z^r \ (\phi(z^r, x, y) \leftrightarrow (\phi(z^r, x, y) \land t(z^r, x) = \operatorname{tp}(x/z^r) \land t(z^r, y) = \operatorname{tp}(y/z^r))) \,.$$

We will call such formulas *special*. Finally, note that any $\mathcal{L}_{\omega\omega}$ -2-type $t(\overset{r}{c}, x, y)$ over $\overset{r}{c}$ is determined by the corresponding *r*-tuple of the quantifierfree types of $x \cap c_i$, $y \cap c_i$ in $\{a \in A \mid a \subseteq c_i\}$, i < r. For any such type there are 15 possibilities, and under the condition $\operatorname{tp}(x/\overset{r}{z}) = \operatorname{tp}(y/\overset{r}{z})$ there remain the 9 possibilities not marked with an \bullet in the table below.

No.	$x\cap y\cap z_i$	$(-x) \cap (-y) \cap z_i$	$x \cap (-y) \cap z_i$	$(-x) \cap y \cap z_i$	Remarks
0	$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$	
1	$\neq 0$	$\neq 0$	$\neq 0$	0	
2	$\neq 0$	$\neq 0$	0	$\neq 0$	
3	$\neq 0$	$\neq 0$	0	0	$\begin{array}{c} x \cap z_i = \\ y \cap z_i \neq 0, z_i \end{array}$
4	$\neq 0$	0	$\neq 0$	$\neq 0$	
•5	$\neq 0$	0	$\neq 0$	0	$\begin{array}{l} x \cap z_i = z_i \\ y \cap z_i \neq z_i \end{array}$
•6	$\neq 0$	0	0	$\neq 0$	$y \cap z_i = z_i x \cap z_i \neq z_i$
7	$\neq 0$	0	0	0	$\begin{array}{c} x \cap z_i = \\ y \cap z_i = z_i \end{array}$
8	0	$\neq 0$	$\neq 0$	$\neq 0$	
•9	0	$\neq 0$	$\neq 0$	0	$\begin{array}{l} x \cap z_i \neq 0 \\ y \cap z_i = 0 \end{array}$
•10	0	$\neq 0$	0	$\neq 0$	$\begin{array}{l} x \cap z_i = 0\\ y \cap z_i \neq 0 \end{array}$
11	0	$\neq 0$	0	0	$\begin{array}{l} x \cap z_i = \\ y \cap z_i = 0 \end{array}$
12	0	0	$\neq 0$	$\neq 0$	$ \begin{array}{c} x \cap z_i \neq 0, z_i \\ y \cap z_i = (-x) \cap z_i \end{array} $
•13	0	0	$\neq 0$	0	$\begin{array}{l} x \cap z_i = z_i \\ y \cap z_i = 0 \end{array}$
•14	0	0	0	$\neq 0$	$\begin{array}{l} x\cap z_i=0\\ y\cap z_i=z_i \end{array}$

The possibilities for the quantifier free types of $x \cap c_i, y \cap c_i, i < r$, in $\{a \in A \mid a \subseteq c_i\}$

Let $\phi^k(z_i, x \cap z_i, y \cap z_i)$ say "the $\mathcal{L}_{\omega\omega}$ -type of $x \cap c_i, y \cap c_i$ over c_i has number k", $k = 0, \ldots, 14$. The disjunction $\phi^{012}(u, v, w) := \phi^0(u, v, w) \lor \phi^1(u, v, w) \lor \phi^2(u, v, w)$ will play an important role in the following.

DEFINITION 3.1. Let $\phi({}^r_z, x, y) \in \mathcal{L}_{\omega\omega}[\tau_{BA}]$ be quantifierfree and be of the special form as described above.

$$\begin{aligned} \operatorname{big}(\phi(\overset{r}{z}, x, y))(\overset{r}{z}) &= \\ \exists a \subset b \,\forall x y \Big(\Big(a \subseteq x, y \subseteq b \land \bigwedge_{i < r} ((b \setminus a) \cap z_i \neq 0 \to \phi^{012}(z_i, x \cap z_i, y \cap z_i)) \Big) \\ &\to \phi(\overset{r}{z}, x, y) \Big) \,. \end{aligned}$$

Equivalent to $\operatorname{big}(\phi(\overset{r}{z},x,y))(\overset{r}{z})$ is the formula

$$\bigvee_{I_0 \cup I_1 \cup I_2 \cup I_3 = \{0, \dots, r-1\}, I_0 \neq 0} \forall xy \Big(\Big(\bigwedge_{i \in I_0} \phi^{012}(z_i, x \cap z_i, y \cap z_i) \\ \wedge \bigwedge_{i \in I_1} x \cap z_i = y \cap z_i \neq 0, z_i \Big)$$

$$\wedge \bigwedge_{i \in I_2} x \cap z_i = y \cap z_i = 0$$

$$\wedge \bigwedge_{i \in I_3} x \cap z_i = y \cap z_i = z_i \to \phi(\tilde{z}, x, y), \quad (z, y) \to \phi(\tilde{z}, y) \to \phi(\tilde{z}, y), \quad (z, y) \to \phi(z, y) \to \phi(z, y), \quad (z, y) \to \phi(z, y), \quad (z, y) \to \phi(z, y), \quad (z,$$

($\dot{\cup}$ denotes the disjoint union) which will be useful for the easy direction of (*):

LEMMA 3.2. Let \mathfrak{A} be an atomless Boolean algebra. Let $\mathfrak{A} \vDash \forall x \neq 0$ $Q_1 y y \subseteq x$, and $\phi(\overset{r}{z}, x, y)$ be as above. Then $\mathfrak{A} \vDash \forall \overset{r}{z} (\operatorname{big}(\phi(\overset{r}{z}, x, y))(\overset{r}{z}) \rightarrow Q_1^2 x y \phi(\overset{r}{z}, x, y)).$

Proof. Let $\mathfrak{A} \models \operatorname{big}(\phi(z, x, y))(c)^r$. For $i \in I_0$ take an uncountable set $H_i \subseteq (0, c_i)_{\mathfrak{A}}$ such that for any $x \in H_i$ the relative complement $c_i \setminus x \notin H_i$. Let $\langle h_{i,\alpha} \mid \alpha \in \omega_1 \rangle$ be an injective enumeration of a subset of H_i . Finally, for $i \in I_1$ let $H_i = \{d_i\}$ for some d_i with $0 \subset d_i \subset c_i$, for $i \in I_2$ let $H_i = \{0\}$, and for $i \in I_3$ let $H_i = \{c_i\}$. Then

$$H := \left\{ \bigcup \{h_{i,\alpha} \mid i \in I_0\} \cup \bigcup \{d_i \mid i \in I_1\} \cup \bigcup \{c_i \mid i \in I_3\} \middle| \alpha \in \omega_1 \right\}$$

is an uncountable homogeneous set for $\phi({}^{r}_{c}, x, y)$.

Now for \mathfrak{B} as in Section 2, we shall prove the other direction of (*). By the construction, it would suffice to show:

(**) For any enumeration \dot{c} of the atoms in the subalgebra of \mathfrak{B} generated by \ddot{z} , if $\mathfrak{B} \models \neg \operatorname{big}(\phi(\ddot{z}, x, y))(\ddot{c})$, then $\phi(\ddot{c}, x, y)$ is small in every \mathfrak{B}_{α} with $\ddot{c} \in B_{\alpha}$.

Unfortunately, this is true only for $\phi(c, x, y)$ that do not forbid certain equalities of Boolean terms. We introduce some notation and then give a sketch of our proof of the hard direction of (*).

We say briefly " $\phi(z, x, y)$ is valid" or just " ϕ " for " $\phi(z, x, y)$ is valid in all atomless Boolean algebras if the assignment of z" is an enumeration of the atoms in the subalgebra generated by z". $\phi(z, x, y)$ is satisfiable or consistent if $\neg \phi(z, x, y)$ is not valid.

For a given special $\phi(\overset{r}{z}, x, y)$ set

$$R(\phi) := \{ i < r \mid \phi \to x \cap z_i = y \cap z_i \text{ is not valid} \}.$$

We will define two mappings s and end from the set of all special $\phi(z, x, y)$ into itself. The mapping s is a technical means used to prove enl(enl($s(\phi)$)) \rightarrow enl($s(\phi)$) (Lemma 3.7) and \neg big($s(\phi)$) $\rightarrow \neg$ big(enl($s(\phi)$)) (Lemma 3.8). Lemma 3.9 says that (**) is true for formulas of the form enl($s(\phi)$) for some

special ϕ . Hence we get from the construction and from 3.8

$$\mathfrak{B} \vDash \neg \operatorname{big}(s(\phi))(\overset{r}{c}) \to \neg Q_1^2 xy \operatorname{enl}(s(\phi))(\overset{r}{c}, x, y),$$

whence $s(\phi) \to \operatorname{enl}(s(\phi))$ and the monotonicity of the quantifier Q_1^2 imply

$$\mathfrak{B} \vDash \neg \operatorname{big}(s(\phi))(\overset{r}{c}) \rightarrow \neg Q_1^2 x y \ s(\phi)(\overset{r}{c}, x, y)$$

(Theorem 3.10). Using this result we prove by induction on $\operatorname{card}(R(\phi))$, simultaneously for all special formulas ϕ ,

$$\mathfrak{B} \vDash \neg \mathrm{big}(\phi)(c) \to \neg Q_1^2 x y \ \phi(c, x, y) ,$$

which will finish the proof of (*).

In order to simplify the notation, we often suppress the free variables ${r \choose z}, x, y$ or $(z_i, x \cap z_i, y \cap z_i)$.

DEFINITION 3.3 (The mapping s). For $R \subseteq r = \{0, 1, \dots, r-1\}$ and for $\chi(z_i, x \cap z_i, y \cap z_i) \in \mathcal{L}_{\omega\omega}[\tau_{BA}]$ we define

$$s_{R}(\chi(z_{i}, x \cap z_{i}, y \cap z_{i})) := \begin{cases} \chi(z_{i}, x \cap z_{i}, y \cap z_{i}) & \text{if } i \notin R \text{ or} \\ \phi^{012}(z_{i}, x \cap z_{i}, y \cap z_{i}) \to \chi(z_{i}, x \cap z_{i}, y \cap z_{i}) \\ \text{is valid}; \\ \chi(z_{i}, x \cap z_{i}, y \cap z_{i}) \land x \cap z_{i} \neq y \cap z_{i} \\ \text{else.} \end{cases}$$

Let $S = \{\bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i) | w \in W\}$ be a finite set such that for all $w \in W$ the conjunction $\bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i)$ is satisfiable and $\bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i) \to \phi_i^r(z, x, y)$ is valid, and such that for any satisfiable conjunction $\delta = \bigwedge_{i < r} \chi_i'(z_i, x \cap z_i, y \cap z_i)$ such that $\delta \to \phi_i^r(z, x, y)$ is valid there is a $w \in W$ with $\bigwedge_{i < r} \chi_i'(z_i, x \cap z_i, y \cap z_i) \to \bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i)$. We will call such a set S a set of representatives for ϕ . Given such a set, let $R = R(\phi)$ and define

$$s(\phi(\overset{r}{z}, x, y)) = \bigvee_{w \in W} \bigwedge_{i < r} s_R(\chi_{w,i}(z_i, x \cap z_i, y \cap z_i))$$

If $\vDash \neg \exists x y_z^r \phi(r_z^r, x, y)$, then let $s(\phi(r_z^r, x, y))$ be any inconsistent formula.

A brief reflection shows that $s(\phi)$ is well defined up to logical equivalence: Let $S' = \{ \bigwedge_{i < r} \chi'_{w',i}(z_i, x \cap z_i, y \cap z_i) | w' \in W' \}$ be another set of representatives for ϕ .

For $\bigvee_{w' \in W'} \bigwedge_{i < r} s_R(\chi'_{w',i}) \to \bigvee_{w \in W} \bigwedge_{i < r} s_R(\chi_{w,i})$, it suffices to show that for each $w' \in W'$ there is some $w \in W$ such that $\bigwedge_{i < r} s_R(\chi'_{w',i}) \to \bigwedge_{i < r} s_R(\chi_{w,i})$. Let $w' \in W'$ be given. Since S is a set of representatives for ϕ there is a $w \in W$ such that $\bigwedge_{i < r} \chi'_{w',i} \to \bigwedge_{i < r} \chi_{w,i}$, which is equivalent to $\chi'_{w',i} \to \chi_{w,i}$ for i < r. Immediately from the definition of s_R , if $\chi'_{w',i} \to \chi_{w,i}$, then $s_R(\chi'_{w',i}) \to s_R(\chi_{w,i})$. Hence $\bigwedge_{i < r} s_R(\chi'_{w',i}) \to \bigwedge_{i < r} s_R(\chi_{w,i})$. The other direction follows by symmetry.

Remark. $s(\phi)$ may be unsatisfiable, e.g. for $\phi = (x \cap z_0 = y \cap z_0 \land x \cap z_1 \subset y \cap z_1) \lor (x \cap z_0 \subset y \cap z_0 \land x \cap z_1 = y \cap z_1) \land \bigwedge_{i=0,1} x \cap z_i \neq z_i, 0 \land \bigwedge_{i=0,1} y \cap z_i \neq z_i, 0 \land z_0 \cap z_1 = 0 \land z_0 \cup z_1 = 1.$

DEFINITION 3.4 (The mapping enl). For $\chi(z_i, x \cap z_i, y \cap z_i) \in \mathcal{L}_{\omega\omega}[\tau_{BA}]$ we define

$$\operatorname{enl}(\chi(z_i, x \cap z_i, y \cap z_i)) := \begin{cases} \chi(z_i, x \cap z_i, y \cap z_i) \\ \lor (x \cap z_i = (-y) \cap z_i \land \exists x \, \chi(z_i, x \cap z_i, y \cap z_i)) \\ \land \exists y \, \chi(z_i, x \cap z_i, y \cap z_i)) \\ \text{if } \phi^{012}(z_i, x \cap z_i, y \cap z_i) \to \chi(z_i, x \cap z_i, y \cap z_i) \\ \text{is not valid;} \\ \chi(z_i, x \cap z_i, y \cap z_i) \lor ((x \cap z_i = (-y) \cap z_i) \\ \lor x \cap z_i = y \cap z_i) \land \exists x \, \chi(z_i, x \cap z_i, y \cap z_i) \\ \land \exists y \, \chi(z_i, x \cap z_i, y \cap z_i)) \\ \text{otherwise.} \end{cases}$$

Let $\{\bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i) | w \in W\}$ be a set of representatives for ϕ . Then set

$$\operatorname{enl}(\phi(\overset{r}{z}, x, y)) = \bigvee_{w \in W} \bigwedge_{i < r} \operatorname{enl}(\chi_{w,i}(z_i, x \cap z_i, y \cap z_i))$$

If $\vDash \neg \exists x y z z \phi(z, x, y)$, then let $\operatorname{enl}(\phi(z, x, y))$ be any inconsistent formula.

From the fact that $\chi'_{w',i} \to \chi_{w,i}$ implies $\operatorname{enl}(\chi'_{w',i}) \to \operatorname{enl}(\chi_{w,i})$, we conclude by an analogous consideration as above that $\operatorname{enl}(\phi)$ is well-defined.

In order to apply Lemmas 2.2 and 2.3 we may replace $\operatorname{enl}(\phi(z, x, y))$ by an equivalent (with respect to the theory of atomless Boolean algebras) qf formula.

The next two lemmas collect some properties of s and enl that will be useful in the proofs of 3.7 and of 3.8.

LEMMA 3.5. Let $\chi_s(z_i, x \cap z_i, y \cap z_i)$, s = 0, 1, be af and $R \subseteq r$.

(i)
$$(\operatorname{enl}(\chi_0) \lor \operatorname{enl}(\chi_1)) \to \operatorname{enl}(\chi_0 \lor \chi_1).$$

(ii) $(s_R(\chi_0) \lor s_R(\chi_1)) \to s_R(\chi_0 \lor \chi_1).$

For (iii), (iv) and (v), assume additionally that $\chi_s(z_i, x \cap z_i, y \cap z_i)$, s = 0, 1, determine the same 1-type $t(z_i, x \cap z_i)$ of $x \cap z_i$ over z_i and of $y \cap z_i$ over z_i .

(iii) Assume that, for s = 0, 1, if not $\phi^{012}(z_i, x \cap z_i, y \cap z_i) \to \chi_s(z_i, x \cap z_i, y \cap z_i)$, then $\chi_s(z_i, x \cap z_i, y \cap z_i) \to x \cap z_i \neq y \cap z_i$. Then $(\operatorname{enl}(\chi_0) \land \operatorname{enl}(\chi_1)) \to \operatorname{enl}(\chi_0 \land \chi_1)$.

(iv) $(s_R(\chi_0) \wedge s_R(\chi_1)) \rightarrow s_R(\chi_0 \wedge \chi_1).$

(v) Assume that $\chi_s \to x \cap z_i = y \cap z_i$ for s = 0, 1 if $i \notin R$. Then for any i < r the formula

$$(\operatorname{enl}(s_R(\chi_0))(z_i, x \cap z_i, y \cap z_i) \wedge \operatorname{enl}(s_R(\chi_1))(z_i, x \cap z_i, y \cap z_i)) \rightarrow \operatorname{enl}(s_R(\chi_0 \wedge \chi_1))(z_i, x \cap z_i, y \cap z_i)$$

is valid.

Proof. (i), (ii) $\chi_s \to \chi_0 \lor \chi_1$ implies $\operatorname{enl}(\chi_s) \to \operatorname{enl}(\chi_0 \lor \chi_1)$ and $s_R(\chi_s) \to s_R(\chi_0 \lor \chi_1)$.

(iii) Define

 $\phi_{=}(z_i, x \cap z_i, y \cap z_i) := x \cap z_i = y \cap z_i \wedge t(z_i, x \cap z_i) \text{ and}$ $\phi_{-}(z_i, x \cap z_i, y \cap z_i) := x \cap z_i = (-y) \cap z_i \wedge t(z_i, x \cap z_i) \wedge t(z_i, y \cap z_i).$

Case 1: $\phi^{012} \to \chi_s$ for s = 0, 1. Then $\phi^{012} \to \chi_0 \land \chi_1$ and $\operatorname{enl}(\chi_0) \land \operatorname{enl}(\chi_1) = (\chi_0 \lor \phi_- \lor \phi_=) \land (\chi_1 \lor \phi_- \lor \phi_=) \leftrightarrow (\chi_0 \land \chi_1) \lor \phi_- \lor \phi_= = \operatorname{enl}(\chi_0 \land \chi_1).$

Case 2: Not $\phi^{012} \to \chi_s$ for s = 0, 1. Then not $\phi^{012} \to \chi_0 \land \chi_1$ and enl $(\chi_0) \land enl(\chi_1) = (\chi_0 \lor \phi_-) \land (\chi_1 \lor \phi_-) \leftrightarrow (\chi_0 \land \chi_1) \lor \phi_- = enl(\chi_0 \land \chi_1).$

Case 3: $\phi^{012} \to \chi_0$ and not $\phi^{012} \to \chi_1$. Then not $\phi^{012} \to \chi_0 \land \chi_1$ and enl(χ_0) \land enl(χ_1) = ($\chi_0 \lor \phi_- \lor \phi_=$) \land ($\chi_1 \lor \phi_-$) \leftrightarrow ($\chi_0 \land \chi_1$) $\lor \phi_- \lor (\phi_= \land \chi_1)$. Since by the assumption of (iii), $\phi_= \land \chi_1$ is not satisfiable, the latter formula

is equivalent to $(\chi_0 \wedge \chi_1) \lor \phi_- = \operatorname{enl}(\chi_0 \wedge \chi_1).$

(iv) Assume $i \in R$, otherwise s_R does not change $\chi_0, \chi_1, \chi_0 \wedge \chi_1$.

Case 1: $\phi^{012} \to \chi_s$ for s = 0, 1. Then $\phi^{012} \to \chi_0 \land \chi_1$ and $s_R(\chi_0) \land s_R(\chi_1) = \chi_0 \land \chi_1 = s_R(\chi_0 \land \chi_1)$.

Case 2: E.g. not $\phi^{012} \to \chi_0$. Then not $\phi^{012} \to \chi_0 \land \chi_1$ and $s_R(\chi_0) \land s_R(\chi_1) = (\chi_0 \land x \cap z_i \neq y \cap z_i) \land s_R(\chi_1) \leftrightarrow (\chi_0 \land \chi_1) \land x \cap z_i \neq y \cap z_i = s_R(\chi_0 \land \chi_1).$

(v) For $i \in R$, the assumptions for (iii) are true for $\psi_s = s_R(\chi_s)$. Hence by (iii) and (iv),

$$(\operatorname{enl}(s_R(\chi_0))(z_i, x \cap z_i, y \cap z_i) \wedge \operatorname{enl}(s_R(\chi_1))(z_i, x \cap z_i, y \cap z_i)) \rightarrow \operatorname{enl}(s_R(\chi_0 \wedge \chi_1))(z_i, x \cap z_i, y \cap z_i).$$

For $i \notin R$, we have $\chi_s \to x \cap z_i = y \cap z_i$ for s = 0, 1 and hence $\operatorname{enl}(s_R(\chi_0)) \land$ $\operatorname{enl}(s_R(\chi_1)) = (\chi_0 \lor \phi_-) \land (\chi_1 \lor \phi_-) \leftrightarrow (\chi_0 \land \chi_1) \lor \phi_- = \operatorname{enl}(s_R(\chi_0 \land \chi_1)).$

LEMMA 3.6. Let ϕ be special and satisfiable, $R = R(\phi)$, and let $\{\bigwedge_{i \leq r} \chi_{w,i} | w \in W\}$ be a set of representatives for ϕ .

(i) For any $\bigwedge_{i < r} \chi'_i \to \bigvee_{w \in W} \bigwedge_{i < r} s_R(\chi_{w,i})$, there is a $w \in W$ such that $\bigwedge_{i < r} \chi'_i \to \bigwedge_{i < r} s_R(\chi_{w,i})$.

(ii) $\operatorname{enl}(s(\phi)) \leftrightarrow \bigvee_{w \in W} \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i})).$

(iii) For any $\bigwedge_{i < r} \chi'_i \to \bigvee_{w \in W} \bigwedge_{i < r} enl(s_R(\chi_{w,i}))$, there is a $w \in W$ such that $\bigwedge_{i < r} \chi'_i \to \bigwedge_{i < r} enl(s_R(\chi_{w,i}))$.

Proof. We will first prove (iii). Then the proof of (i) which is similar but easier will be clear. Let $\bigwedge_{i < r} \chi'_i(z_i, x \cap z_i, y \cap z_i)$ be consistent, otherwise one can take any $w \in W$.

For i < r there is an n_i , $0 < n_i < 15$, and there are $\hat{\chi}_{i,0}, \ldots, \hat{\chi}_{i,n_i-1} \in \{\phi^0, \ldots, \phi^{14}\}$ such that

$$\bigwedge_{i < r} \chi'_i(z_i, x \cap z_i, y \cap z_i) \leftrightarrow \bigwedge_{i < r} (\widehat{\chi}_{i,0} \lor \ldots \lor \widehat{\chi}_{i,n_i-1})(z_i, x \cap z_i, y \cap z_i).$$

We will show the claim by induction on $\prod_{i < r} n_i$.

Case $\prod_{i < r} n_i = 1$. Take an atomless Boolean algebra \mathfrak{A} and $\stackrel{r}{c} \in A$ such that $\stackrel{r}{c}$ is an enumeration of all the atoms in the generated subalgebra. Take $a, b \in A$ such that $\mathfrak{A} \models \bigwedge_{i < r} \chi'_i(c_i, a \cap c_i, b \cap c_i)$. Then there is some $w \in W$ with $\mathfrak{A} \models \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}(c_i, a \cap c_i, b \cap c_i))))$. Since $\bigwedge_{i < r} \chi'_i(z_i, x \cap z_i, y \cap z_i)$ defines an $\mathcal{L}_{\omega\omega}$ -2-type of (x, y) over $\stackrel{r}{z}$, we have $\bigwedge_{i < r} \chi'_i(z_i, x \cap z_i, y \cap z_i) \rightarrow \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}(z_i, x \cap z_i, y \cap z_i)))$.

Induction step. We consider the step from $\prod_{i < r} n_i$ to $(n_0 + 1) \times \prod_{0 < i < r} n_i$, the other cases are similar.

$$(\widehat{\chi}_{0,0} \lor \ldots \lor \widehat{\chi}_{0,n_0}) \land \bigwedge_{0 < i < r} \chi'_i \leftrightarrow \left(\widehat{\chi}_{0,0} \land \bigwedge_{0 < i < r} \chi'_i\right) \lor \left((\widehat{\chi}_{0,1} \lor \ldots \lor \widehat{\chi}_{0,n_0}) \land \bigwedge_{0 < i < r} \chi'_i\right).$$

By induction hypothesis there are $w', w'' \in W$ such that

$$\widehat{\chi}_{0,0} \wedge \bigwedge_{0 < i < r} \chi'_i \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w',i})),$$
$$(\widehat{\chi}_{0,1} \vee \ldots \vee \widehat{\chi}_{0,n_0}) \wedge \bigwedge_{0 < i < r} \chi'_i \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w',i})).$$

Thus we have

$$\left(\left(\widehat{\chi}_{0,0} \land \bigwedge_{0 < i < r} \chi'_i \right) \lor \left((\widehat{\chi}_{0,1} \lor \ldots \lor \widehat{\chi}_{0,n_0}) \land \bigwedge_{0 < i < r} \chi'_i \right) \right) \rightarrow$$

$$(\operatorname{enl}(s_R(\chi_{w',0})) \lor \operatorname{enl}(s_R(\chi_{w'',0}))) \land \bigwedge_{0 < i < r} (\operatorname{enl}(s_R(\chi_{w',i})) \land \operatorname{enl}(s_R(\chi_{w'',i}))) .$$

Note that in the last conjunction we get "and" and not only "or", because

$$\bigwedge_{0 < i < r} \chi'_i \to \bigwedge_{0 < i < r} \operatorname{enl}(s_R(\chi_{w',i})) \land \bigwedge_{0 < i < r} \operatorname{enl}(s_R(\chi_{w'',i})) \land$$

as the situation below any z_i is independent of the situation below the other z_j .

From 3.5(i), (ii) and (v) we get

$$\begin{split} \left(\widehat{\chi}_{0,0} \wedge \bigwedge_{0 < i < r} \chi'_i \right) & \vee \left((\widehat{\chi}_{0,1} \vee \ldots \vee \widehat{\chi}_{0,n_0}) \wedge \bigwedge_{0 < i < r} \chi'_i \right) \\ & \to \operatorname{enl}(s_R(\chi_{w',0} \vee \chi_{w'',0})) \wedge \bigwedge_{0 < i < r} \operatorname{enl}(s_R(\chi_{w',i} \wedge \chi_{w'',i})) \, . \end{split}$$

Since $\{\bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i) | w \in W\}$ is a set of representatives for $\phi(\overset{r}{z}, x, y)$ and since $w', w'' \in W$, we have $(\chi_{w',0} \lor \chi_{w'',0}) \land \bigwedge_{0 < i < r} (\chi_{w',i} \land \chi_{w'',i}) \to \phi$ and there is a $w \in W$ such that

$$(\chi_{w',0} \lor \chi_{w'',0}) \land \bigwedge_{0 < i < r} (\chi_{w',i} \land \chi_{w'',i}) \to \bigwedge_{i < r} \chi_{w,i}$$

For such a w we have

$$\operatorname{enl}(s_R(\chi_{w',0} \lor \chi_{w',0})) \land \bigwedge_{0 < i < r} \operatorname{enl}(s_R(\chi_{w',i} \land \chi_{w',i})) \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i})),$$

and thus the induction step is complete and (iii) is shown.

(ii) Assume $s(\phi)$ is satisfiable, otherwise both sides are not satisfiable. Let $S = \{\bigwedge_{i < r} \chi_{w,i} | w \in W\}$ be a set of representatives for ϕ , and $S' = \{\bigwedge_{i < r} \chi'_{w',i} | w' \in W'\}$ be a set of representatives for $s(\phi) = \bigvee_{w \in W} \bigwedge_{i < r} s_R(\chi_{w,i})$ such that $W' \supseteq \widehat{W} := \{w \in W \mid \bigwedge_{i < r} s_R(\chi_{w,i}) \text{ is satisfiable}\}$ and $\chi'_{w',i} = s_R(\chi_{w,i})$ for $w \in \widehat{W}$.

By definition, $\operatorname{enl}(s_R(\phi)) = \bigvee_{w' \in W'} \bigwedge_{i < r} \operatorname{enl}(\chi'_{w',i})$. By (i), for any $w' \in W'$ there is some $w \in W$ such that $\bigwedge_{i < r} \chi'_{w',i} \to \bigwedge_{i < r} s_R(\chi_{w,i})$ and hence $\bigwedge_{i < r} \operatorname{enl}(\chi'_{w',i}) \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$. Thus $\operatorname{enl}(s(\phi)) \to \bigvee_{w \in W} \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$. The other direction follows immediately from the choice of S' and the definition of enl.

LEMMA 3.7. Let ϕ be a special formula. Then $\operatorname{enl}(\operatorname{enl}(s(\phi))) \leftrightarrow \operatorname{enl}(s(\phi))$.

Proof. Assume $s(\phi)$ is satisfiable, otherwise both sides are not satisfiable. Let S, W be as above and $S'' = \{\bigwedge_{i < r} \chi''_{w'',i} | w'' \in W''\}$ be a set of representatives for $\operatorname{enl}(s(\phi))$. By definition, $\operatorname{enl}(\operatorname{enl}(s(\phi))) = \bigvee_{w'' \in W''} \bigwedge_{i < r} \operatorname{enl}(\chi''_{w'',i})$. For $w'' \in W''$ we have $\bigwedge_{i < r} \chi''_{w'',i} \to \operatorname{enl}(s(\phi))$, hence by 3.6(ii), $\bigwedge_{i < r} \chi''_{w'',i} \to \bigvee_{w \in W} \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$. By 3.6(iii) there is some $w \in W$ such that $\bigwedge_{i < r} \chi''_{w'',i} \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$, whence $\bigwedge_{i < r} \operatorname{enl}(\chi''_{w'',i}) \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$. It is easy to check that for qf $\chi(z_i, x \cap z_i, y \cap z_i)$ by definition

$$\operatorname{enl}(\operatorname{enl}(\chi(z_i, x \cap z_i, y \cap z_i))) \to \operatorname{enl}(\chi(z_i, x \cap z_i, y \cap z_i)).$$

Therefore $\bigwedge_{i < r} \operatorname{enl}(\chi''_{w'',i}) \to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$, and putting things together yields $\bigvee_{w'' \in W''} \bigwedge_{i < r} \operatorname{enl}(\chi''_{w'',i}) \to \bigvee_{w \in W} \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}))$, and, by $3.6(\mathrm{ii}), \bigvee_{w'' \in W''} \bigwedge_{i < r} \operatorname{enl}(\chi''_{w'',i}) \to \operatorname{enl}(s(\phi)).$ The other direction is obvious.

LEMMA 3.8. $\neg \operatorname{big}(s(\phi)) \rightarrow \neg \operatorname{big}(\operatorname{enl}(s(\phi)))$ is valid for special ϕ .

Proof. Let \mathfrak{A} be any atomless Boolean algebra. Assume $\mathfrak{A} \models \operatorname{big}(\operatorname{enl}(s(\phi(\overset{r}{z}, x, y))))(\overset{r}{c})$. We show that $\mathfrak{A} \models \operatorname{big}(s(\phi(\overset{r}{z}, x, y)))(\overset{r}{c})$. Since the 1-types of x and of y over $\overset{r}{c}$ are determined by $\mathfrak{A} \models \exists y \operatorname{enl}(s(\phi(\overset{r}{c}, x, y)))$ and $\mathfrak{A} \models \exists x \operatorname{enl}(s(\phi(\overset{r}{c}, x, y)))$, there is just one pair (I_2, I_3) such that

$$\begin{aligned} \mathfrak{A} &\models \bigvee_{\{(I_0,I_1)|I_0 \cup I_1 \cup I_2 \cup I_3 = \{0,\dots,r-1\}, I_0 \neq 0\}} \forall xy \\ &\left(\Big(\bigwedge_{i \in I_0} \phi^{012}(c_i, x \cap c_i, y \cap c_i) \land \bigwedge_{i \in I_1} x \cap c_i = y \cap c_i \neq 0, c_i \right. \\ & \land \bigwedge_{i \in I_2} x \cap c_i = y \cap c_i = 0 \land \bigwedge_{i \in I_3} x \cap c_i = y \cap c_i = c_i \Big) \to \operatorname{enl}(s(\phi(\overset{r}{c}, x, y))) \Big) . \end{aligned}$$

Take $I_0 \subseteq$ -maximal such that

$$\mathfrak{A} \models \forall xy \Big(\Big(\bigwedge_{i \in I_0} \phi^{012}(c_i, x \cap c_i, y \cap c_i) \land \bigwedge_{i \in I_1} x \cap c_i = y \cap c_i \neq 0, c_i \\ \land \bigwedge_{i \in I_2} x \cap c_i = y \cap c_i = 0 \land \bigwedge_{i \in I_3} x \cap c_i = y \cap c_i = c_i \Big) \to \operatorname{enl}(s(\phi(\overset{r}{c}, x, y))) \Big).$$

Let $R = R(\phi)$ and $\{\bigwedge_{i < r} \chi_{w,i} | w \in W\}$ be a set of representatives for ϕ . By 3.6(ii) and (iii) there is a $w \in W$ such that

$$\begin{aligned} \mathfrak{A} &\models \forall x y \Big(\Big(\bigwedge_{i \in I_0} \phi^{012}(c_i, x \cap c_i, y \cap c_i) \land \bigwedge_{i \in I_1} x \cap c_i = y \cap c_i \neq 0, c_i \\ &\land \bigwedge_{i \in I_2} x \cap c_i = y \cap c_i = 0 \land \bigwedge_{i \in I_3} x \cap c_i = y \cap c_i = c_i \Big) \\ &\to \bigwedge_{i < r} \operatorname{enl}(s_R(\chi_{w,i}(c_i, x \cap c_i, y \cap c_i))) \Big) \,. \end{aligned}$$

We claim that also

$$\mathfrak{A} \models \forall xy \Big(\Big(\bigwedge_{i \in I_0} \phi^{012}(c_i, x \cap c_i, y \cap c_i) \land \bigwedge_{i \in I_1} x \cap c_i = y \cap c_i \neq 0, c_i \\ \land \bigwedge_{i \in I_2} x \cap c_i = y \cap c_i = 0 \land \bigwedge_{i \in I_3} x \cap c_i = y \cap c_i = c_i \Big) \\ \rightarrow \bigwedge_{i < r} s_R(\chi_{w,i}(c_i, x \cap c_i, y \cap c_i)) \Big).$$

Indeed, by the definition of enl we have for any $s_R(\chi_{w,i}(z_i, x \cap z_i, y \cap z_i))$: For $i \in I_0$, if $\phi^{012} \to \operatorname{enl}(s_R(\chi_{w,i}))$, then $\phi^{012} \to s_R(\chi_{w,i})$. For $i \in I_2$, if $x \cap z_i = y \cap z_i = 0 \to \operatorname{enl}(s_R(\chi_{w,i}))$, then $x \cap z_i = y \cap z_i = 0 \to s_R(\chi_{w,i})$. For $i \in I_3$, if $x \cap z_i = y \cap z_i = z_i \to \operatorname{enl}(s_R(\chi_{w,i}))$, then $x \cap z_i = y \cap z_i = z_i \to s_R(\chi_{w,i})$.

For $i \in I_1$ the formula $x \cap z_i = y \cap z_i \neq 0, z_i \wedge \operatorname{enl}(s_R(\chi_{w,i})) \wedge \neg s_R(\chi_{w,i})$ is consistent only if $\phi^{012} \to s_R(\chi_{w,i})$. But then we could take $I'_0 := I_0 \cup \{i\}$ and $I'_1 = I_1 \setminus \{i\}$ and replace (I_0, I_1) by (I'_0, I'_1) , which contradicts the maximality of I_0 .

Now we are ready to prove (**) for special formulas of the form $s(\phi)$.

LEMMA 3.9. Let ϕ be special and $\stackrel{r}{c} \in B$ be an r-tuple that consists of atoms in the generated subalgebra.

(i) If $\neg \operatorname{big}(\phi)$ and $\operatorname{enl}(\phi) \to \phi$ are valid, then for any α with $\stackrel{r}{c} \in B_{\alpha}$ the relation $\phi(\stackrel{r}{c}, x, y)$ is small in \mathfrak{B}_{α} .

(ii) If $\neg \operatorname{big}(s(\phi))$ is valid, then for any α with $\stackrel{r}{c} \in B_{\alpha}$ the relation $\operatorname{enl}(s(\phi(\stackrel{r}{c}, x, y)))$ is small in \mathfrak{B}_{α} .

Proof. (i) Let $\mathfrak{B} \models \neg \operatorname{big}(\phi(\overset{r}{z}, x, y))(\overset{r}{c})$ and $\overset{r}{c} \in B_{\alpha}$ be atoms in the generated subalgebra. Set $\mathfrak{B}_{\alpha} =: \mathfrak{A}$, and let $M \neq \emptyset$ be a maximally homogeneous set for $\phi(\overset{r}{c}, x, y)$ in \mathfrak{A} , and $(a, b)_A \in P(A)$, i.e. $(a, b)_A$ is an interval in \mathfrak{A} . Take $(a', b')_A \leq (a, b)_A$ such that there is just one $i \in r$, say i_0 , with $(b' \setminus a') \subseteq c_i$ and $c_i \cap a' \neq 0$ and $b' \cap c_i \neq c_i$. We assume \mathfrak{B} (and also \mathfrak{A} and $\mathcal{P}(\omega)$) satisfy

$$\forall x \in (a', b') (\exists y \, \phi(\overset{r}{z}, x, y) \land \exists y \, \phi(\overset{r}{z}, y, x))(\overset{r}{c})$$

for otherwise $(a', b')_A \in D_A(M, \phi(\stackrel{r}{c}, x, y), 1, 0).$

Since $\mathfrak{B} \models \neg \operatorname{big}(\phi)(\overset{r}{c})$, we have $(a',b')_A \cap M \neq (a',b')_A$. We fix a $d \in (a',b')_A \setminus M$ and an $m \in M$ such that $\mathfrak{A} \models \neg \phi(\overset{r}{c},d,m) \vee \neg \phi(\overset{r}{c},m,d)$, say $\mathfrak{A} \models \neg \phi(\overset{r}{c},d,m)$, and show that there is an $(a'',b'')_A \leq (a',b')_A$ such that for any $x \in (a'',b'')_{\mathcal{P}(\omega)}$ we have $x \in M$ or $\mathcal{P}(\omega) \models \neg \phi(\overset{r}{c},x,m)$.

Then (i) will be proved, because such an $(a'', b'')_A$ is in $D_A(M, \phi(c, x, y), 1, 0)$. Fix a set $\{\bigwedge_{i \le r} \chi_{w,i} | w \in W\}$ of representatives for ϕ .

CLAIM. $d \cap c_{i_0} \neq c_{i_0} \setminus m$.

Proof. $\phi(\overset{r}{z}, x, y) = \bigvee_{w \in W} \bigwedge_{i < r} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i)$, w.l.o.g. $W = \{0, 1, \ldots, s-1\}$. Hence $\mathfrak{A} \models \bigwedge_{w \in W} \bigvee_{i < r} \neg \chi_{w,i}(c_i, d \cap c_i, m \cap c_i)$, say for $w = 0, 1, \ldots, s' - 1$

$$\mathfrak{A} \vDash \bigvee_{i < r, i \neq i_0} \neg \chi_{w,i}(c_i, d \cap c_i, m \cap c_i),$$

and for w = s', s' + 1, ..., s - 1

$$\mathfrak{A} \models \bigwedge_{i < r, i \neq i_0} \chi_{w,i}(c_i, d \cap c_i, m \cap c_i) \land \neg \chi_{w,i_0}(c_{i_0}, d \cap c_{i_0}, m \cap c_{i_0})$$

We may assume
$$s > 0$$
 and $s' \leq s - 1$, because otherwise $(a', b')_A \in D_A(M, \phi(\overset{r}{c}, x, y), 1, 0)$. Since

$$\mathfrak{A} \vDash \forall xy \Big(\Big(\bigwedge_{s' \le w < s} \bigwedge_{i < r, i \ne i_0} \chi_{w,i}(c_i, x \cap c_i, y \cap c_i) \\ \wedge \bigvee_{s' \le w < s} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) \to \phi(\stackrel{r}{c}, y, x) \Big),$$

we have

$$\begin{aligned} \mathfrak{A} \vDash \forall xy \Big(\Big(\bigwedge_{s' \le w < s} \bigwedge_{i < r, i \ne i_0} \chi_{w,i}(c_i, x \cap c_i, y \cap c_i) \\ & \wedge \Big(\bigvee_{s' \le w < s} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \lor (x \cap c_{i_0} = (-y) \cap c_{i_0} \\ & \wedge \exists x \, \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \land \exists y \, \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) \Big) \\ & \to \operatorname{enl}(\phi(\overset{r}{c}, x, y)) \Big) \,. \end{aligned}$$

By the assumptions on $\phi(\overset{r}{z}, x, y)$ and on $\overset{r}{c}$ there is just one 1-type of $x \cap c_{i_0}$ over c_{i_0} consistent with $\phi(\overset{r}{c}, x, y)$ such that for every $w \in W$ the formula $\exists y \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0})$ is implied by this type. The same holds for the 1-type of $y \cap c_{i_0}$ over c_{i_0} , which coincides with the 1-type of $x \cap c_{i_0}$ over c_{i_0} , and the formula $\exists x \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0})$. Since $m \cap c_{i_0}$ and $d \cap c_{i_0}$ have this 1-type, we get

$$\mathfrak{A} \models \exists x \bigvee_{\substack{s' \leq w < s}} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, m \cap c_{i_0})$$

$$\land \exists y \bigvee_{\substack{s' \leq w < s}} \chi_{w,i_0}(c_{i_0}, d \cap c_{i_0}, y \cap c_{i_0}).$$

Note that $\mathfrak{A} \models \neg \phi(\overset{r}{c}, d, m)$ and ϕ is equivalent to $\operatorname{enl}(\phi)$. Therefore $d \cap c_{i_0} \neq c_{i_0} \setminus m$ and the claim is proved.

We now give $(a'', b'')_A$ case by case.

Case 1: $d \cap c_{i_0} \neq m \cap c_{i_0}$. Then

$$\mathfrak{A} \models \bigvee_{i=0,1,2,4,8} \phi^i(c_{i_0}, d \cap c_{i_0}, m \cap c_{i_0}).$$

Assume that $\mathfrak{A} \models \phi^i(c_{i_0}, d \cap c_{i_0}, m \cap c_{i_0}).$

If i = 0 or i = 2, take an e' such that $0 \subset e' \subset c_{i_0} \cap m \cap (-d)$, and $(a'', b'')_A = (d, b' \setminus e')_A$. If i = 1 or i = 8, take $(a'', b'')_A = (a', d)_A$. Finally, if i = 4, take $(a'', b'')_A = (d, b')_A$.

- - -

Then, in each subcase, for any $x \in (a'', b'')_{\mathcal{P}(\omega)}$ we have

$$\mathcal{P}(\omega) \vDash \operatorname{tp}(x, m/c) = \operatorname{tp}(d, m/c)$$
 and hence $\mathcal{P}(\omega) \vDash \neg \phi(c, x, m)$.

Case 2: $d \cap c_{i_0} = m \cap c_{i_0}$. Subcase 2.1:

$$\mathfrak{A} \models \exists x y \Big(\phi^{012}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \land \neg \bigvee_{s' \le w < s} \chi_{w, i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) .$$

Since $\phi^{012}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0})$ determines the $\mathcal{L}_{\omega\omega}$ -1-type of $y \cap c_{i_0}$ over c_{i_0} , and m has the same one, we have

$$\mathfrak{A} \vDash \exists x \Big(\phi^{012}(c_{i_0}, x \cap c_{i_0}, m \cap c_{i_0}) \land \neg \bigvee_{s' \le w < s} \chi_{w, i_0}(c_{i_0}, x \cap c_{i_0}, m \cap c_{i_0}) \Big) .$$

There is an example d' for x with $d' \cap c_{i_0} \in (a' \cap c_{i_0}, b' \cap c_{i_0})_A$, because $m \cap c_{i_0} = d \cap c_{i_0} \in (a' \cap c_{i_0}, b' \cap c_{i_0})_A$ and hence within the given 1-type of $x \cap c_{i_0}$ over c_{i_0} the formula $\phi^i(c_i, x \cap c_i, m \cap c_i)$ can be realized with some $x \cap c_{i_0} \in (a' \cap c_{i_0}, b' \cap c_{i_0})_A$ for i = 0, 1, 2. We can argue with $(d' \cap c_{i_0}) \cup (d \setminus c_{i_0})$ as with d in case 1 for i = 0, 1, 2.

Subcase 2.2:

$$\mathfrak{A} \vDash \forall xy \Big(\phi^{012}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \to \bigvee_{s' \le w < s} \chi_{w, i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) \,.$$

Again we have

$$\mathfrak{A} \vDash \forall xy \Big(\Big(\bigwedge_{s' \le w < s} \ \bigwedge_{i < r, i \ne i_0} \chi_{w,i}(c_i, x \cap c_i, y \cap c_i) \\ \wedge \bigvee_{s' \le w < s} \chi_{w,i}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) \to \phi(\overset{r}{c}, x, y) \Big).$$

Since

$$\phi^{012}(z_{i_0}, x \cap z_{i_0}, y \cap z_{i_0}) \to \bigvee_{s' \le w < s} \chi_{w,i}(z_{i_0}, x \cap z_{i_0}, y \cap z_{i_0}),$$

by the definition of enl we have

$$\forall xy \Big(\Big(\bigwedge_{i < r, i \neq i_0} \operatorname{enl} \Big(\bigwedge_{s' \le w < s} \chi_{w,i}(z_i, x \cap z_i, y \cap z_i) \Big) \\ \wedge \Big(\bigvee_{s' \le w < s} \chi_{w,i}(z_{i_0}, x \cap z_{i_0}, y \cap z_{i_0}) \lor \Big(x \cap z_{i_0} = y \cap z_{i_0} \\ \wedge \exists x \bigvee_{s' \le w < s} \chi_{w,i_0}(z_{i_0}, x \cap z_{i_0}, y \cap z_{i_0}) \\ \wedge \exists y \bigvee_{s' \le w < s} \chi_{w,i_0}(z_{i_0}, x \cap z_{i_0}, y \cap z_{i_0}) \Big) \Big) \to \operatorname{enl}(\phi(\overset{r}{z}, x, y)) \Big) \,.$$

In \mathfrak{A} we get

$$\begin{aligned} \mathfrak{A} \vDash \forall xy \Big(\Big(\bigwedge_{s' \leq w < s} \bigwedge_{i < r, i \neq i_0} \operatorname{enl}(\chi_{w,i}(c_i, x \cap c_i, y \cap c_i)) \\ & \wedge \Big(\bigvee_{s' \leq w < s} \chi_{w,i}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \lor \Big(x \cap c_{i_0} = y \cap c_{i_0} \\ & \wedge \exists x \bigvee_{s' \leq w < s} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \\ & \wedge \exists y \bigvee_{s' \leq w < s} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, y \cap c_{i_0}) \Big) \Big) \to \operatorname{enl}(\phi(\overset{r}{c}, x, y)) \Big) . \end{aligned}$$

As in the first subcase, we get

$$\mathfrak{A} \models \exists x \bigvee_{\substack{s' \le w < s}} \chi_{w,i_0}(c_{i_0}, x \cap c_{i_0}, m \cap c_{i_0}) \\ \land \exists y \bigvee_{\substack{s' \le w < s}} \chi_{w,i_0}(c_{i_0}, d \cap c_{i_0}, y \cap c_{i_0}) \land d \cap c_{i_0} = m \cap c_{i_0}$$

Putting things together yields $\mathfrak{A} \models \operatorname{enl}(\phi(\overset{r}{c}, d, m))$ and hence $\mathfrak{A} \models \phi(\overset{r}{c}, d, m)$, a contradiction to the choice of d and m.

(ii) By 3.8, $\neg \text{big}(s(\phi)) \rightarrow \neg \text{big}(\text{enl}(s(\phi)))$, and, by 3.7, $\text{enl}(\text{enl}(s(\phi))) \rightarrow \text{enl}(s(\phi))$ is valid. Therefore (ii) follows from (i) applied to $\text{enl}(s(\phi))$.

Lemma 3.9, the construction and the monotonicity of Q_1^2 yield:

THEOREM 3.10. For any special ϕ ,

 $\mathfrak{B} \vDash \forall_{z}^{r} (("z are the atoms in the generated subalgebra" \land \neg \operatorname{big}(s(\phi))(z)) \\ \rightarrow \neg Q_{1}^{2}xy \ s(\phi(z, x, y))).$

Finally, we show how to get Theorem 3.10 for ϕ instead of $s(\phi)$.

Theorem 3.11. For any special ϕ

 $\mathfrak{B} \models \forall_z^r \left((``z' are the atoms in the generated subalgebra'' \land \neg \operatorname{big}(\phi)(z') \right) \\ \to \neg Q_1^2 x y \phi(z, x, y) \right).$

Proof (by induction on $\operatorname{card}(R(\phi))$). If $R(\phi) = \emptyset$, then $\phi(\overset{r}{z}, x, y) \to x = y$, and hence $\mathfrak{B} \models \neg Q_1^2 x y \phi(\overset{r}{c}, x, y)$.

Now assume $\mathfrak{B} \models \forall_z^r ((\overset{*r}{z} \text{ are the atoms in the generated subalgebra}" \land \neg \operatorname{big}(\psi)(\overset{r}{z})) \to \neg Q_1^2 xy \, \psi(\overset{r}{z}, x, y))$ for all ψ with $R(\psi) \subset R(\phi)$. We show $\mathfrak{B} \models Q_1^2 xy \, \phi(\overset{r}{c}, x, y) \to \operatorname{big}(\phi)(\overset{r}{c})$ for any r-tuple $\overset{r}{c}$ that consists of atoms in the generated subalgebra. Assume $\mathfrak{B} \models Q_1^2 xy \, \phi(\overset{r}{c}, x, y)$ and let H be an uncountable homogeneous set for $\phi(\overset{r}{c}, x, y)$ in \mathfrak{B} . By recursion on $i \leq r$ we define uncountable subsets $H^{(i)}, 0 \leq i \leq r$.

Set $H^{(0)} := H$. Assume $H^{(i)}$ is defined. We distinguish two cases:

Case 1: $\{x \cap c_i \mid x \in H^{(i)}\}$ is uncountable. Then take $H^{(i+1)} \subseteq H^{(i)}$ such that $H^{(i+1)}$ is uncountable and for any $x, y \in H^{(i+1)}$, if $x \neq y$ then $x \cap c_i \neq y \cap c_i$.

Case 2: $\{x \cap c_i | x \in H^{(i)}\}$ is countable. Then there is some $x \in H^{(i)}$ such that $\{y \in H^{(i)} | x \cap c_i = y \cap c_i\}$ is uncountable. Let $H^{(i+1)}$ be such a set.

For $i \notin R$, $\{x \cap c_i \mid x \in H^{(i)}\}$ is a singleton, and we are in case 2. Now consider $H^{(0)}, H^{(1)}, \ldots, H^{(r)}$. If for all $i \in R$ case 1 is true, then $H^{(r)}$ shows $\mathfrak{B} \models Q_1^2 xy s(\phi(\overset{r}{c}, x, y))$. By 3.10, $\mathfrak{B} \models \operatorname{big}(s(\phi(\overset{r}{c})))$. Since $s(\phi) \to \phi$, $\mathfrak{B} \models \operatorname{big}(\phi(\overset{r}{c}))$.

If there is some $i \in R$ with case 2 being true, fix such an i. Then $H^{(i+1)}$ shows $\mathfrak{B} \models Q_1^2 xy \ (\phi \land x \cap z_i = y \cap z_i) (\overset{r}{c}, x, y)$. Take $\psi = \phi \land x \cap z_i = y \cap z_i$. Then ψ is also special. Since $\psi \to \phi$ and $i \in R(\phi) \setminus R(\psi)$, we have $R(\psi) \subset R(\phi)$. By induction hypothesis, we conclude from $\mathfrak{B} \models Q_1^2 xy \ (\phi \land x \cap z_i = y \cap z_i) (\overset{r}{c}, x, y)$ that $\mathfrak{B} \models \operatorname{big}(\psi(\overset{r}{c}))$ and hence $\mathfrak{B} \models \operatorname{big}(\phi(\overset{r}{c}))$.

Acknowledgement. The results are a part of the author's doctoral thesis. I would like to thank my thesis advisor H.-D. Ebbinghaus for his friendly support.

References

- [Bal-Ku] J. Baldwin and D. W. Kueker, Ramsey quantifiers and the finite cover property, Pacific J. Math. 90 (1980), 11–19.
 - [Ba] J. E. Baumgartner, Chains and antichains in $\mathcal{P}(\omega)$, J. Symbolic Logic 45 (1980), 85-92.
- [Ba-Ko] J. E. Baumgartner and P. Komjáth, *Boolean algebras in which every chain and antichain is countable*, Fund. Math. 111 (1981), 125–133.
 - [Bü] G. Bürger, The L^{<ω}-theory of the class of Archimedian real closed fields, Arch. Math. Logic 28 (1989), 155–166.
 - [Ko] P. Koepke, On the elimination of Malitz quantifiers over archimedian real closed fields, ibid., 167–171.
- [Mag-Mal] M. Magidor and J. Malitz, Compact extensions of L(Q) (part 1a), Ann. Math. Logic 11 (1977), 217–261.
 - [Mil] H. Mildenberger, Zur Homogenitätseigenschaft in Erweiterungslogiken, Dissertation, Freiburg 1990.
 - [Ot] M. Otto, Ehrenfeucht-Mostowski-Konstruktionen in Erweiterungslogiken, Dissertation, Freiburg 1990.
 - [Ro-Tu] P. Rothmaler and P. Tuschik, A two cardinal theorem for homogeneous sets and the elimination of Malitz quantifiers, Trans. Amer. Math. Soc. 269 (1982), 273–283.
 - [Ru] M. Rubin, A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness, ibid. 278 (1983), 65–89.

[Sh] S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1981), 301–308.

MATHEMATISCHES INSTITUT UNIVERSITÄT BONN BERINGSTR. 4 D-5300 BONN 1, GERMANY

> Received 8 April 1991; in revised form 24 July 1991, 18 February 1992 and 14 September 1992