
ON THE GROUPWISE DENSITY NUMBER FOR FILTERSHEIKE MILDENBERGERAbstrat. We onsider the groupwise density number gf for groupwise denseideals or for non-meagre �lters. We answer a question by Taras Banakh onthe value gf in the known models of g < mf and one by Boaz Tsaban on thevalue of gf in the Hehler model.1. IntrodutionIn this note, we work with �ve ardinal harateristisDe�nition 1.1. (1) b = minfjF j : F � !! ^ (8g 2 !!)(9f 2 F )(f 6�� g)g isthe bounding number.(2) u = minfjBj : B is a base for an ultra�lterg is the ultra�lter-base num-ber.(3) g is the smallest number of groupwise dense sets whose intersetion inempty (or not groupwise dense). A set G � [!℄! is groupwise dense i� it islosed under almost subsets and if for every hni : i < !i of stritly inreas-ing natural numbers there is some in�nite A suh that Si2A[ni; ni+1) 2 G.(4) gf is the smallest number of groupwise dense ideals whose intersetion isempty.(5) mf = minff(!!=U;�U) : U is a free ultra�lter on !g. Here [f ℄U �U[g℄U i� fn : f(n) � g(n)g 2 U , and f(L;�L) is the smallest size of ao�nal set in the linear order (L;�L).It is known that g � gf � mf (see [4℄ or [1℄) and that Con(b = g < mf)[5℄. The onsistenies of the strit inequalities above b are interesting beause1991 Mathematis Subjet Classi�ation. 03E05, 03E17,03E25.Key words and phrases. ombinatorial ardinal harateristis of the ontinuum,The author was partially supported Edmund Landau Center for Researh in MathematialAnalysis and Related Areas, sponsored by the Minerva Foundation, Germany.1



2 HEIKE MILDENBERGERthey are weak relatives of the items in the long-standing open problem on thereversibilities of the impliations:u < g, semi �lter trihotomy)u < gf , �lter dihotomy )u < mf, near oherene of �lters.For the priniples, whih will not be used in the urrent work, we refer thereader to [2℄. In this note we prove:Theorem 1.2. It is onsistent relative to ZFC that b = g = gf = �1 < mf = = �2.For a �lter F , f! n X : X 2 Fg is groupwise dense (and losed under �niteunions) i� F is not meagre. Thus gf is also the smallest number of non-meagre�lters whose intersetion is meagre.So far only g and mf have been separated above b in a a quite omplex orale.. iteration in [5℄. We show that that foring also separates gf from mf. It isopen whether g < gf is onsistent relative to ZFC. In all our models, u is �2 andthere are �2 Cohen reals, though.The same suÆient riterion for gf that we use in the proof of Theorem 1.2will yield a short proof of the followingTheorem 1.3. In the �nite support iteration of Hehler foring of unountablelength � over a ground model of CH we have that gf = �1.Yorioka proved that g = �1 in the Hehler model [8℄.2. A suffiient riterionThe following suÆient riterion for gf being small is a modi�ation Lemma5.1 in [5℄ in whih the seond premise is now strengthened to �nite unions.To our knowledge neither for this riterion nor for the original riterion it isknown whether they are also neessary.Lemma 2.1. Assume that fY� : � < g � [!℄!, and � is a ardinal suh that:(1) For eah meagre ideal B � [!℄!, jf� : Y� 62 Bgj = .(2) For eah A 2 [!℄!, every family of �nite sequenes �� with pairwise disjointranges suh that for all members �� of the family, A �� Y�0 [ � � � [ Y�lg(��)�1,has ardinality stritly less than �.



ON THE GROUPWISE DENSITY NUMBER FOR FILTERS 3Then gf � �.Proof. We now de�ne � sets and then show that they are groupwise dense idealsand that their intersetion is empty.Let h�n� : � < i list all stritly inreasing sequenes of natural numbers, eahsequene appearing o�nally often. By indution on � <  we hoose "� � �,� <  and C� 2 [!℄! as follows.If there is some " < � suh that for eah � < � with "� = " we have [n�i ; n�i+1) 6�C� for all but �nitely many i, then we take as "� the minimal suh ". By theassumption (1), applied to the meagre ideal fA : 9<1i[n�i ; n�i+1) � Ag we anhoose � to be the minimal  <  suh that  6= � for all � < � and there arein�nitely many i suh that [n�i ; n�i+1) � Y. In this ase we set C� = Sf[n�i ; n�i+1) :i 2 !; [n�i ; n�i+1) � Y�g. Otherwise we set "� = � and C� = !.For eah � < �, de�neG� = fB 2 [!℄! : (9n < !)(9�1 : : : �n < )((8k 2 [1; n℄)(� � "�i < �) andB �� C�1 [ � � � [ C�n)g:We show that eah G� is groupwise dense and the dual of a non-meagre �lterF� = f!nX : X 2 G�g. Clearly it is losed under almost subsets and under �niteunions. Let an inreasing sequene �n be given. Then there are �j, j < , suh thatfor all j, �n = �n�j and the �j, j < , are o�nal in . Then, by our onstrution"�j < "�j0 for j < j 0 if "�j < �, or "�j = �. So there is some j suh that "�j = � or"�j 2 (�; �). In both ases we have (9�)((91i)([ni; ni+1) � C�) ^ "� � �).To see thatTfG� : � < �g = ;, assume that B is in�nite and for eah �, B 2 G�.Then for eah � < �, there is (�1;�; : : : ; �n�;�) =: ��� <  suh that "�i;� � � andB �� Si<n� C�i;� � Si<n� Y�i;� . Sine � is regular, we an thin out and assumethat if �1 < �2, then "�i;�1 6= "�j;�2 for all i � n�1 and all j � n�2 . Thus we havethat for �1 < �2, ���1 = is disjoint from ���2 , and hene ���1 = (�1;� ; : : : ; �n�;�)is disjoint from ���2 . Consequently, f��� : � < �g is a family of pairwise disjonttuples ��� of size �. But f��� : � < �g � f(�1; : : : ; �k) <  : B �� Si<k Y�i andthe �� are pairwise disjointg, ontraditing the assumption (2). �3. The omputation in the orale .. iterationNow we show that the orale .. foring from [5℄ yields that the Y 1� [G�2 ℄ =Y� ful�l the premises of Lemma 2.1. We annot repeat the whole ompliated



4 HEIKE MILDENBERGERonstrution form [5℄, and thus we give a sketh and point out the di�erenes,where we laim that the Y� has stronger properties than the ones used in theformer work. For an introdution ot orale-..-foring and for the explanation ofthe expression \SÆ guesses hU�; g�) : � < �1i" we refer to the third and seondsetion of the mentioned work.De�nition 3.1. We use a �nite support iteration hPÆ ;Q Æ~ ; : Æ < �2i of ...foring notions, and hoose onstant or inreasing orales �M Æ, suh that PÆ hasthe �M Æ-.. for eah Æ. We start with a ground model satisfying }��1 and}�2(S21). Let hSÆ : Æ 2 S21i be a }�2(S21)-sequene.There are three possibilities for Q Æ . If f(Æ) = �0 or if Æ is a suessor, thenQ Æ is the Cohen foring.If f(Æ) = �1 and PÆ \SÆ guesses a sequene of ultra�lters U� and of funtionsg�, � < �1", then we hoose A�, � < �1, as in Lemma [5, 4.1℄ but with additionalprovisos as in the next de�nition and fore with Q Æ = Q (hA� ; g� : � < �1i).Here, Q = Q(A� ; g� : � < ) = f(n; h; F ) : n 2 !; h 2 n!; F 2 [℄<�0g;with (n1; h1; F1) � (n2; h2; F2) if n1 � n2, h2 � n1 = h1, F1 � F2, and(8� 2 F1)(8n 2 [n1; n2) \ A�)(g�(n) � h2(n)):Otherwise, we set Q Æ = f0g.De�nition 3.2. For  � �2 we onsider the lass K of -approximationsh(PÆ;Q Æ~ ; �M Æ;W1;W2) : Æ < iwith the following properties:(a) hPÆ;Q Æ~ : Æ < i is a �nite support iteration of partial orders suh that foreah Æ < , jPÆ j � �1.(b) h �M Æ : Æ < i is a onstant sequene of orales suh that for all Æ, PÆsatis�es the �M Æ-.. and for Æ + 1 < , PÆ \Q Æ~ satis�es the ( �M Æ+1)�-.." (as in Lemma [6, IV.3.1℄). The onstant value of the orale sequeneis some orale �M as in Lemma [5, 3.9℄, keeping ov(M) = �1.() W1;W2 � �2 n S21 , W1 and W2 are disjoint and if  is a limit of o�nality�1, then W1 \ , W2 \  are both o�nal in .(d) If � 2 (W1[W2)\ then Q �~ is the Cohen foring adding the real r�~ 2 !2.



ON THE GROUPWISE DENSITY NUMBER FOR FILTERS 5(e) If Æ 2 S21 \  and SÆ guesses h(U�(Æ); g�(Æ)) : � < �1i, then there issome stritly inreasing enumeration h��(Æ) : � < �1i of a o�nal part ofW2 \ Æ, and for every � < �1 there is `��(Æ) 2 f0; 1g suh that Y `��(Æ)��(Æ) :=r�1��(Æ)(f`��(Æ)g) 2 U�, and Q Æ = Q(Y `��(Æ)�� (Æ) ; g�(Æ) : � < �1).(f) For all Æ � , PÆ \(8A 2 [!℄!) every set of the form f�� 2 W1 \ Æ :A �� Si<lg( ��) Y 1�i~ and the �� are pairwise disjointg is at most ountable."Here, for Æ =  limit, P is the diret limit of hP� : � < i, and forÆ =  = � + 1, P = P� � Q~ �.Now the tehnial ore is to prove the following.Theorem 3.3. If V j= }��1 and }�2(S21), then for eah  � �2, K is not empty.Let V ful�l the premises and let P�2 be the diret limit of the �rst omponentsof an �2-approximation. If G is a P�2 -generi �lter and Y 1�~ [G�2 ℄ = Y� for � 2 W1,then we have in the �nal model a sequene hY� : � < i as in Lemma 2.1 with� = �1. For the 2! = �2 � mf � ov(D�n) � �2-part, whih is not a�eted bythe di�erene between the urrent De�nition 3.2(f) and the former version, werefer the reader to [5℄. Thus Theorem 3.3 yields:Corollary 3.4. V P�2 j= ov(M) = gf = �1 < ov(D�n) = �2.Theorem 3.3 is proved by indution on . The witnesses are end-extensions offormer witnesses. For some 's, one has to work to show item (e). For this thework in [5℄ suÆes. For all 's but maybe the suessor steps of points not in S21 ,one has to arefully revise the work from [5℄ in order to show that item 3.2(f)an be preserved in the indution. For ompleteness sake, we arry this out inLemma 3.7 to Lemma 3.10.Lemma 3.5. Consider a suessor  = Æ + 1, Æ 2 S21 . Given any �1-orale( �M Æ+1)�, the sequene h��(Æ) : � < �1i an be hosen as in (e) so that theforings given in item (e) have the ( �M Æ+1)�-..Proof. This is literally as in [5, Lemma 5.4℄.Choie 3.6. We start with �M as desribed. By Lemma [6, IV,3.1℄, all the PÆ,Æ � �2, have the �M -.. as soon as we an arrange that all the Q Æ have the( �M)�-.. in V PÆ. The Cohen foring has the �M -.. for any �M . The Q Æ in thesteps Æ 2 S21 an be hosen by the previous lemma so that they have the ( �M)�-..



6 HEIKE MILDENBERGERLemma 3.7. If Æ 2 S21 , Q Æ is hosen as in Lemma 3.5, and PÆ satis�es (f) ofDe�nition 3.2, then PÆ+1 has the property stated in item (f).Proof. Suppose that p PÆ+1 \A~ 2 [!℄! and jf�� 2 W1\ Æ : A~ �� Si<lg(��) Y `�i�i~ andthe �� are pairwise disjointgj = �1", and w.l.o.g. p PÆ+1 \A~ 2 [!℄! and f�� 2 W1\Æ : A~ �� Si<lg(��) Y~ `�;i�;i g is inreasingly enumerated by f��� : � < �1g =W1(A)".We take for n 2 ! a maximal antihain fpn;i : i 2 !g above p deiding thestatements \�n 2 A~ " with truth value tn;i. Let Cn;i = f" � Æ : pn;i(") 6= 1g.For " 2 Cn;i \ S21 with Q " 6= f0g, let pn;i(") = (mn;i("); hn;i("); Fn;i(")). LetF 0n;i(") = f��(") : � 2 Fn;i(")g. We assume that all these are objets not justnames. For " 2 Cn;i nS21 let pn;i(") = hn;i("), mn;i(") = jhn;i(")j and set the othertwo omponents for simpliity zero. Set mn;i = maxfmn;i(") : " 2 Cn;ig. Set�C = hh(mn;i("); hn;i("); Fn;i("); F 0n;i("); hg�(") � mn;i : � 2 Fn;i(")i) :" 2 Cn;ii : n; i 2 !i:For eah � 2 �1, let p� � p, p� PÆ+1 \A~ \ [s�;1) � Si<lg(��) Y~ `�i;��i;� " andp� shall deide the value of `��� 2 2 and s� 2 !. For � < �1 we set C� =f" � Æ : p�(") 6= 1g. If " 2 C� \ S21 , then p�(") = (m�("); h�("); F�(")). If" 2 C� n S21 , then p�(") = h�("), �(") = jh�(")j and F�(") = ;. For all �, " 2 C�,let F 0�(") = f��(") : � 2 F�(")g � W2.SetR�(m) = h(m�("); h�("); F�("); F 0�("); hg�(") � m : � 2 F�(")i) : " 2 C�i:These are �nite arrays of �nite sets.Now we thin out: First we assume that for some k 2 ! for all � < �1, jC�j = k,s� � k. We apply the delta system lemma to C�, � 2 �1, get a root C. We assumethat Æ 2 C, as this is the diÆult ase. We apply the delta lemma for eah " 2 Cto the F�("), � 2 �1, and get a root F ("), and to F 0�("), � 2 �1, and get a rootF 0("). We further assume that for eah � in the delta system and for all " 2 C, allF�(")nF (") are above max(S"02C(F ("0))[(CnfÆg)) and same for the primed ones.All F 0�i(")nF are above max F 0("). This goes only "-wise, beause in the de�nitionof K in item (e) we did not require oherene in the enumerations h��(") : � 2�1i. We thin out further and assume that there are (m("); h("); F (")) suhthat for all � < �1, for all " 2 C, m�(") = m("), h�(") = h(") 2 m(")!, andfor the " 2 C� n C, the inreasingly enumerated "'s in C� = f"�i : i < kg,



ON THE GROUPWISE DENSITY NUMBER FOR FILTERS 7are isomorphi to the lexiographially �rst h"i : i < ki, i.e., m�("�i ) = m("i),h�("�i ) = h("i) 2 m("i)!, and we use a delta system argument on the F�("�i ) givinga root F ("i) and again impose on the parts F�("�i ) n F ("i), that they have to lieabove Si<k F ("i) and are all of the same size. The analogous thinning out is donefor the primed parts, that have to lie above max(Si<k(F 0("i))[ (C nfÆg)), be forall i of the same size jF 0�("�i )j independently of � (but depending on i), and allof the hF 0�("�i ) : i < ki shall have the same � or �-relations with the members ofC�("i). Moreover, if " is a Cohen oordinate in C�, then p�(") does not dependon �.We let mmax be the the maximum of the m(") and of the lengths of all the�nitely many Cohen oordinates for all � in the delta system. Let / denotethe initial segment relation for �nite sequenes. We thin out further and as-sume that all the R�(mmax) have the same quanti�er free (<�1; /)-type overRan( �C)[Ran(Ran( �C)). Speaking about omponents of �ve tuples (m; h; F; F 0; �g)separately is allowed as well as evaluating �g and the members of all involved �nitesets. There are only ountably many quanti�er types in this language that anbe ful�lled by a (�nite) sequene R�(mmax) in our delta system.Let GÆ be a subset of PÆ that is generi over V suh W � = f 2 W1(A) \ Æ :p � Æ 2 GÆg is unountable.For  2 W �, let in V [GÆ℄,B = fn 2 ! : 9p0 2 PÆ+1; p0 � p ; p0 � Æ 2 GÆ; and p0 PÆ+1 n 2 A~ g:B �� Si<lg(��) Y `�i;��i;� [G℄, and the latter is fully evaluated by G, beause ��� 2W1 � Æ + 1 for � < �1, and Æ 62 W1.We shall show that for �,  2 W �, B� \ [k;1) = B \ [k;1) = B 2 V [G℄.Then B is a ounterexample to h(P";Q� ;M ";W1;W2) : " � Æ; � < Æi 2 KÆ.Let jjPÆ+1 denote the ompatibility relation in PÆ+1. If n 2 B�, then p�jjPÆ+1 pn;ifor the one i suh that pn;i 2 G, and for this i we have tn;i = true. The sameholds for n 62 B� with false. So our laim that B� \ [k;1) = B \ [k;1) for all�;  2 W � now follows fromClaim 3.8. For all �;  in W �:p�jjPÆ+1 pn;i i� pjjPÆ+1 pn;i:Proof. The point is the oordinate Æ, sine the restritions to Æ are in GÆ, andhene ompatible. Assume pn;i(Æ) = (mn;i; hn;i; Fn;i), p�(Æ) = (m�; h�; F�), p(Æ) =



8 HEIKE MILDENBERGER(m ; h; F). We do not write the Æ at these points, but will not suppress it om-pletely. We assume that p�(Æ) is ompatible with pn;i(Æ). Sine ��(Æ) 2 W2, wean now literally use the proof of [5, Claim 5.8℄.So the laim is proved and with it also Lemma 3.7. �Lemma 3.9. (1) If f() = �1 and Q~ and �M are as in the previous lemmaand if hP� ;Q�~ ; �M�;W1;W2) : � < i 2 K, thenhP� ;Q�~ ; �M�;W1;W2) : � < i^hP ;Q~ ; �Mi 2 K+1:(2) If f() = �0 and if hPÆ;Q�~ ; �M�;W1;W2) : � < i 2 K, thenhP� ;Q�~ ; �M�;W1;W2) : � < i^hP ; C ; �M  i 2 K+1:(3) If f() = �0 and if hP�;Q �~ ; �M�;W1;W2) : � < i � � 2 K� for eah� < , then hP� ;Q�~ ; �M�;W1;W2) : � < i 2 K.(4) If f() = �1 or  = �2, and if hP� ;Q�~ ; �M�;W1;W2) : � < i � � 2 K�for eah � < , then hP� ;Q�~ ; �M�;W1;W2) : � < i 2 K.Proof. (1) This was proved in Lemma 3.7.(2) If A is an almost subset of unountably many Si<lg(��) Y�i's, then there issome 0 <  that there are unountably many suh �� below 0. A is possibly aname using the last, new foring. But this is just Cohen foring. So there is some�nite part of a Cohen ondition foring that A~ is in unountably many Y� 's. Butthen also the foring P already ontains a name for some in�nite B � ! almostontained in the intersetion of unountably many Si<lg(��) Y�i's with � < 0. SoP does not ful�l property (f) and hene the indution hypothesis is not ful�lled.(3) First we use the pigeonhole priniple for the Y�;i's as in the previous item.Then we use the followingLemma 3.10. Assume(a) hPn : n 2 !i is a l-inreasing sequene of ... foring notions withunion P,(b) Y is a set of P0-names of in�nite subsets of !,() for n 2 ! we have  Pn\� = f(�) > jf �Y~ 2 Y<! : B~ �� Si<lg( �Y ) Y~ igj",whenever B~ is a Pn-name of an in�nite subset of !.Then ondition () holds for P too.



ON THE GROUPWISE DENSITY NUMBER FOR FILTERS 9Proof. Sine P is a ... foring notion, also in V P we have � is a regular ardinal.If the desired onlusion fails, then we an �nd a P-name B~ of an in�nite subsetof ! and a sequene h(p�; Y~ �; m�) : � < �i suh that(�) m� 2 !,(�) �Y~ � 2 Y without repetitions,() p� 2 P, p� P B~ nm� � Si<lg( �Y�) Y~ i;�.Sine f(�) > �0, for some n(�); m(�) 2 ! the set S =df f� < � : p� 2Pn(�); m� = m(�)g has ardinality �. We identify it with �.Now for every large enough � 2 S we havep� P � = jf� 2 S : p� 2 G~ Pn(�)gj:Why? Else for an end segment of � < � there is q� � p� suh that for allbut < � many � 2 S, q�  p� 62 G~ Pn(�): That means that for an end segmentsof � < �, w.l.o.g., for all � 2 �, Perp� := f� 2 S : q� ? q�g ontains an endsegment of S. Then we take the diagonal intersetion D of all these end segmentsof S. Sine � is regular, D ontains a lub in �. But then fq� : � 2 Dg is anantihain in Pn(�) of size �. Contradition.LetGn(�) be a subset of Pn(�) generi over V , and let S� := f� 2 S : p� 2 Gn(�)g.We hoose Gn(�), suh that jS�j = �. We let B0 = \fY~ � nm(�) : � 2 S�g. Thenin V [Gn(�)℄, B0 is an in�nite subset of ! inluded in Si<lg( �Y�) Y~ i;� for � pairwisedisjoint members �Y� of Y<!, ontraditing the assumption. So Lemma 3.10 isproved. �(4) If PÆ adds some A, then this already omes earlier, say in V P", " < Æ, beauseA � ! and beause of the ... If A �� Y� is fored, then � < ". This ontra-dits the indution hypothesis for P". This ompletes the proof of Lemma 3.9. �The lemmas together give that there is an �2-approximation, and the proofsof Theorem 3.3 and of Theorem 1.2 are ompleted. �As in [5, 5.11℄, with some extra are our proof an be modi�ed to yield thefollowing (f. [7, 3℄).Theorem 3.11. It is onsistent (relative to ZFC) that all of the following asser-tions hold:



10 HEIKE MILDENBERGER(1) Eah unbounded set of !! ontains an unbounded subset of size �1,(2) Eah nonmeagre subset of !! ontains a nonmeagre subset of size �1,(3) gf = �1; and(4) ov(D�n) = ov(M) =  = �2.4. The situation in the Hehler modelThe proof of Theorem 1.3 onsists of Lemma 2.1 and the following lemma:Lemma 4.1. Let f(�) � �1. Let P be the �nite support iteration adding �Hehler reals over a ground model satisfying the CH. We all the generi realsh� 2 !!, � < �. We set Y� = fh�(n) : n < !g. Then the family fY� : � < �gsatis�es the two premises of Lemma 2.1Proof. For every meagre set B there are r 2 !2 and a stritly inreasing sequene�k suh thatB � Br;�k := fs 2 !2 : (81n)r � [kn; kn+1) 6= s � [kn; kn+1)g:Now r and �k appear in some step of the iteration, say that they are in V [G<�0 ℄.We show that all later Y�, � � �0, are not in Br;�k. Let p = (s; f) 2 Q � . Then forall n 2 ! there are some q � p, m � n, q 2 Q � , suh that q  Y~ � � [km; km+1) =r � [kn; kn+1), beause h� � f on all arguments above jsj is ompatible with(9m � n)(Y� � [km; km+1) = �(fh�(a) : a 2 !g \ [km; km+1))). To see this, wejust take m suÆiently large and put no points h(a) into min(Y� � [km; km+1)).Then we take q = (ŝ h � (h�1[km; km+1)); f).Also premise (2) is ful�lled: B � Y�1 [� � �[Y�n means that the next funtion ofB eventually dominates the minimum of the next funtions of the Y�k , 1 � k � n.Again, B is in some intermediate model, say in V [G<�0 ℄. Then if all Y�k omelater, by a density argument, the next funtion of B does not dominate the min-imum of their next funtions. So B �� Y�1 [ � � � [ Y�n means �0 \ range(��) 6= ;,and there are stritly less than � pairwise disjoint tuples �� of this kind. �Referenes[1℄ Taras Banakh and Ludomyr Zdomsky. Coherene of Semi-�lters. forthoming book, preliminary version available athttp://www.franko.lviv.ua/faulty/mehmat/Departments/Topology/booksite.html,2005.



ON THE GROUPWISE DENSITY NUMBER FOR FILTERS 11[2℄ Andreas Blass. Combinatorial ardinal harateristis of the ontinuum. In Matthew Fore-man, Akihiro Kanamori, and Menahem Magidor, editors, Handbook of Set Theory. Kluwer,to appear.[3℄ Maxim Burke and Arnold W. Miller. Models in whih every nonmeager set is nonmeagerin a nowhere dense Cantor set. Canadian Journal of Mathematis, math.LO/0311443, toappear.[4℄ Heike Mildenberger. Groupwise dense families. Arhive for Math. Logi, 40:93 {112, 2000.[5℄ Heike Mildenberger, Saharon Shelah, and Boaz Tsaban. Covering the Baire Spae withMeager Sets, [MdShTs:847℄. Ann. Pure Appl. Logi, to appear.[6℄ Saharon Shelah. Proper and Improper Foring, 2nd Edition. Springer, 1998.[7℄ Saharon Shelah and Juris Steprans. Maximal Chains in !! and Ultrapowers of the Integers,[ShSr:465℄. Arhive for Mathematial Logi, 32:305{319, 1993.[8℄ Teruyuki Yorioka. Forings with the Countable Chain Condition and the Covering Numberof the Marzewski Ideal. Arh. Math. Logi, 42:695{710, 2003.University of Vienna, Kurt G�odel Researh Center for Mathematial Logi,W�ahringer Str. 25, 1090 Wien, AustriaE-mail address : heike�logi.univie.a.at


