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A rigid Boolean algebra that admits the
elimination of Q?

by

Heike Mildenberger (Bonn)

Abstract. Using <, we construct a rigid atomless Boolean algebra that has no
uncountable antichain and that admits the elimination of the Malitz quantifier Q%

1. Introduction. Malitz quantifiers are introduced in [Mag-Mal]. Let
us recall the semantics of Q%, n > 1, « € ORD: A E QZ% o(a, :%) iff there

is a subset H of A such that card(H) > R, and 2 F ¢(a, h) for all pairwise
different hg, h1,...,hn_1 € H. Such a set H is called a homogeneous set
for (@, x). Baldwin and Kueker [Bal-Ku], Rothmaler and Tuschik [Ro-Tu],
Biirger [Bii] and Koepke [Ko] consider the question of elimination of some
of these quantifiers in certain theories or structures. [Ro-Tu] shows that any
saturated model allows the elimination of all @7, « € ORD, n > 1.
Saturated models with two elements of the same type are not rigid. On

the other hand, there are L, (Q?%)-sentences ¢ that have only rigid models
and that are satisfiable under CH (see [Ot], [Mil]). We consider

¢ := “the structure is a Boolean algebra with 0 # 17
AVz(z #0— Quyy Cx) A-Qlzyr L y.

[Ba-Ko, Theorem 5(a)] shows that all models of ¢ are rigid. The search for
a model of ¢ that contains two different elements of the same L., (Q?)-type
leads, under <), to a model of ¢ that admits the elimination of @? and in
which therefore any two elements # 0,1 have the same L., (Q3%)-type.

In ZFC + $ and even in ZFC + CH there are various constructions of
uncountable Boolean algebras with no uncountable antichains and with some
other algebraic properties (see [Ba-Kol, [Sh], [Ru], but also [Ba]). In the
course of showing that additional tasks may be fulfilled along the way given
in [Ba-Ko], we get a partition of all formulas qb(g,m,y) € L,,(Q3), r € w,
into two classes @1 and @5 such that



1. The methods of [Ba-Ko] are applicable to any qb(g, x,y) € ®1. They
will allow us to show that the homogeneous sets for any gi)(g', x,y) € ¥ will
grow only during countably many steps in the chain which we build in the
next section.

2. For any Boolean algebra 21 with % F Vz # 0Q1yy C z and any

O(%,x,y) € By: AE 3z Qlay d(%, 2, Y).

“gb(;,x,y) € @17 will be shown to be equivalent under the first order
theory of atomless Boolean algebras to a first order formula with its free
variables among zg, 21, ...,2,—1. The consideration of the possible quanti-

r . . .
fierfree types of the z leads to a procedure for eliminating Q3.

2. The construction

Notation. We will use 2, B, B, to denote Boolean algebras. Boolean
algebras are considered as Tpa-structures with 754 = {N,U, —,0,1}.  Cy
is written for x Ny = =, C means strict inclusion, z \ y is used for z N (—y).
P(w) denotes the powerset algebra of w. For 2A C P(w) we often write A
for 2. The interpretations of the 754-symbols in P(w) are denoted by the
symbols themselves.

a,b € A are comparable (in ) iff a C*borbC*a CCAis a
chain (an antichain) iff any two distinct elements of C' are comparable (not
comparable). For a C* b€ A let (a,b)a :={c€ A|a C* ¢ C* b}.

Using <>, we shall construct a Boolean algebra B such that 9B is a model
of the sentence ¢ from the introduction and 8 admits the elimination of
Q?. As the construction of our Boolean algebra 9B follows the pattern of
[Ba-Ko|, we restrict ourselves to a short description, heavily referring to
[Ba-Ko].

Inductively on o € wj, we shall build a chain (B,, My )acw,, Where
the 9B, are countable atomless subalgebras of P(w) and each M, is a
countable collection of pairs (M, ¢(¢, x,y)), where M C B, and ¢(¢,z,y) is
a quantifierfree (qf) L., [7pa]-formula with a property that will be defined
later on, and ¢ are elements of B,,. At limit steps we take unions. 8,41 will
be the Boolean algebra that is generated by B, U {z,} in P(w), where the
Zo is chosen by the same forcing P(B,) as in [Ba-Kol|, namely: P(B,) =
{(a,b)p, |a Cbe By}, (a/,b)p, <PB) (a,b)p, iff a Ca’ Cb Cb.

We shall define Da(M, ¢(C,z,y),e, f) and My11. Then we take a
{DAa(M, p(c,x,y), e, f)|e, f € Bay, (M,d(C,x,y)) € Myi1}-generic subset
{(an,bp)|n € w} of P(B,) such that {(a,,b,)|n € w} additionally satisfies
the properties described in [Ba-Ko| and set z, = (J{a, | n € w}. In [Ba-Ko],
M 41 is chosen so that chains and antichains are countable. Our M1 dif-
fers from that of [Ba-Ko], because we also want all homogeneous sets for



any d)(g, x,y) € ¢1 to be countable. The next items are the generalizations
of the corresponding points of [Ba-Ko.

DEFINITION 2.1. Let A C P(w) and ¢, e, f € A. Let ¢(Z,z,y) be qf.

() Da(M, 622, 9),e, 1) = {(a,b) € P(A) |for any u € (a,b)p() one
of the following points is true:

1. (une)U(f\u) e M.

2. There is some y € M such that

P(w) E=o(@, (wune)U(f\u),y) V@ y, (une)U(f\u)}.

(ii) M is called mazimally homogeneous for ¢(¢,z,y) in A iff M C A is
homogeneous for ¢(¢,z,y) and for all a € A\ M there is some b € M such
that 2 E —¢(¢,a,b) V —¢(¢, b, a).

(iii) ¢(¢,z,y) is small in A iff for any ) # M C A that is maximally
homogeneous for ¢(¢, x,y) in A, Da(M, ¢(¢, z,y),1,0) is dense in P(A).

LEMMA 2.2. Let 2 C P(w) be atomless, ¢ € A<, ¢(¢,x,y) qf and small
inAe, f € A and M # 0 be mazimally homogeneous for ¢(¢,z,y) in 2.
Then Da(M, ¢(C,x,y),e, f) is dense in P(A) for any e, f in A.

Proof. [Ba-Ko, Lemmas 2.3 and 2.4].

Also the proof of the next lemma can be carried out as in [Ba-Ko]: just
take a u for & and M in the same way as they take x, for B, and M,1.

LEMMA 2.3. Let 2 C P(w) be atomless and countable and let M be a
countable subset of

and M is mazimally homogeneous for ¢(¢,z,y) in A}.

Then for any (a,b)a € P(A) there is a u € (a,b)p(,) such that:

1. u¢gA.

2. [AU{u}]P), the subalgebra generated by AU{u} in P(w), is atomless.

3. For any (M, ¢(¢,x,y)) € M the set M is maximally homogeneous for
$(¢,z,y) also in [AU {u}]P«).

Now using Lemma 2.3 and <, we can construct our B. Let (S, |a € wy)
be a {-sequence. Let (a¢ | € wi) be an enumeration of P(w) in which each
element of P(w) appears wy times.

In step a+ 1, let Moy = Mo U{({ag | € € S}, 6(e 2, y)) | {ae |€ € Sa)
is a maximally homogeneous set for ¢(¢,z,y) in B, and ¢(¢,x,y) is small
in B, and ¢ € B,}. Apply Lemma 2.3 with 2 = B, and M = My to
get an z,. Define By as [Ba U {2,}]7@. Let B = J{Bala € wi}.
Take the z, so that B F Vz(zr # 0 — Qiyy C x). Then it is easy to
see that for any ¢(¢, z,y) which is small in every B, with ¢ € B,, we have



B E -Q?zy #(¢, z,y). In particular, B is a model of ¢ from the introduction
(because “z Z y” is small), hence B is rigid.

3. Large homogeneous sets. The aim of this section is to define a
mapping
blg : U wa[TBAKvavy) - U £ww[TBA](Z)’
rew rew

¢(z,2,y) — big(8(2,2,1))(2),

such that for every ¢(z,z,y) € Luw|[TBA]

T

(+) B V2 (Qfay ¢(2,3,y) < big(4(2,7,1))(2))
Then &5 will be
{6(Z, x,y) | big(¢(Z, z,y))(Z) is valid in any atomless Boolean algebra} .

In order to simplify the notation we tacitly assume that always the vari-
ables  and y are intended to be quantified by Q3.

Let 2 be any atomless Boolean algebra. Since 21 admits the elimination
of 3 it is enough to define big for quantifierfree ¢(z, z,y) € Luw|[TBA]-

For any ¢ € A and qf ¢(¢,z,y) there is a qf ¥(¢,x,y) such that ¢
is an (injective) enumeration of the atoms of the subalgebra generated by
¢, and A F Vay (¥(@,x,y) < ¢(C z,y)). Also if ¢(Z,x,y) is a disjunction
V,;(@(Z, z,y) ANi(Z)) then knowing x; = big(¢(Z, x, y) A;(Z))(Z) we can de-
fine big(¢(Z, z,y))(Z) to be \/, x;. Hence it suffices to define big(4(z, z, y))(Z)
only for those qf ¢(Z, x,y) that imply that {zo,...,2z-_1} is the set of atoms
in the subalgebra generated by {zg, ..., 2z-1}.

If H is an uncountable homogeneous set for ¢(27 x,y), then there is an
L,-1-type t((rz,aﬁ) over ¢ and an uncountable H; C H such that every
element of Hy has the £,,-1-type tp(z/¢) = t(¢, ) over ¢. Hence it is enough
to define big for the gb(;:, x,y) with the above mentioned property and the
additional property that there is an L,,,-1-type t(g, x) over z (independent
of the assignment ¢ of %, because we consider only ¢ that are atoms in the
subalgebra generated by 2) such that

AEVayz (b(z,2,y) = (8(z,2,y) At(z ) = tp(z/2) Atz y) = tp(y/%))) -
We will call such formulas special. Finally, note that any L, -2-type
t(g,x,y) over ¢ is determined by the corresponding r-tuple of the quanti-
fierfree types of x N¢;, yNe; in {a € Ala C ¢}, i < r. For any such type

there are 15 possibilities, and under the condition tp(z/z) = tp(y/z) there
remain the 9 possibilities not marked with an e in the table below.



The possibilities for the quantifierfree types of z N¢;, yNe, i <r,in{a € Ala C ¢}

No. zNyNz (—x)N(—y)Nz xN(—y)Nz (—x)NyNz Remarks
0 #0 #0 #0 #0
1 40 £0 £0 0
2 £0 40 0 £0
Nz =
3 #£0 #0 0 0 YNz 0,2
1 £0 0 #0 20
TNz =2
o5 £0 0 £0 0 A
YNz =z
o6 #0 0 0 #0 TNz # 2
Nz =
7 #0 0 0 0 vz = 2
8 0 #0 £ 0 £0
xNz; #0
9 0 £0 40 0 YN0
xNz; =0
10 0 £0 0 £0 A
Nz =
11 0 £0 0 0 Jhe o
rNz; #0,2;
12 0 0 #0 #0 G e
TNz =2
o13 0 0 £0 0 e 0
rxNz; =0
14 0 0 0 #0 YNz = 2

Let ¢%(z;,m N 2,y N z;) say “the L .-type of x Nc;,y N ¢; over ¢; has

number k7, k = 0,...,14. The disjunction ¢°*2(u, v, w)

= ¢%(u,v,w) V

¢t (u,v,w) V ¢*(u, v, w) will play an important role in the following.

DEFINITION 3.1. Let ¢(£,$,y) € L,.[tBA| be quantifierfree and be of

the special form as described above.

big(p(z, 2, y))(2) =

S0 bvay((a Sy CoA N(BVa) Nz A0 — "2z, 2020,y 1 20)) )

1 <r

Equivalent to big(¢(z,z,%))(2) is the formula

\/ me(( /\ ¢012(Zi,$ﬁzi7ymzi)

IooIlUIQUIg:{O,...,T‘—l},Io#O ZeIO

A /\xﬁzi:yﬂzi;éo,zi
i€ly

— d)(g',a:,y)) .



A /\ xNz;=yNz; =0
i€ls
A /\ Tz =yNz :Zi> —>¢(2,:c,y)> ;
i€ls
(U denotes the disjoint union) which will be useful for the easy direction
of (x):

LEMMA 3.2. Let 2 be an atomless Boolean algebra. Let A F Vx # 0

Qiyy C z, and ¢(%,z,y) be as above. Then A E Vz (big(4(z, z,y))(2) —
ey o (2, 2,y)).

Proof. Let 2 E big(¢(z,z,y))(¢). For i € I take an uncountable set
H; C (0, ¢;)g such that for any « € H; the relative complement ¢; \ « & H;.
Let (hio|a € wi) be an injective enumeration of a subset of H;. Finally,
fori € I let H; = {d;} for some d; with 0 C d; C ¢;, for i € I7 let H; = {0},
and for ¢ € I let H; = {¢;}. Then

H = {U{hi,au eyul Jdilie hyuJlelic 13}‘a Ewl}

is an uncountable homogeneous set for qﬁ(g, x,y).

Now for 9B as in Section 2, we shall prove the other direction of (k). By
the construction, it would suffice to show:

(#x)  For any enumeration ¢ of the atoms in the subalgebra of B generated
by z, if B E —|big(¢(2,x,y))(£), then ¢(c, x, y) is small in every B,
with ¢ € B,.

Unfortunately, this is true only for <Z>(£,:c,y) that do not forbid certain
equalities of Boolean terms. We introduce some notation and then give a
sketch of our proof of the hard direction of ().

We say briefly “¢(%, z, ) is valid” or just “¢” for “¢(%,z, y) is valid in all
atomless Boolean algebras if the assignment of % is an enumeration of the
atoms in the subalgebra generated by 2. ¢(£’7 x,y) is satisfiable or consistent
if ﬂgb(,;,:c,y) is not valid.

For a given special cb(;, x,y) set

R(¢):={i<r|¢p —>xNzi =yNz is not valid} .
We will define two mappings s and enl from the set of all special qﬁ(g, x,y)
into itself. The mapping s is a technical means used to prove enl(enl(s(¢)))

— enl(s(¢)) (Lemma 3.7) and —big(s(¢)) — —big(enl(s(¢))) (Lemma 3.8).
Lemma 3.9 says that (%) is true for formulas of the form enl(s(¢)) for some



special ¢. Hence we get from the construction and from 3.8

r

B £ big(s(¢))(¢) — ~Qixy enl(s(9))(c,7,y).
whence s(¢) — enl(s(¢)) and the monotonicity of the quantifier Q% imply

r

B E —big(s(¢))(c) — ~Qiwy s(9)(c,z.y)
(Theorem 3.10). Using this result we prove by induction on card(R(¢)),
simultaneously for all special formulas ¢,
B = —big(¢)(c) — ~Qizy é(c.z,y),
which will finish the proof of (x).

In order to simplify the notation, we often suppress the free variables
(g,az,y) or (zi,x Nz, yNz).

DEFINITION 3.3 (The mapping s). For R Cr ={0,1,...,r—1} and for
X(zi,x N zi,yNz;) € Low|[Tpa] we define
X(zi,x Nz, yNz) ifig Ror

O (2w N2,y N 2) — X (25,2 N 25,y N 27)

sr(x(zi, Nz yNz;)) == is valid;
X(zi,xNziyyNz) AxNz #yNz;

| else.

Let S = {Aic; Xw,i(zi,7 N 25,y N z;) |w € W} be a finite set such that
for all w € W the conjunction A,_, Xw,i(2i, 2 N 2,y N 2) is satisfiable and
Nicr Xw,i(zi, 2025,y N 2;) — (;5(2, x,y) is valid, and such that for any satisfi-
able conjunction 0 = A,_,. x;(2i, £Nz;,yNz;) such that § — d(z,z,y) is valid
there is a w € W with A, _, xj(zi, 2Nz, yNzi) — N, op Xw,i (2, 024,y N 24).
We will call such a set S a set of representatives for ¢. Given such a set, let
R = R(¢) and define

8((1)(2,.%,:1/)): \/ /\SR(Xw,i(zivxmziaymzi))'

weW i<r
If £ —3zyz (%, x,y), then let s(¢(z,x,y)) be any inconsistent formula.

A Dbrief reflection shows that s(¢) is well defined up to logical equiva-
lence: Let 8" = {\;., x4 (2,7 N 2i,y N 2) [w' € W'} be another set of
representatives for ¢.

For \/ s cw- //\Kr S?(Xgu/,i)‘_) Vwew Nicr SR(Xw,i), it suffices t/o show
that for each w’ € W’ there is some w € W such that A,_, SR(wa,i) —
Nicr 8R(Xw,i)- Let w' € W' be given. Since S is a set of representatives for
¢ there is a w € W such that A, _,. x%»; = A, Xw,i, Which is equivalent to



Xowi = Xw,i for i < r. Immediately from the definition of sg, if X,/ ; — Xw.i
then SR(XL),’Z») — SR(Xw,i). Hence /\i<r SR(X/w’,i) — /\KT SR(Xaw.i)-
The other direction follows by symmetry.

Remark. s(¢) may be unsatisfiable, e.g. for ¢ = (xNzy = yNzoAzNz; C
yNz1)V(zNzo C yNzoAzNz1 = yN21) AN TN2i # 2, 0N \i—g 1 YN 2i #
2i,0NzgNz1 =0A 29U 2z = 1.

DEFINITION 3.4 (The mapping enl). For x(z;,zNz;,yNz;) € Low[TBA]

we define
X(zi, T N 2,y N 24)
VeNz = (—y) Nz Az x(zi,x Nz y N z;)
Ay x(zi, oMz, y N 2))

if @22 (2, 2Nz y N z) — x(zi, N2,y N 24)
enl(x(zi, vNz;, yNz;)) = is not valid;
X(zi,xNziyyNz)V((eNz = (—y) Nz
VeNz,=yNz)AJzx(zi,x0z,yNz)
A3y x(zi, 2 0 2,y N 24))

otherwise.

Let {\; <, Xw,i(zi, 2 N zi,y N z;) |w € W} be a set of representatives for ¢.
Then set

enl(¢(z, x,y)) = \/ /\ enl(xuw,i(zi, 2Nz, y N 2i)).

weW i<r
If £ —3zyz (%, x,y), then let enl(¢(z,z,y)) be any inconsistent formula.

From the fact that x/,,, — xw, implies enl(x/,, ;) — enl(xw,), we con-
clude by an analogous consideration as above that énl(gf)) is well-defined.

In order to apply Lemmas 2.2 and 2.3 we may replace enl(qﬁ(g, z,y)) by
an equivalent (with respect to the theory of atomless Boolean algebras) qf
formula.

The next two lemmas collect some properties of s and enl that will be
useful in the proofs of 3.7 and of 3.8.

LEMMA 3.5. Let xs(zi,x Nz, y N z;), s=0,1, be qf and R C r.
(i) (enl(xo) V enl(x1)) — enl(xo V x1)-
(ii) (sr(x0) V sr(x1)) = sr(xo V x1)-

For (iii), (iv) and (v), assume additionally that xs(zi,x N 25,y N 2),
s = 0,1, determine the same 1-type t(z;,xNz;) of xNz; over z; and of yNz;
over z;.



(iii) Assume that, for s = 0,1, if not ¢°12(z;, 2 N 25,y N 2;) — xs(2i, 2N
zi,y N z;), then xs(zi,x Nz, y N z;) — x Nz #yNz. Then (enl(xo) A
enl(x1)) — enl(xo A x1).

(iv) (sr(x0) A sr(x1)) — sr(Xo A x1)-

(v) Assume that xs — xNz; =yNz fors=0,1ift & R. Then for any
1 < r the formula

(enl(sr(x0))(zi,x Nz y N z;) Aenl(sg(x1))(zi,x N 2z y N 2;))
— enl(sr(xo A Xx1))(zi,x Nz y N 2;)
1s valid.

Proof. (i), (ii) xs — xo V x1 implies enl(xs) — enl(xo V x1) and
sr(xs) = sr(Xo V x1)-

(iii) Define

d=(zi,xNziyyNzy)i=xNz;=yNz ANz, zNz;) and

O (zisx Nz yNz)i=cNz = (—y) Nz At(zi,x N z) Atz y N 2) .

Case 1: ¢"'2 — y, for s = 0,1. Then ¢*12 — xo A x1 and enl(xo) A
enl(x1) = (XoVo-Vo=)A(x1VP-_Vo=) < (XoAX1)VP- Vo= = enl(xoAX1)-

Case 2: Not ¢°'2 — y, for s = 0,1. Then not ¢°'2 — xo A x1 and
enl(xo) Aenl(x1) = (xo Vo) A(x1Vo-) < (xoAx1) V- =enl(xo Axi)

Case 3: ¢°'2 — yo and not ¢°'? — x;. Then not ¢°'2 — yo A x1 and
enl(xo) Aenl(x1) = (xoVé-Vo=)A(x1V-) < (xoAx1) V-V (d=Axi).
Since by the assumption of (iii), ¢— A x1 is not satisfiable, the latter formula
is equivalent to (xo A x1) V ¢— = enl(xo A Xx1)-

(iv) Assume i € R, otherwise sg does not change xo, X1, X0 A X1-

Case 1: ¢"2 — x, for s = 0,1. Then ¢"12 — o A x1 and sg(xo0) A
sr(x1) = xo A x1 = sr(Xo A x1)-

Case 2: E.g. not ¢°1?2 — xo. Then not ¢°'?2 — xo A x1 and sg(xo) A
sr(x1) = (o Az Nz #yNz)Asr(xi) © (o Ax1) AzNz #yNz =
sr(Xo A X1)-

(v) For i € R, the assumptions for (iii) are true for 1, = sg(xs). Hence
by (iii) and (iv),

(enl(sr(x0))(zi,z Nz, y N z;) Aenl(sr(x1))(zi, @ Nz, y N 25))

—enl(sr(xo A x1))(zi,x Nz y N 2z;) .
For i ¢ R, we have x4 — xNz; = yNz for s = 0,1 and hence enl(sr(xo)) A
enl(sr(x1)) = (xo V ¢-) A (X1 V @) < (Xo Ax1) V é— = enl(sr(xo A X1))-

LEMMA 3.6. Let ¢ be special and satisfiable, R = R(¢), and let
{Nicr Xw,i |w € W} be a set of representatives for ¢.

(i) For any N, Xi = Vwew Nicr SR(Xw,i), there is a w € W such
that N\, Xi = Nicr SR(Xw,i)-



(H> enl(3(¢)) A \/weW /\i<r enl(sR<XUJ,i))'
(iii) For any N;o, Xi — Vwew Nicr €0l(SR(Xw,i)), there is a w € W
SU’Ch tha’t /\i<r Xé - /\i<r enl(SR(X’w,i))'

Proof. We will first prove (iii). Then the proof of (i) which is similar
but easier will be clear. Let A;_, x;(2i, 2Nz, yNz;) be consistent, otherwise
one can take any w € W.

For ¢ < r there is an n;, 0 < n; < 15, and there are X;0,..., Xi,n,—1 €
{¢°, ..., ¢'*} such that

/\ Xi (2, N 24,y N 23) < /\(5(\2',0 VooV Xini—1) (2, @ N 2,y 0 24)
i<r <r
We will show the claim by induction on [, _, n;.
Case [],., n; = 1. Take an atomless Boolean algebra 2l and ¢ € Asuch
that ¢ is an enumeration of all the atoms in the generated subalgebra. Take
a,b € A such that AF A, xi(ci,aNc;,bNe;). Then there is some w € W
with AF A, enl(sr(xw,i(ci,aNei, bNe;))). Since A, xG(zi, 2Nz, y N 2;)
defines an L,,,-2-type of (x,y) over %, we have Nier Xi(zi,2 0 25,y N 2) —

Nicrenl(sr(Xw,i(zi, T N 2,y N 2))).
Induction step. We consider the step from [],_ . n; to (ng + 1)
X [[g<icy Mi, the other cases are similar.

(X0,0V- - -VX0,10) A /\ X; < ()?0,0/\ /\ X;>V<(>?0,1\/---V)?o,no)/\ /\ X;)

o<i<r o<i<r o<i<r

By induction hypothesis there are w’, w” € W such that

Xo,0 A /\ Xi — /\enl(sR(Xw’,i))a

o<i<r i<r
(Roa V... VXom) A N\ X = /\ enl(sr(xwni)) -
o<i<r i <r

Thus we have

((Roon A X))V (Roa Ve Vo) A A X)) =

o<i<r o<i<r
(enl(sr(xw:0)) V enl(sg(xuwr0))) A\ (enl(sg(xw.i)) A enl(sg(xuwi))) -
0<i<r
Note that in the last conjunction we get “and” and not only “or”, because
A xi— N enlisr(xw)) A\ enl(sr(xwri)
o<i<r o<i<r o<i<r

as the situation below any z; is independent of the situation below the
other z;.



From 3.5(i), (i) and (v) we get
()?0,0 A /\ Xi) v (()?0,1 V..oV Xone) A /\ X;)

0<i<r 0<i<r
— enl(sr(Xw,0 V Xw”0)) A /\ enl(sr(Xw.i A Xwi)) -
0<i<r
Since {A; <, Xw,i(zi,® N 25,y N 2z;) |w € W} is a set of representatives for
gb(g,x,y) and since w’,w” € W, we have (Xw,0 V Xw"0) A Nocjer Xuwi A
Xwi) — ¢ and there is a w € W such that

(Xw’,(] \ Xw”,O) A /\ (Xw’,i A Xw”,i) - /\ Xw,i -
o<i<r i <r

For such a w we have

enl(sr(Xw,0 V Xw0)) A /\ enl(sr(Xuw,i A Xwi)) = /\ enl(sr(Xuw,i)) ,
0<i<r i<r
and thus the induction step is complete and (iii) is shown.

(ii) Assume s(¢) is satisfiable, otherwise both sides are not satisfiable.
Let S = {Aic, Xw,i|w € W} be a set of representatives for ¢, and S" =
{Aicr X |w" € W'} be a set of representatives for s(¢) =V, Aic,
SrR(Xw,:) such that W’ D W= {w e W A, ., sr(Xw,) is satisfiable} and
Xowi = SR(Xw,i) for w e W.

By definition, enl(sgr(¢)) = Vew: Nicrenl(Xy;). By (i), for any
w' € W' there is some w € W such that A\, X1, — A<, SR(Xw,:) and

hence A\;_, enl(x}, ;) — Aic, enl(sr(Xw,:)). Thus enl(s(®)) — V e Nicr
enl(sr(xw,i)). The other direction follows immediately from the choice of

S’ and the definition of enl.
LEMMA 3.7. Let ¢ be a special formula. Then enl(enl(s(¢))) < enl(s(¢)).

Proof. Assume s(¢) is satisfiable, otherwise both sides are not satisfi-
able. Let S, W be as above and S = {\,_, xy; |w" € W"} be a set of
representatives for enl(s(¢)). By definition, enl(enl(s(¢))) =V vcwr Nicr
enl(xy,;). For w"” € W" we have A,;_, xi,»; — enl(s(¢)), hence by 3.6(ii),
Nicr Xri = Vwew Nicr e0l(8r(Xw,i)). By 3.6(iil) there is some w €
W such that A, . xun; — Ao, enl(sr(Xw,i)), whence A,;_ enl(x3y.;) —
A<, enl(enl(sr(Xw,:))). It is easy to check that for qf x(z;, N2,y N z;) by
definition

enl(enl(x(z;, Nz, yNz;))) — enl(x(z, x Nz yNzg)).
"

Therefore Nicrenl(xin:) — Nicpenl(sr(xw,)), and putting things to-
gether yields \/ v cyprv Ajor €0l(Xorr i) = View Nicr €0l(8r(Xw,:)), and, by
3.6(i1), Vyrewr Nier enl(xﬂj,,’i) — enl(s(¢)).



The other direction is obvious.

LEMMA 3.8. =big(s(¢)) — —big(enl(s(¢))) is valid for special ¢.

Proof. Let 2 be any atomless Boolean algebra. Assume 24 F
big(enl(s(¢(z, z,y))))(¢). We show that A E big(s(é(z,z,9)))(¢). Since
the 1-types of z and of y over ¢ are determined by 2 E Jy enl(s(qﬁ(g, x,9)))
and 2 £ 3z enl(s(4(c, x,y))), there is just one pair (I, I3) such that
A FE \/ Vay

{(IQ,Il)‘I()L.JllL‘JIgUIg:{O,...,T—l},Iofo}

(( /\ 2 (ci,x Neg,yNeg) A /\ zNe;=yNe; #0,¢

i€lp i€l
A /\ xNe;=yNe;=0A /\ rNe; =yNe :ci> —>enl(s(¢(£,x,y)))> :
iGIQ iefg
Take Iy C-maximal such that

A = V:L“y(( /\ gbom(ci,xﬁci,yﬂci)/\ /\ xNe=yNe #0,¢
i€lp i€l

A /\ xNe=yNe;=0A /\ rNe=yNg :cz-) —>enl(s(¢(g,x,y)))).
i€l i€l3
Let R = R(¢) and {A\,_, Xw,i |w € W} be a set of representatives for ¢. By
3.6(ii) and (iii) there is a w € W such that

A #wa(( /\ 2 (ci,x Neg,yNeg) A /\:L‘ﬂci:yﬂci#o,ci

i€lp 1€l

A /\$ﬂci:yﬂci:O/\ /\ xﬂci:yﬂci:ci)

i€ly i€ls
— /\ enl(sR(xwg(Ci, TMNc,yn Cz)))) :
i<r

We claim that also

A I=Va:y<< /\ ¢012(ci,a:ﬂci,yﬂci)/\ /\ xNe;=yNe #0,¢
i€ly iel,

A /\xﬂci:yﬂci:O/\ /\ mﬂci:yﬂci:ci)
iEIQ i€I3

- /\ SR(Xw,i(ci,z N e,y N Ci))) :
1 <r
Indeed, by the definition of enl we have for any sg(Xw,i(2i,z N 2,y N 2)):
For i € Iy, if ¢°12 — enl(sr(xw.:)), then ¢°1? — sp(xw.). For i € Iy, if
xNz;=yNz =0—enl(sp(Xw,)), then Nz, =y Nz =0 — Sp(Xw.,i)-



Foriels,ifx Nz =yNz =2z — enl(sp(Xxw,i)), then x Nz, =y Nz =
Zp — SR(Xw,i)-

For i € I the formula x Nz, = yNz; # 0,2 Aenl(Sr(Xw,i)) A SR(Xw,i)
is consistent only if $*12 — sr(x4w.:). But then we could take Ify := Iy U {3}
and I{ = I \ {¢} and replace (Io,I1) by (I{,I]), which contradicts the
maximality of Ij.

Now we are ready to prove (k) for special formulas of the form s(¢).

LEMMA 3.9. Let ¢ be special and ¢ € B be an r-tuple that consists of
atoms in the generated subalgebra.

(i) If —big(¢) and enl(¢) — ¢ are valid, then for any o with ¢ € By, the
relation gb(g,m,y) s small in B

(ii) If —big(s(p)) is valid, then for any o with ¢ € B, the relation
enl(s(¢(¢, z,y))) is small in Ba.

Proof. (i) Let B E —big(¢(z,z,y))(¢) and ¢ € B, be atoms in the
generated subalgebra. Set 9B, =: 2, and let M # () be a maximally homo-
geneous set for ¢(¢, z,y) in A, and (a,b)4 € P(A), ie. (a,b)4 is an interval
in 2. Take (a’,b)4 < (a,b) s such that there is just one i € r, say ig, with
(0'\a') Ce¢iand ¢;Na’ #0and b’ Ne; # ¢;. We assume B (and also A and
P(w)) satisfy

Va € (a,b) By ¢z, ,y) A 3y b(2,y, 2))(¢),
for otherwise (a’,b')4 € Da(M, ¢(c,z,y),1,0).

Since B E —big(¢)(¢), we have (a’,b')a N M # (a/,b') 4. We fix a d €
(a/,0')4 \ M and an m € M such that A £ —¢(c,d,m) V =p(¢c,m,d), say
2 E —¢(¢,d,m), and show that there is an (a”,b")a < (a’,b') 4 such that
for any € (a”,0")p(.) we have x € M or P(w) F —¢(¢, z,m).

Then (i) will be proved, because such an (a”,b"”) 4 is in D4 (M, qb(z, x,y),
1,0). Fix a set {\,_, Xw,i |w € W} of representatives for ¢.

CLAIM. d N ¢, # ciy \ M.

Proof. ¢(2,x,y) = Vwew Nicr Xw,i(zi,2 N 25,y N 25), wlog W =
{0,1,...,5 = 1}. Hence A F A,y Vie, “Xw,i(ci,d N c;;m N ¢;), say for
w=0,1,...,8 =1

AE \/ “Xw,i(Ci,dNec;,mNe),
i<ryitio
and forw=2¢,5+1,...,s—1
2AF /\ Xw,i(Cis d N ciym N €) A Xawio (Cig, d N Cig, MmN CGp)
i<riio



We may assume s > 0 and s’ < s — 1, because otherwise (a’,0)s €
DA(M7¢(E>$7y)>170)' Since

Ql#V:cy(( /\ /\ Xw,i(Cis T N ey y Ne)

s'<w<s i<r,i#io
r
A \/ Xw,io(cio7mmci07yﬂcio)> - ¢(Cayax)> )
s'<w<s
we have

thny(( /\ /\ Xw,i(Ciy T N ciyy N ¢;)

s'<w<s i<r,i#io

A ( \/ Xw,io (Cig, T N Cig, Yy N Ciy) V(xNei, = (—y) Negy,
s'<w<s

A 3T Xwio (Cigs T N Cigy Y N Cig) A Y Xaw,io (Cigr N Cig, y N Cm))))

— enl(gzﬁ((r:, x, y))) .

By the assumptions on gb(g, x,y) and on ¢ there is just one 1-type of N Ciy

over c¢;, consistent with ng(E,:c,y) such that for every w € W the formula
Y Xw,io (Cig, T N €iy, Yy N ¢y ) is implied by this type. The same holds for the
1-type of y N¢;, over ¢;,, which coincides with the 1-type of z N¢;, over ¢;,,
and the formula 3z x4, (¢iy, T N iy, Y N ¢). Since m N ¢, and d N ¢;, have
this 1-type, we get

A dx \/ Xw,io (Cig, T N Cig, M N Ciy)
s'<w<s

A Jy \/ Xw.io (Cigr d N Cig, Y N Cig) -
s'<w<s

Note that 2 & —mb(g, d,m) and ¢ is equivalent to enl(¢). Therefore dN¢;, #
¢i, \ m and the claim is proved.

We now give (a”,b") 4 case by case.

Case 1: dN¢;, # mNc;,. Then

2AE \/ ¢ (ciy, d N cig,m N ciy) -
i=0,1,2,4,8
Assume that 20 F ¢(c;,,d N ciy,m N ey ).
If i =0 or ¢ = 2, take an €’ such that 0 C ¢ C ¢;;, N m N (—=d), and
(@, 0" a = (d, b/ \ €)a. If i =1 ori =8, take (a”,b"”")a = (d/,d) 4. Finally,
if § = 4, take (a”,0") 4 = (d, 1) 4.



Then, in each subcase, for any z € (a”,b")p(,) we have
P(w) E tp(z, m/¢) = tp(d, m/¢) and hence P(w) E =¢(¢, z,m) .
Case 2: dNc;, =mNc,.
Subcase 2.1:
2 Joy (0" (Cigs @ Neigsy N i) A\ Yo (Ciny @ N iy N iy) ) -
s'<w<s

Since ¢*12(¢;,, x N ey, y N ey, ) determines the £,,-1-type of y Nc;, over c;,,
and m has the same one, we have
A= 3:L‘<¢012(Ci0, TN Cig,mNCy) A \/ Xw,io (Cig, N Cig,m N cio)) .
s'<w<s
There is an example d' for = with d' N¢;, € (/! N ¢y, Neiy)a, because
mNe, =dNc, € (a’Neiy, b Neiy)a and hence within the given 1-type of
x N ¢, over c;, the formula (ﬁi(ci, x Ne¢i,mNe;) can be realized with some
xNe;, € (a'Neiy, b'Ney ) a for i = 0,1, 2. We can argue with (d'Ne;, )U(d\ ¢, )
as with d in case 1 for i = 0, 1, 2.
Subcase 2.2:

A= v.l'y(QSOlQ(CiOaZE N Cig, Yy N Ciy) — \/ Xuw,io (Cigs @ N i,y N %)) .
s'<w<s
Again we have

Ql#V:Ey(( /\ /\ Xw,i(Ciy T N ¢y y N ¢;)

s'<w<s i<r,i#ig
T
A \/ Xw,i(ciwfﬂﬂcioayﬂcio)) _>¢(C,$,y)> .

s'<w<s

Since
¢012(Zi07$mzi07yﬂzio)_> \/ Xw7i(2i0,xﬂ2i0,ym»z¢0),
s'<w<s

by the definition of enl we have

ny(( /\ enl( /\ xwyi(zi,xﬂzi,yﬂzi))

i<r,i#£io s'<w<s
A ( \/ Xw,i(Zig> T N Zig, Y N Ziy) V (:L‘ Nz, =y Nz,

s'<w<s

A Tz \/ Xw,io (Zigs T N Zig, Y N Ziy )
s'<w<s

A Ty \/ Xw,io (Zigs T N Zig, Y N zlo))>> — enl(d)(g, T, y))) )

s'<w<s



In A we get

QllZV:Ey(( /\ /\ enl(xuw,i(ci,x Nei,yNe))

s'<w<s i<r,i#ig

A < \/ Xw.i(Cigy N i,y N Ciy) V (mﬂcio =y Nc,
s'<w<s

A Jx \/ Xw.io (Cigs T N Cig, Y N Cig)
s'<w<s

,
A Jy \/ Xw,io (Cigr N Cig, Y N CZO)))) — enl(o(c, z, y))) .
s'<w<s
As in the first subcase, we get
A Jx \/ Xw,io (Cig, T N Cig, M N CGp)
s'<w<s
A Jy \/ Xw,io (Cigr AN Cig, Yy N Cig) ANd N iy =mN ¢, .
s'<w<s
Putting things together yields 2 = enl(¢(¢,d,m)) and hence A E

qb(g, d,m), a contradiction to the choice of d and m.
(ii) By 3.8, —big(s(¢)) — —big(enl(s(¢))), and, by 3.7, enl(enl(s(¢))) —
enl(s(¢)) is valid. Therefore (ii) follows from (i) applied to enl(s(¢)).

Lemma 3.9, the construction and the monotonicity of Q% yield:
THEOREM 3.10. For any special ¢,

B Vz ((“z are the atoms in the generated subalgebra’ A —big(s(¢))(%))
- _‘Q%xy S(¢(£7 xz, y))) .
Finally, we show how to get Theorem 3.10 for ¢ instead of s(¢).
THEOREM 3.11. For any spectal ¢
B EVz ((“2 are the atoms in the generated subalgebra” A —big(¢)(Z))
Proof (by induction on card(R(¢))). If R(¢) = 0, then ¢(%,x,y) —
r =y, and hence B F -Q%xy qb(g,x,y).
Now assume B E Vz ((“2 are the atoms in the generated subalgebra”
A=big(1)(%)) — —Q23zy (2, x,y)) for all ¢ with R(1)) C R(¢). We show
B E Qlzy ¢(2,x,y) — big(qﬁ)(g) for any r-tuple ¢ that consists of atoms

in the generated subalgebra. Assume B = Q?zy (25(2, z,y) and let H be an

uncountable homogeneous set for qb(g, x,y) in B. By recursion on ¢ < r we
define uncountable subsets H (1), 0<e<r.



Set HO := H. Assume H® is defined. We distinguish two cases:

Case 1: {xN¢i |z € HDY is uncountable. Then take HO+D C H()
such that HU*Y is uncountable and for any z,y € HUtY if 2 # y then
xNe; #£yne.

Case 2: {xNc;|x € HD} is countable. Then there is some x € H®
such that {y € H® |z N¢; = yNe;} is uncountable. Let H+Y) be such a
set.

For i ¢ R, {xN¢;|x € HY} is a singleton, and we are in case 2. Now
consider HO HM®  H_ If for all i € R case 1 is true, then H)

shows B £ Q2zy s(¢(¢, z,y)). By 3.10, B E big(s(¢(c))). Since s(¢) — o,

B E big(4(c)). |
If there is some i € R with case 2 being true, fix such an i. Then H+1)

shows B F Qizy (d Ax Nz = yﬁzi)(g,x,y). Take y = pANxNzi=yNz.
Then v is also special. Since ¢ — ¢ and i € R(¢) \ R(¢), we have R(vy) C
R(¢). By induction hypothesis, we conclude from B F Q3zy (¢ Ax N z; =

y N z)(¢,z,y) that B E big(y(c)) and hence B E big(¢(c)).
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