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Abstract. We show that ♦(R,N ,∈) together with CH and “all Aron-
szajn trees are special” is consistent relative to ZFC. The weak diamond
for the covering relation of Lebesgue null sets was the only weak dia-
mond in the Cichoń diagramme for relations whose consistency together
with “all Aronszajn trees are special” was not yet settled. Our forcing
proof gives also new proofs to the known consistencies of several other
weak diamonds stemming from the Cichoń diagramme together with
“all Aronszajn trees are special” and CH. The main part of our work is
an application [15, Chapter V, §§ 1–7] for a special completeness system,
such that we have a genericity game. Thus we show new preservation
properties of the known forcings.
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1. Introduction

Let A and B be sets of reals and let E ⊆ A×B. Here we work only with
Borel sets A and B and absolute E, so that there are no difficulties in the
interpretation of the notions in various ZFC models. The set A carries the
topology inherited from the reals and 2α carries the product topology. A
function F : 2<ω1 → A is called Borel function if each part F � 2α, α < ω1,
is a Borel function. The complexity of the set of ℵ1 parts can be high.

Definition 1.1 (Definition 4.4. of [14]). Let ♦(A,B,E) be the following
statement: For every Borel map F : 2<ω1 → A there is some g : ω1 → B
such that for every f : ω1 → 2 the set

{α ∈ ω1 : F (f � α)Eg(α)}
is stationary. Commonly, if E is not the equality ♦(A,B,E) is called a
weak diamond.

The original diamond, ♦ω1 , is ♦(A,B,E) with A = B = 2<ω1 (so here we
do not have subsets of the reals), E being equality, in the special case of F
being the identity function. Jensen [9] showed that ♦ω1 holds in L. Devlin
and Shelah [7] showed that in the case |B| = 2 some diamond principles
follow from 2ℵ0 < 2ℵ1 .

In the mentioned work Jensen also showed that ♦ω1 implies the exis-
tence of a Souslin tree. Since then it has been interesting to investigate
which weakenings of ♦ω1 still imply the existence of a Souslin tree. Moore,
Hrušák and Džamonja [14] introduce and investigate numerous versions of
weak diamonds. Let Unif(M) denote the relation (Fσ meager sets, ωω, 63),
and let Unif(N ) denote the relation (Gδ null sets, ωω, 63). They show that
♦(Unif(M)) implies the existence of a Souslin tree, and from work by
Hirschorn [8] they derive that ♦(Unif(N )) does not imply the existence of a
Souslin tree. Another model (with larger continuum) is given by Laver [11].
Since the Borel Galois-Tukey connections (see Vojtáš [16]) in the Cichoń
diagramme can be translated into implications of the corresponding weak
diamonds [14, Proposition 4.9], there is a Cichoń’s diagramme of weak dia-
monds. So all its entries above ♦(Unif(M)) imply the existence of a Souslin
tree, see Figure 1.

Also ♦(ωω, ωω,≤∗) together with “all Aronszajn trees are special” is con-
sistent relative to ZFC according to [12]. In this model, the continuum is
ℵ2.

So, before this work, there was one question regarding the existence of
Souslin trees and the weak diamonds in Cichoń’s diagramme left open: Does
the weak diamond for the covering relation (R, Fσ null sets,∈) imply that
there is a Souslin tree? The answer is negative:
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Figure 1. The framed weak diamonds imply the existence
of a Souslin tree. The arrows indicate implications.

Theorem 1.2. ♦(R, Fσ null sets,∈) together with CH and with “all Aron-
szajn trees are special” is consistent relative to ZFC.

Now we give an outline: An essential tool in the analysis of proper forc-
ings are countable elementary substructures: We let χ > 2ℵ2 (this is the
concrete interpretation of the phrase “sufficiently large” in our context, and
sometimes smaller lower bounds suffice, but let us be definite) be regular and
denote by H(χ) the set of all sets of hereditary cardinality < χ. Let <∗χ be
a fixed well-ordering of H(χ) such that x ∈ y implies x <∗χ y. We work with
countable elementary substructures M ≺ (H(χ),∈), and when we want to
perform constructions along a well-order we take M ≺ (H(χ),∈, <∗χ). There
are at most 2ℵ0 isomorphism types of transitive collapses (N,∈, (<∗χ)N ) of
(M,∈, <∗χ). By our proviso on <∗χ, the relation (<∗χ)N is still a well-order.
In general we let the letter N (also with subscripts) stand for transitive
models (Mostowski collapses of the M ’s), and let M stand for a countable
elementary submodel.

We shall define a game played in countable parts of the iterated proper
forcings from [15, Chapter V, Section 5]. The countable elementary sub-
model M , P , p ∈ P ∩M , f

˜
, . . . are parameters. The number of rounds

is α = otp(M ∩ γ), where γ is the iteration length. The generic player
gives a real νε and the antigeneric player gives a real ηε dominating it in
round ε < α. The strategy of the game depends only on the isomorphism
type of the Mostowski collapse of the given countable elementary submodel
(M,Pγ , p), Pγ an iteration of length γ. In the central Theorem 3.4, we prove
the existence of a Borel functions Bα : (ωω)α × P(ω) → P(ω) for α < ω1,
such that Bα has the play and the isomorphism type of the collapse as ar-
guments and then yields as value a bounded (M,Pγ)-generic filter iff the
generic player wins. An (M,Pγ)-generic filter G is called bounded if there is
a q ∈ Pγ such that G = {p ∈M ∩Pγ : p ≤ q}. We will prove that there is a
winning strategy for the generic player and let the antigeneric player play in
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such a way that the generic real or a Borel function applied to the generic
real will be contained in the sets of branches of a meagre measure zero tree.
Then from ♦ω1 in V, which shows that all the Mostowski collapses N and
all used (finitely many) predicates on them are guessed stationarily often
in ω1, we will derive that the extension preserves certain weak diamonds.
Juhász’ question [13], whether ♣ (a definition can be found, e.g., in [15,
Chapter I, Definition 7.1]) implies the existence of a Souslin tree, remains
open. It cannot be attacked by forcings adding no reals since in the presence
of CH, ♣ implies ♦.

2. Proper forcings adding no new reals

We first recall the definition of the forcings “specialising an Aronszajn tree
without adding reals” from [2] and [15, Chapter V, Section 6]. It is known
that these forcings are α-proper for all α < ω1 and are D-complete for a
simple ℵ1-completeness system D, which guarantees that their countable
support iterations do not add reals [15, Theorem V.7.1]). Abraham gives
a nice didactic exposition of the method of D-completeness systems in [1,
Section 5]. Here, we will take a simple ℵ1-completeness system D similar to
the one from Abraham and Shelah’s work [2].

Jensen (see [6]) showed that the property of not adding reals is in general
not preserved in countable support iterations of proper forcings at limit
steps of cofinality ω. So some stronger requirement has to be imposed on
the iterands. The method of completeness systems that has been developed
by Shelah [15, Chapter V] is appropriate for our aim.

Recall, a specialisation of an Aronszajn tree T = (ω1, <T) is a function
f : ω1 → Q such that for any s, t ∈ ω1, s <T t → f(s) < f(t). We call
such a function monotone. Now we work with monotone functions f , that
specialise only a part of T, namely the union of countably many of its levels,
so that the indices of the levels form a closed set C. We call such a pair
(f, C) an approximation. For α < ω1 let Tα denote the α-th level of T. For
x ∈ Tα and β < α we let xdβ be the y ∈ Tβ such that y <T x. For making
the notation easier, we consider only Aronszajn trees T whose α-th level,
Tα, is [ωα, ω(α+ 1)). This is no loss of generality since specialising all these
Aronszajn trees suffices.

For any closed C of ω1, every monotone f :
⋃
α∈C Tα → Q can be ex-

tended to a total specialisation (see, e.g., [8, Lemma 3.7]), and hence work-
ing with approximations on a closed set of levels is the same as working
with all levels. We follow the exposition in [2], where the promises (see Def-
inition 2.3) are not only finite parts of the Aronszajn trees as in the book
[15], but they are functions from these finite parts into Q. We follow the
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book [15] in that we use club sets of levels on which the approximations will
be defined and not just initial segments

⋃
β≤α Tα as in [2].

We follow the Israeli convention that the stronger forcing condition is the
larger one. We assume that each poset P has a weakest element and denote
it by 0P .

Definition 2.1 (A modification of [2, Definition 4.1]).
(1) An approximation is a pair (f, C) such that there is a countable ordinal

α and C ⊆ α + 1, C is closed and α ∈ C, f :
⋃
i∈C Ti → Q is a

partial specialisation function. The ordinal α is called last(f). We say
“(f2, C2) extends (f1, C1)” and write (f1, C1) ≤ (f2, C2) iff f1 ⊆ f2
and C1 ⊆ C2 and (C2 \ C1) ∩ (

⋃
C1) = ∅.

(2) We say H is a requirement of height γ < ω1 iff for some n = n(H) < ω,
H is a countable set of functions of the form h : dom(h) → Q with
dom(h) ∈ [Tγ ]n.

(3) We say that a finite function h : Tα → Q bounds an approximation f
with last(f) = α iff ∀x ∈ dom(h), f(x) < h(x). More generally, if
β ≥ α = last(f), then h : Tβ → Q bounds f iff ∀x ∈ dom(h)(f(xdα) <
h(x)).

(4) An approximation f with last(f) = α is said to fulfil the requirement
H of height γ ≥ α iff for every t ∈ [Tα]<ω there is some h ∈ H which
bounds f and such that {xdα : x ∈ dom(h)} is disjoint from t.

If f fulfils the requirement H, then any approximation f ′ with the same
last level that is dominated everywhere by f fulfils the requirement as well.
Note that according to Definition 2.1 (4) only infinite requirements H can be
fulfilled. For γ = α the necessary property is equivalent to having an infinite
set of pairwise disjoint dom(h), h ∈ H and is equivalent to a property we
call dispersedness:

Definition 2.2. H ⊆ Q[Tγ ]n is called dispersed iff for each t ∈ [Tγ ]<ω, there
is some h ∈ H such that t ∩ dom(h) = ∅.

A forcing condition will be an approximation together with a T-promise.
The promises function as side-conditions and ensure that the forcing and
also all of its countable support iterations (see Theorem 2.20) do not add
new reals.

In order to describe how elements of Γ(γ) are seen at lower levels in
the tree, we extend our d-notation: Let α < γ. For h : Tγ → Q we let
dom(hdα) ⊆ Tα and hdα(x) = min{h(y) : ydα = x, y ∈ dom(h)}. For a
requirement H of height γ and α < γ we set Hdα = {hdα : h ∈ H}.
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Definition 2.3 (See [2, Definition 4.1 (4)]). Γ is a T-promise iff dom(Γ) is
club in ω1 and Γ = 〈Γ(γ) : γ ∈ dom(Γ)〉 has the following properties:

(a) For each γ ∈ dom(Γ), Γ(γ) is a countable set of requirements of height
γ.

(b) (∀γ ∈ dom(Γ))(∀H ∈ Γ(γ)) H is dispersed.
(c) (∀α < γ ∈ dom(Γ))(Γ(α) ⊇ {Hdα : H ∈ Γ(γ)}). This condition

implies that {Hdα : (∃γ > α)(H ∈ Γ(γ))}) is countable.

Definition 2.4 ([2, Definition 4.1 (5)]). We say that an approximation
(f, C) fulfils the promise Γ iff last(f) ∈ dom(Γ) and f fulfils each require-
ment H in Γ(last(f)).

Finally we can describe the iterands of our iteration of length ω2. QT is
called S(T) in [2]. We do not know whether it is equivalent to the forcing
notion QNNR or NNR(T) from [15, V, 6.3]. NNR means “no new reals”.

Definition 2.5 ([2, 4.2]). QT is the set of (f, C,Γ) such that (f, C) is an
approximation, and Γ is a promise and (f, C) fulfils Γ. The partial order is
defined as (f0, C0,Γ0) ≤ (f1, C1,Γ1) iff

(1) f1 extends f0,
(2) C1 is an end-extension of C0 and C1 \ C0 ⊆ dom(Γ0), and
(3) (∀γ ∈ dom(Γ0 \ last(f1))(γ ∈ dom(Γ1) and Γ0(γ) ⊆ Γ1(γ)).

If p = (f, C,Γ), we write f = fp , C = Cp and Γ = Γp, and we write
last(p) = last(fp) = max(Cp).

Do not confound the countable, closed C’s that are the second coordinate
of the approximations with the true clubs dom(Γ) in ω1 that are the do-
mains of the promises Γ: the first ones are approximations to the latter ones
as in the forcing adding a club through a stationary set by countable ap-
proximations [4]. However, we take club sets dom(Γ) and not co-stationary
sets as there, as we want to work with proper forcings.

Now we want to extend a given condition to a stronger condition of a
given height, and we want to show that the set of promises can be enlarged.

Lemma 2.6 ([2, Lemma 4.3], The extension lemma). Let µ < ω1. If p ∈
QT and if last(p) < µ ∈ dom(Γp), then there is some q ≥ p such that
Γq = Γp and last(q) = µ. Moreover, if h : Tµ → Q is finite and bounds fp,
then q can be chosen such that h bounds f q.

Proof. The proof is done by induction on µ.
First case: µ = µ0 + 1 is a successor. We may assume that last(p) = µ0

and we have to extend fp onto Tµ0+1, fulfilling all the countably many
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requirements in Γp(µ). We know that every requirement Hdµ0 for H ∈
Γp(µ) is fulfilled by fp. So Hdµ0 contains infinitely many functions h that
bound f . We have countably many H, and we enumerate them as H0, H1,
. . . . There are enough points in Tµ0+1 \ Tµ0 such that in each Hi there will
be some hi such that dom(hi) ∩

⋃
{dom(hj) : j < i} = ∅.

Since it will be used in the limit step, we now prove the “moreover”-
clause. If h bounds p as in the Lemma, we first choose any extension p1 of
p with µ = last(p1) and then we correct p1 as follows to obtain q: There
is some d > 0 such that ∀x ∈ dom(h), h(x) > fp(xdµ0) + d. Now we take
δ : Q+ → (0, d) order-preserving and such that δ(x) < x for all x ∈ Q+.
Now we set f q(x) = fp(xdµ0) + δ(fp1(x)− fp(xdµ0)). Hence h bounds q.

Second case: µ is a limit of dom(Γp). We pick an increasing sequence
of ordinals µi, i < ω, converging to µ. We define an increasing sequence
pi ∈ QT, i ∈ ω, beginning with p0 = p and finite hi, gi : Tµ → Q which
bound pi and whose union of domains will be Tµ. The passage from µi
to µi+1 uses the inductive assumption for µi+1 of the stronger claim in
the “moreover” clause. The hi and gi ensure that f q is bounded on each
branch in T<µ and that f q on the level Tµ fulfils all the promises in Γ(µ).
Then we can define q = (f, C,Γ) by C = Cp ∪ {µ} and Γ = Γp. We let
f ′ =

⋃
{fpi : i < ω} ∪ {(x, lim supi→ω fpi(xdµi)) : x ∈ Tµ}. The values on

level µ might be irrational. We correct them to slightly larger values in Q
that are so small as to fulfil all the promises in Γq(µ) and let the resulting
function be f q. Such a choice is possible since all (ω, ω)-gaps in R are filled
with sequences with values in Q.

To carry out the step from i to i+ 1, let Γp(µ) = {Hi : i < ω}. At step
i, we choose hi ∈ Hi such that dom(hi) ∩

⋃
{dom(hj) : j < i} = ∅ and

we choose gi ∈ {g : [Tµ]n(Hi) → Q : g(x) = fp(xdlast(p)) + 1/2i} and fulfil
both. In addition we take care that

⋃
{dom(hi) ∪ dom(gi) : i < ω} = Tµ.

Then we choose `i so high that dom(hidµ`i)∩
⋃
{dom(hjdµ`i) : j < i} = ∅.

By the induction hypothesis of the statement together with the “moreover”-
clause we have some εi > 0 and pi such that for all j ≤ i, ∀x ∈ dom(hj)
fpi(xdµ`i) < hjdµ`i(xdµ`i) − εi and last(pi) = µ`i , and the same can be
arranged for the gj . Since hj ∈ Hj is taken care of at each step i ≥ j, in
the end also f(x) < hj(x) for all x ∈ dom(hj).

Definition 2.7. Let p be a condition of height µ and let Ψ be a promise.
We say that p includes Ψ iff dom(Ψ) ⊆ dom(Γp) and for all γ ∈ dom(Ψ),
Ψ(γ) ⊆ Γp(γ).

If p includes Ψ, then p fulfils Ψ. There is a sufficient condition for the
existence of an extension q of p such that q includes Ψ:
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Lemma 2.8 (Modification [2, Lemma 4.4.], Addition of promises). Let
p ∈ QT and µ = last(p). Let Ψ be a promise with µ < β = min(dom(Ψ))
and dom(Ψ) ⊆ dom(Γp). Suppose that for some finite g : Tµ → Q called a
basis for Ψ, g bounds fp and

(∀γ ∈ dom(Ψ))(∀H ∈ Ψ(γ))(∀h ∈ H)(hdµ = g).

Then there is an extension q of p in QT that includes Ψ.

Proof. Since g is finite, there is some rational d > 0 such that (∀x ∈
dom(g))(g(x) > fp(x) + d). Now every H ∈ Ψ(β) is a dispersed collection
of functions h with hdµ ≥ g. Let p1 be any extension of p of height β. For
γ ≥ β we set Γq(γ) = Ψ(γ) ∪ Γp(γ), and γ ∈ [µ, β) we set Γq(γ) = {Hdγ :
H ∈ Ψ(β)}∪Γp(γ). The desired extension of p is obtained by correcting fp1

to get f q that fulfils Ψ(β) ∪ Γ(β) as in the “moreover”-part of the previous
lemma.

In the following lemma χ > 2ℵ1 is sufficiently large.

Lemma 2.9 ([2], [15, Fact V.6.7]). Let T be an Aronszajn tree. Let M ≺
(H(χ),∈) be a countable elementary substructure with a sufficiently large
regular χ, QT ∈ M , p ∈ QT ∩M , µ = ω1 ∩M and h : Tµ → Q be a finite
function which bounds fp. Let D ∈M , D ⊆ QT be dense open. Then there
is an q ≥ p, q ∈ D ∩M , that h bounds q.

Proof. We assume that the contrary is the case. Let T, M , p, h be a
counterexample. Let µ0 = last(p) < µ and let {x0, . . . , xn−1} = dom(h) ∈
[Tµ]n. Let vi = xidµ0. We assume that vi 6= vj for i 6= j otherwise we
extend p upwards with Lemma 2.6 to get some p′ ≥ p with last(p′) < µ and
xidlast(p′) 6= xjdlast(p′).

Put g0 = hdµ0. Then g0 ∈ M , as it is finite. We say that that a finite
partial g : Tγ → Q is bad iff µ0 ≤ γ and gdµ0 = g0 and, whenever q ∈ D
extends p and γ ≥ last(q), g does not bound q. So g is bad iff it has the
similar behaviour as hdµ0. For every γ ∈ [µ0, µ), hdγ is bad. So in M and
hence in H(χ) there are uncountably many bad g’s. We set

B = {dom(g) : g is bad}.

Then B is an uncountable and closed downwards in <T (above µ0) subset
of
⋃
µ0≤γ<ω1

[Tγ ]n. As T is an Aronszajn tree, [6, Lemma VI.7] implies that
there is some β ≥ µ0 and some B0 ⊆ B such that:

(1) For β ≤ γ0 < γ1, B0 ∩ Tγ0 = (B0 ∩ Tγ1)dγ0
(2) B0 ∩ Tβ is dispersed.
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Here we take Xdγ = {xdγ : x ∈ X} for X ⊆ T. We may find B0 in M ,
since only parameters in M were mentioned in its definition. For β ≤ γ < ω1
let Ψ(γ) = {Hγ} with Hγ = {g : g is bad and dom(g) ⊆ B0 ∩ Tγ}M . By
Lemma 2.8, read in M , there is an extension q of p in M of height β which
includes Ψ, i.e., Hγ ∈ Γq(γ).

Now let r ∈ D be any condition extending q. Let γ = last(r). Since r
fulfils Γ, for some g in Hγ , g bounds r. But this contradicts the fact that g
is bad.

Lemma 2.9 will be used in the induction in Claim 2.16 to get point (5).

Definition 2.10. Now we assume V |= CH + ♦ω1 + 2ℵ1 = ℵ2 and let
Pω2 = 〈Pα, Q

˜
β : α ≤ ω2, β < ω2〉 be a countable support iteration with

Q
˜
α = QTα

˜
being as above for some Aronszajn tree Tα ∈ V[Gα], where the

filter Gα is Pα-generic over V, such that Pα “T
˜
α is an Aronszajn tree and

for γ < ω1 its γ-th level is [ωγ, ωγ+ω)”. The book-keeping shall be arranged
so that every Pω2-name for an Aronszajn tree is used in some iterand.

Why does every Aronszajn tree in VPω2 have a Pα-name for some α < ω2?
We have |QT| = ℵ2, so that we cannot work with the ℵ2-chain condition
for each iterand. Now [15, Chapter VIII, Section 2] helps: Basically by
Lemma 2.8, each QT has the ℵ2 p.i.c. (proper isomorphism condition),
see [15, Chapter VIII, Definition 2.1], and hence by [15, Chapter VIII,
Lemma 2.4], Pω2 has the ℵ2-c.c, if V0 fulfils the CH.

Since Pω2 has the ℵ2-c.c., by a lemma similar to the one of [5, 5.10], now
for subsets of ω1 instead of real numbers, every subset of ω1 in a countable
support iteration of proper forcings with the ℵ2-c.c. at each initial segment
has a name at some stage of cofinality ω1. So we an carry out the desired
book-keeping.

In the remainder of this section, we shall prove that Pω2 does not add new
reals. Towards this aim, we first recall some general theory for < ω1-proper
forcings P adding no reals. Then we shall show that our specific forcing and
a suitable completeness system D(M,P, p) exhibit these properties. Note
that adding no reals and adding no new ω-sequence of ordinals is the same
for proper forcings. In the application, P is of the form QT or is some
countable support iteration of QT’s.

Recall, p ∈ P is (M,P )-generic if for every P -generic filter G over V with
p ∈ G, p  M [G

˜
] ∩ On = M ∩ On. Now in the context of proper forcings

that do not add reals we find completely (M,P )-generic conditions.

Definition 2.11. A condition p is completely (M,P )-generic if G = {q ∈
P ∩M : q ≤ p} is an (M,P )-generic filter. G is called bounded.
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Indeed, P is proper and does not add reals iff for everyM ≺ (H(χ),∈), for
every p ∈M ∩P there is a completely (M,P )-generic q ≥ p. Given a name
f
˜

for a real, consider the dense sets Dn = {p : (∃m ∈ ω)(p  f
˜

(n) = m)}.
Completeness systems that are closed under finite intersections — we shall
have countably closed ones — help to find completely generic conditions in
a first order definable way and allow to prove that no new reals sneak in
at the limit steps. Only the case of cofinality ω is hard, since every real in
a countable support iteration of proper forcings appears for the first time
at some stage of at most countable cofinality [1, Corollary 2.9 (1)]. An im-
portant point is that some parameters of the members of the completeness
system, that are subsets of M , here called x, need to be guessed. Since inter-
sections over countable parts of the completeness system are not empty, the
guessing can be performed in M ′, when M ′ ≺ (H(χ),∈, <∗χ) and M ∈ M ′.
One not so aesthetic feature stays: There is neither a completeness system
for the two-step iteration nor for the limit forcing, we only know that no
reals are added. From the proof we get a description of the bounded generic
filters and of the generic filters for some towers of elementary submodels
that appear as helpers in the proofs.

Definition 2.12 ([15, V, 5.5]).
(1) We call D a completeness system if for some µ, D is a function defined

on the set of triples 〈M,P, p〉, p ∈M ∩P , P ∈M , M ≺ (H(µ),∈), M
countable, such that D(M,P, p) is a family of non-empty subsets of

Gen(M,P, p) ={G : G ⊆M ∩ P,G is directed and p ∈ G
and G ∩ I 6= ∅
for every dense subset I of P which belongs to M}.

(2) We call D a λ-completeness system if each family D(M,P, p) has the
property that the intersection of any i elements is non-empty for i <
1 + λ (so for λ ≥ ℵ0, D(M,P, p) generates a filter). ℵ1-completeness
systems are also called countably closed completeness systems.

(3) We say D is on µ if M ≺ (H(µ),∈). We do not always distinguish
strictly between D and its definition.

The notion of forcing QT has size 2ℵ1 , and the set of all approximations
has size ℵℵ0

1 . So for a countable M ≺ (H(χ),∈, <∗χ), we never have P ⊆M .
If T ∈ M , we can read the definition of P = QT in M and get PM .
Since T is definable from QT (x 6<T y iff there is an approximation with
f(x) = f(y)), QT ∈ M implies T ∈ M . If χ > 2ℵ1 is regular, then
PM = P ∩M . In our description via first order formulae, P , x, and G are
predicates on M .
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Definition 2.13. Suppose that D is a completeness system on χ. We say
P is D-complete, if for every countable M ≺ (H(χ),∈) with P ∈M , D ∈M ,
p ∈ P ∩M , the following set contains as a subset a member of D(M,P, p):

Gen+(M,P, p) = {G ∈ Gen(M,P, p) : there is an upper bound for G in P}.

Definition 2.14 ([15, V, 5.5]).
(1) A completeness system D is called simple if there is a first order formula

ψ such that

D(M,P, p) = {Ax : x is a finitary relation on M, i.e., x ⊆Mk

for some k ∈ ω},
where

Ax = {G ∈ Gen(M,P, p) : (M ∪ P(M),∈, p,M, P ) |= ψ(x,G)}.
(2) A completeness system D is called almost simple over V0 (V0 a class,

usually a subuniverse) if there is a first order formula ψ such that

D(M,P, p) = {Ax,z : x is a finitary relation on M, i.e.,

x ⊆Mk for some k ∈ ω, z ∈ V0},
where

Ax,z = {G ∈ Gen(M,P, p) :

(V0 ∪M ∪ P(M),∈V0 ,∈M∪P∪P(M), p,M,V0, P ) |= ψ(x, z,G)},

where ∈A= {(x, y) ∈ A×A : x ∈ y}.
(3) If in (2) we omit z, we call D simple over V0.

We shall give an example ψ and a simple ℵ1-completeness system D on
any regular χ > 2ℵ2 , so that QT is D-complete. From now on we use the
requirement from Definition 2.10 that the α-th level of T = (ω1, <T) is
[ωα, ω(α + 1)). Let χ > 2ℵ2 be a regular cardinal. If we have a countable
M ≺ (H(χ),∈), then M ∩T = T<µ for µ = M ∩ ω1. We take an increasing
sequence β̄ = 〈βn : n ∈ ω〉 that is cofinal in µ. Now we take for x1 ⊆
M a code of the branches through T<µ, for example x1 : T<µ → ω, x1
is eventually constant on each branch. We also code in x1 the branches
through T<µ that have <T successors in Tµ. Indeed the other branches
are unimportant. If we want to find an (M,P )-generic condition with last
level Tµ we have to take care that the approximations to the specialisation
function do not diverge on any branch that is continued in Tµ. Since we
are looking for a condition q ≥ p and p ∈ M , we also code into another
component x2 ⊆ M the set

⋃
γ≥µ Γq(γ)dµ of promises for each q ∈ M ∩ P .

The codes x = (x1, x2, β̄) are in general not in M , but they are predicates
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⊆ Mk. The point is that countably many Ax from Definition 2.14 (the ψ
appearing in Ax will be given in Lemma 2.15) have a non-empty intersection.
This works also for countably many guesses for codes, which is crucial in
the proofs of Theorems 2.20 and 3.4.

The technique of the following lemma comes from [2]. Actually a sketch
of the elements of the ℵ1-completeness system is also given in the end of
the proof of [15, Chapter V, Theorem 6.1] on page 236. We conceive x =
(x1, x2, β̄) as one relation in M .

Lemma 2.15. QT is D-complete for the simple ℵ1-completeness system D
given by ψ(x,G) = ψ0(x) ∧ ψ1(x,G), with

ψ0(x) ≡x = (x1, x2, β̄) ∧ β̄ = 〈βn : n ∈ ω〉 increasing

∧M ∩ ω1 =
⋃
{βn : n < ω}

and

ψ1(x,G) ≡ (∀ε > 0)(∃m < ω)(∀n1 < n2 ∈ [m,ω))(∀t ∈ Tµ)(∀y1, y2 <T t)(
(y1 ∈ Tβn1

∧ y2 ∈ Tβn2
∧ y1 <T y2 → f

˜
[G](y2) < f

˜
[G](y1) +

ε

2n2

)
∧ “G is a filter”

∧ p ∈ G ∧ ∀D ∈M((D ⊆ P ∧D dense in P )→ D ∩G 6= ∅)
∧ (∀H ∈ x2)(∀n)(∀t ∈ [Tβn ]<ω)(∃h ∈ H)

(domhdβn ∩ t = ∅ ∧ f
˜

[G] � Tβn fulfils hdβn).

Here M , P , x and G appear in the formulas as (names for) predicates and
p is a constant. To ease readability, we write Tµ instead of x1 (though Tµ
is not a subset of M) and

⋃
γ≥µ Γp(γ)dµ instead of x2.

Proof. First we proof the following claim:

Claim 2.16. Let µ = M ∩ω1 = sup〈βn : n < ω〉 and let the βn be increas-
ing. If (

M ∪ P(M),∈M∪P(M), p,M,QT

)
|= ψ0(x),

then there is G ⊆ QT, G ∈ G(M,QT, p) ∩Ax such that(
M ∪ P(M),∈M∪P(M), p,M,QT

)
|= ψ(x,G).

Proof. Let {In : n ∈ ω} be an enumeration of all open dense subsets of
QT that are in M . Let {tn : n ∈ ω} enumerate Tµ: Now we choose by
induction on n < ω, pn such that

(1) p0 = p,
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(2) pn+1 ≥ pn ∈M ,
(3) last(pn+1) ≥ βn+1,
(4) pn+1 ∈ In,
(5) (∀t ∈ {tk : k ≤ n})(∀y <T t)(

y ∈ Tβn+1 → fpn+1(y) < fpn(ydβn) +
1

2n+1+n

)
.

Then G = {r : (∃n ∈ ω)(r ≤ pn)} ∈ Gen(M,QT, p) ∩Ax.
Why is this choice possible? For Properties (4) and (5) we use Lemma 2.9

for h with

dom(h) ={tkdβn+1 : k ≤ n},

h(y) =fpn(ydβn) +
1

2n+1+n ,

which is a finite function that bounds pn and we find some pn+1 of length
βn+1.

Claim 2.17. If (M ∪ P(M),∈, p,M,QT) |= ψ(x,G) for some x, then G
has an upper bound in QT.

Proof. Again let {In : n ∈ ω} be an enumeration of all open dense subsets
of QT that are in M . Let x be as in ψ(x,G). Let G ⊇ {qn : n ∈ ω},
qn ∈ M ∩ In, last(qn) = βn such that the βn and the qn are increasing.
We set µ = M ∩ ω1 =

⋃
βn, f q as in the proof of Lemma 2.6 a slightly

larger rational variant of
⋃
f qn ∪ {(z, sup{f qn(zdβn) : n ∈ ω}) : z ∈ Tµ},

Cq =
⋃
n∈ω C

qn ∪ {µ}, which is closed since for each n, Cqn+1 is an end
extension of Cqn , dom(Γq) = (

⋃
n∈ω dom Γqn ∩ [µ, ω1))∪{µ}, and for µ′ > µ,

Γq(µ′) =
⋃
n∈ω Γqn(µ′) and Γq(µ) =

⋃
µ′≥µ

⋃
n∈ω Γqn(µ′)dµ.

We claim that q is an upper bound of G: First we check that q ∈ QT.
Note that if ν dominates all hβ̄,z, z ∈ Tµ, then for every z ∈ Tµ the limit
f q(z) exists, because if hz,β̄ ≤∗ ν, then for almost all n, zdβn = ωβn+hz,β̄(n)
and hz,β̄(n) ≤ ν(n). So we have that (f q, Cq) is an approximation. Now let
H ∈ Γq(µ) be a T-promise. For some µ′ ≥ µ, k ∈ ω, H ∈ Γqk(µ′)dµ. Then,
since qk fulfils the promise, also q fulfils the promise.

Proof of Lemma 2.15 continued. We showed that Ax ⊆ G+(N,QT, p).
So we have that QT is D-complete. It remains to show that D is countably
closed, i.e., that given x` with ψ(x`, G), ` < ω, the intersection

⋂
`∈ω Ax` is

not empty. But this is now easy: Let x` = (x1,`, x2,`, β̄`). x1,`, coding the
cofinal branches in T<µ, and x2,`, coding the promise Γ(µ), are defined from
T and p and do depend on ` at most in the way the coding is chosen, not
in the content they code.
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There is only some little twist because the β̄` = 〈β`,u : u < ω〉 are not
the same. We choose β = 〈βm : m < ω〉 such that β0 = 0, (∀` ≤ m)(∃u <
ω)(β`,u ∈ [βm, βm+1)). Then we let x1 = x1,0, x2 = x2,0 and x = (x1, x2, β̄).
Then Ax ⊆ Ax` , ` < ω.

Definition 2.18. We call P α-proper if the following holds: Let Mi, i < α,
be countable elementary submodels of (H(χ),∈). Let P ∈ M0 and let
〈Mi : i < α〉 be an increasing sequence such that 〈Mj : j ≤ i〉 ∈Mi+1 and
for limit ordinals j, Mj =

⋃
i<jMi. Then for every p ∈ P ∩M0 there is some

q ≥ p that is (Mi, P )-generic for all i < α. Such a sequence 〈Mi : i < α〉 is
called a tower of models and α is the height or the length of the tower.

Lemma 2.19. QT is α-proper for all α < ω1.

Proof. The upper bound from Claim 2.17 gives a completely (M,QT)-
generic q ≥ p. Given a tower of height α, we can repeat the construction α
steps, using a “diagonalised” version of Claim 2.16 for countably many M
and countably many enumerations of dense sets simultaneously, so that in
the end we get some q that is (Mi, QT)-generic for all i < α.

Now we can cite Theorem V.7.1 (2) of [15] for ℵ1-complete systems. A
very clear proof, even in a more general context when “almost simple over
V0” is replaced by “in V0”, is given in [1, Theorem 5.17].

Theorem 2.20. Let Pγ = 〈Pj , Q
˜
i : j ≤ γ, i < γ〉 be a countable support

iteration. If each Qi
˜

is β-proper for every β < ω1 and Di-complete for some
almost simple ℵ1-completeness system Di over V0 (not over the current
stage of the iteration), then Pγ does not add reals.

So we know that Pω2 from Definition 2.10 exists and specialises all Aron-
szajn trees and does not add reals. The remaining task is to obtain the
weak diamond ♦(R,N ,∈) in VPω2 .

3. Games for the generic filters over countable models

In this section we show that certain weak diamonds hold when forcing
with a countable support iteration of QT’s (of arbitrary iteration length
γ) over a ground model fulfilling ♦ω1 . In order to specialise all Aronszajn
trees, we start with a ground model of CH and 2ℵ1 = ℵ2 and perform an
iteration of length γ = ω2 with a suitable book-keeping.

For the weak diamonds, we rework the facts used in the proof of
Lemma 2.15 to give some stronger, descriptive statement about G ∩ M .
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The basic idea is: The parameters x1 and x2 of the Ax in the completeness
system D(M,P, p) from Lemma 2.16 can be coded into functions ν : ω → ω
in a way that each η ≥∗ ν also serves as a code for a parameter. The proof of
Theorem 2.20, which works with guessing parameters, will be translated into
a game whose innings give ≤∗-sufficiently large codes of parameters. Let γ
be the iteration length. The result, stated in Theorem 3.4, is that bounded
(M0, Pγ)-generic filters containing p0 can be computed in a Borel manner
from the isomorphism type of (M0, Pγ , p0) and a game played according to
a strategy. The length of the game is α = otp(M0 ∩ γ).

In the following χ > 2ℵ2 suffices. Let <∗χ be a fixed well-ordering of H(χ)
such that x ∈ y implies x <∗χ y. Assume that M ≺ (H(χ),∈, <∗χ) is a
countable model and T, QT ∈M . From now on we shall use the well-order
<∗χ. In the following, let M always be a model of this kind. We reserve the
letter N for transitive collapses of the M ’s. Fix a bijective pairing function
e : ω×ω → ω that is so low in complexity such that it is an element of every
M .

Now we want to get rid of the two parameters x1 and x2 that depend on
p, Tµ and

⋃
µ′≥µ Γp(µ′)dµ and are relations over M but not elements in M .

The trick is to find a real ν coding them (after a transitive collapse) and
code in such a way that every η ≥∗ ν codes even better. Coding means we
want to imitate Lemma 2.16 now with η taking the role of x1 and of x2.
The parameter β̄ can stand as it is, since it depends only on the transitive
collapse of M and not on P and p.

We translate the task of x1:

Definition 3.1. Let T be an Aronszajn tree with levels Tα = [ωα, ω(α+1)).
Let µ be a limit ordinal in ω1. Given β̄ converging to µ, we can write cofinally
many nodes of a branch b of T<µ into a function hb,β̄ : ω → ω, such that for
all n,

b ∩ Tβn = {ωβn + hb,β̄(n)}
and we can describe each node t = ωµ+ k ∈ Tµ, by ht,β̄ : ω → ω, such that
for all n,

tdβn = ωβn + ht,β̄(n).
If t = ωβn + k ∈ Tβn , then we define ht,β̄ : n + 1 → ω, such that for all
m ≤ n,

tdβm = ωβm + ht,β̄(m).

Now we translate the task of x2:

Definition 3.2. Let µ = M∩ω1. Given β̄ converging to µ, and p ∈M∩QT
with last(p) = β0, let Γp(µ) = {Hn : n ∈ ω}, and let hn,m ∈ Hn be such
that p fulfils hn,m, and such that {dom(hn,m) : m < ω} is dispersed and
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pairwise disjoint. We define hp,Hn : Tµ → ω, such that for all x ∈ Tµ, for all
m

hn,m(x)− 2−hp,Hn (x) > fp(xdlast(p)).

That is, the growth of f q ⊇ fp along the branch leading to x ∈ Tµ and
a promise Hn ∈ Γp(µ) shall be bounded, only the small increase 2−hp,Hn(x)

above fp is allowed. We code the level Tµ ⊆M in a predicate on M and we
code the promise Γp(µ) into the natural numbers via a bijection l : ω → Tµ.
Then hp,Hn ◦ l : ω → ω is a function we want to eventually dominate with a
good parameter ν. The parameter does not know the actual functions hp,Hn .
That aim ist: if a parameter ν dominates all the ht,β̄, t ∈ Tµ, and all the
hp,Hn , n ∈ ω. then we can choose the conditions in an (M,P )-generic filter
only with the knowledge of η for any η ≥∗ the parameter ν and without Tµ
(or x1) and Γp(µ) (or x2). To make the induction in the next lemma going,
the parameter need also to be larger than the codes of the Γpn(µ) for n ∈ ω.
So we code all hq,H for H ∈ Γq(µ), q ∈M ∩ P , into x2.

Lemma 3.3. Let p ∈ QT ∩ M . Let µ = M ∩ ω1 = sup〈βn : n < ω〉,
βn+1 > βn. Let c : ω → M be a bijection with c(0) = QT, c(1) = p,
c(2n+ 2) = βn, and let

U = U(M,QT, p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <∗χ c(n2)}.

We let Γp(µ) = {Hn : n ∈ ω} and we let the functions hy,β̄ and hp,Hn be
defined as in Definitions 3.1 and 3.2.

There is a Borel function B1 : ωω × P(ω) → P(ω), such that for every
η ∈ ωω, if

(∀y ∈ Tµ)(hy,β̄ ≤∗ η), (3.1)

and

(∀n)(hp,Hn(l(·)) ≤∗ η) (3.2)

for
G = {c(n) : n ∈ B1(η, U)}

the following holds: G is (M,QT)-generic and p ∈ G and there is an upper
bound r of G as in Claim 2.17.

Remark . r is an upper bound of G iff we have for every QT-generic filter
GV over V with r ∈ GV and name GV

˜
that

r QT GV

˜
∩M = {c(n) : n ∈ B1(η, U)}.
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Proof. We verify that each step in the proof of Lemma 2.15 is Borel-
computable from (η, U). Let M ≺ (H(χ),∈, <∗χ) be countable. Then we
take an enumeration 〈In : n ∈ ω〉 of all dense subsets of QT that are in M ,
ordered according to <∗χ.

Now, we compute from η and U by induction on n < ω, pn such that
(1) p0 = p, last(p) = β0
(2) pn+1 is the <∗χ-least element of M such that

(2a) pn+1 ≥ pn,
(2b) last(pn+1) ≥ βn+1,
(2c) pn+1 ∈ In,
(2d) (∀x ∈ Tβn+1)(

hx,β̄(n+1)≤η(n+1)→ fpn+1(x)<fpn(xdβn)+
1

2n+1+n+η(l(x))

)
.

For finding such an pn+1 we use the Lemma 2.9 for the finitely many initial
segments of branches y � (βn+1 + 1) with y(βn+1) ≤ η(n+ 1) and with the
following bound h:

dom(h) = {x ∈ Tβn+1 : hx,β̄(n+ 1) ≤ η(n+ 1)},

h(x) = fpn(xdβn) +
1

2n+1+n+η(l(x)) .

If Equations (3.1) and (3.2) hold, then η is sufficiently large to take care
of all branches of T<µ that lead to points x ∈ Tµ. Set B1(η, U) = {q ∈
N ∩QT : (∃n)q ≤ pn}.

Then B1(η, U) ∈ Gen+(N,QT, p) ∩ Ax and there is an upper bound of
B1(η, U) as in Claim 2.17.

Strictly speaking we must write U = U(M,P, p, β̄), since by the bound-
edness theorem (see, e.g., [10, Theorem 31.1]) a cofinal sequence β̄ cannot
be computed in a Borel manner from (M,∈, <∗χ), and for each n, βn is
coded by the stipulation c(2n+ 2) = βn. The arguments (M,P, p) of U will
change during the iteration, and one of the main tasks is to show that all the
changes are Borel computable, see for example Equation (3.8). Fortunately,
since in proper forcing P the ordinary height of N and N [G] (we use the
letters N and G for the objects after the transitive collapse) are the same for
all (M,P )-generic filters G, β̄ will not change and it does not hide features
of the proof if we do not write it during the proof of the iteration theorem.
However, β̄ needs to be guessed as one component in Lemma 3.11 and will
be written there. Since our notation is already heavily burdened, we write
only U(M,P, p) until the end of the proof of Theorem 3.4.

Since each η dominating all ht,β̄, t ∈ Tµ, and dominating hp,Hn , n ∈
ω, gives an (M,QT)-generic G, the generic player can play ν fulfilling all
theses largeness requirements and thereafter any η ≥∗ ν can be used as an
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argument of B. We use this option to build a game between two players,
and to establish properties that say: The ≤∗-larger the argument η in the
Borel function B1 is, the better it aims at the envisaged weak diamond.
See also the remark [15, V, Remark 5.4 (2)] about the influence of the
guessed parameters on the generic filter. The knowledge that the ≤∗-larger
parameter can be inserted in the Borel function B1 will help us later to see
that in the iteration every name of a real (called B′ in Lemma 3.10 as it is
another Borel function) can be forced into a slalom from the ground model
(called C there) that is meagre and of Lebesgue measure zero.

The following theorem is an iterated version of Lemma 3.3. It is related to
Theorem 2.20, however now we want to compute bounded (M,Pγ)-generic
filters (that witness that no reals are added) as Borel functions of certain
arguments. As in Theorem 2.20 we use < ω1-properness and a tower 〈Mi :
i ≤ α〉 with α = otp(M ∩ γ) < ω1, γ= iteration length, of elementary
submodels in order to prove facts about M = M0 and Pγ . The tower
appears only in the proof, not in the statement of the theorem. The following
theorem would work for arbitrary iteration length, but we use it only for
length ω2 and notate it only for this length.

Theorem 3.4. Let Pω2 = 〈Pα, Q
˜
β : α ≤ ω2, β < ω2〉 be a countable support

iteration of iterands of the form QT. If χ is sufficiently large and regular
and if M ≺ (H(χ),∈, <∗χ) is countable and

(a) Pγ ∈M , γ ≤ ω2,
(b) p ∈ Pγ ∩M ,
(c) α = otp(M ∩ γ),
(d) Let β̄ be cofinal in M∩ω1. Let c : ω →M be a bijection with c(0) = Pγ,

c(1) = p, c(2n+ 2) = βn, and let

U = U(M,Pγ , p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <∗χ c(n2)}.
Then there is a Borel function B = Bα : (ωω)α × P(ω) → P(ω), such that
in the following game a(M,Pγ ,p) the generic player has a winning strategy σ,
which depends only on the isomorphism type of (M,∈, <∗χ, Pγ , p, β̄):
(α) a play lasts α moves,
(β) in the ε-th move the generic player chooses some real νε and the anti-

generic player chooses some ηε ∈ ωω, such that ηε ≥∗ νε,
(γ) in the end the generic player wins iff the following is true:

Gγ = {c(n) : n ∈ Bα(〈ηε : ε < α〉, U)} is (M,Pγ)-generic and
p ∈ Gγ and

(∃q ∈ Pγ)(p ≤ q and q bounds Gγ).
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Proof. We follow Abraham’s exposition in [1, Theorem 5.17]. This theorem
works only inductively: For Qα in VPα to be D–complete with respect to a
system that lies in V we need that Pα does not add new countable sets of
ordinals. So every countable transitive set in VPα is in V.

To prove the theorem we shall first define for every countable M ≺
(H(χ),∈, <∗χ) with Pγ ∈M , p ∈ Pγ ∩M , with α = otp(M ∩γ), an (M,Pγ)-
generic filter Gγ = Bα(〈ηi : i < α〉, U); and then we shall prove that Gγ
is bounded in Pγ by a completely (M,Pγ)-generic condition. The bounding
condition is not computed in a Borel manner. Its existence is sufficient, and
its existence is proved along the iteration.

Remark . The bounding condition also appears in an argument about the
truth in forcing extensions at the very end of our Lemma 3.11.

The definition of Gγ is by induction and we shall define for every γ0 < γ
and Gγ0 that is (M,Pγ0)-generic and every p ∈ Pγ ∩M with p � γ0 ∈ G0 a
filter Gγ that extends Gγ0 and contains p. Once the induction is performed,
we shall set γ0 = 0, G0 = {0P0}. There will be two main cases in this
definition: γ successor and γ limit, and likewise there will be two cases
in the proofs that Gγ is bounded. We start with the preparations for the
successor case. When looking at complexity, we regard G0 as a parameter.

Two step iteration
Let P be a poset and let Q

˜
∈ VP be a name forced by 0P to be a

poset. Let χ be sufficiently large and regular (as said, χ = (2ℵ2)+ is al-
ways sufficiently large) and M0 ≺ (H(χ),∈, <∗χ) be a countable elemen-
tary submodel such that P , Q

˜
∈ M0. Henceforth we write just H(χ) in-

stead of (H(χ),∈, <∗χ). We want to find a criterion for when a condition
(q0, q1) ∈ P ∗Q

˜
is completely (M0, P ∗Q

˜
)-generic. Let π : M0 → N0 be a

transitive collapsing map. Suppose that q0 ∈ P is completely generic over
(M0, P ) and let G0 ⊆ P ∩M0 be the (M0, P )-generic filter induced by q0.
Then G0 = π′′G0 is an (N0, π(P ))-generic filter and we can form the tran-
sitive extension N∗0 = N0[G0]. π(Q

˜
) is a name in N0, and its interpretation

Q∗0 = π(Q
˜

)[G0] is a poset in N∗0 .
Let G

˜
∈ VP be the canonical name of the P -generic filter over V. If F is

a (V, P ) generic filter containing q0 then M0[F ] ≺ H(χ)[F ] can be formed
and the collapsing map π on M0 can be extended to collapse M0[F ] onto N∗0 .
Let π

˜
be the name of the extended collapse. Then q0 P π

˜
: M0[G

˜
] → N∗0 .

We phrase now the desired criterion and we shall use the direction from
right to left later.

Lemma 3.5. Using the above notation, (q0, q1) is completely generic over
(M0, P ∗Q

˜
), iff
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1. q0 is completely (M0, P )-generic, and
2. for some G1 ⊆ Q∗0 that is (N∗0 , Q

∗
0)-generic

q0  “π
˜
−1′′G1 is bounded by q1”.

In this case the filter induced by (q0, q1) over M0 ∩ P ∗Q
˜

is π−1′′G0 ∗ G1.

Given a countable M0 ≺ H(χ) such that the two step iteration P ∗Q
˜

is
in M0, our aim is to extent each (M0, P )-generic filter G0 to an (M0, P ∗Q

˜
)-

generic filter. This definition depends not only on M0 but also on another
countable elementary submodel M1 ≺ H(χ) such that M0 ∈ M1 and G0 ∈
M1. In addition we fix a p0 ∈ P ∗Q

˜
which we want to include in the extended

filter. All of this leads us to a five place function E(M0,M1, P ∗ Q
˜
, G0, p0)

that we define now.

Definition 3.6. Let P be a poset that adds no new countable sets of ordi-
nals and suppose that Q

˜
, D̃ ∈ VP are such that

P D̃ ∈ V is an ℵ1-completeness system and
Q
˜

is D-complete with respect to D̃.

Let χ be sufficiently large and M0 ≺ M1 ≺ (H(χ),∈, <∗χ) be countable
elementary submodels with M0 ∈M1 and P , Q

˜
, D̃ ∈M0. Let G0 ⊆M0 ∩P

be (M0, P )-generic and suppose that G0 ∈ M1. Let p0 ∈ P ∗ Q
˜
∩M0 be

given p0 = (a, b
˜
) with a ∈ G0. Then we define

G = E(M0,M1, P ∗Q
˜
, G0, p0),

an (M0, P ∗Q
˜

)-generic filter containing p0 (dominating G0) by the following
procedure:

Let π : M1 → N1 with π(M0) = N0 be the transitive collapse and G0 =
π′′G0. Form N∗0 = N0[G0]. Observe that N∗0 ∈ N1. Let Q∗0 = π(Q

˜
)[G0], and

let D0 = π(D̃)[G0]. Then D0 ∈ N0, because it is forced to be in the ground
model. So D0 = π(D) where D ∈ M0 is a countably closed completeness
system. Thus D0(N∗0 , Q

∗
0, b
∗) is defined in N1, where b∗ = π(b

˜
)[G0] is a

condition in Q∗0. Since N1 ∩ D0(N∗0 , Q
∗
0, b
∗) is countable,

there is some G1 ∈
⋂

(N1 ∩ D0(N∗0 , Q
∗
0, b
∗)). (3.3)

G1 is (N∗0 , Q
∗
0)-generic and b∗ ∈ G1. Form G0 ∗ G1 = G, an (N0, π(P ∗ Q

˜
))-

generic filter. Then π(p0) ∈ G. Finally we define

G = E(M0,M1, P ∗Q
˜
, G0, p0) = π−1′′G. (3.4)

Now observe that if η fulfils Equations (3.1) and (3.2) for (N∗0 , Q
∗
0, b
∗)

instead of (M,QT, p), then the existence of Equation (3.3) is given by

π−1′′G1 = B1(η, U(M0[G0], Q0
˜

[G0], b
˜
[G0]))
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and hence is Borel computable from η and the code U of the intermediate
model (N∗0 , Q

∗
0, b
∗).

In fact, we want to define a formula ψ so that

H(χ) |= ψ(M0,M1, P ∗Q
˜
, G0, p0)

iff Equation (3.4) holds. That is, we want to define E in H(χ). We cannot
take the above definition verbally, because it relies on the assumption that
M0 and M1 are elementary substructures of H(χ), something which is not
expressible in H(χ). Whenever the definition above relies on some fact that
happens not to hold we let G have an arbitrary value. For example if N∗0 is
not in N1 or if N1∩D0(N∗0 , Q

∗
0, b
∗) is empty, then we let G be some arbitrary

fixed N0-generic filter. The Borel computation does not invoke N1, since
π−1′′G1 = B1(η, U(M0[G0], Q0

˜
[G0], b

˜
[G0])). Here, G0 is a parameter and

will be set {0P0} later, so that in the end (that means in Lemma 3.11) only
the possible isomorphism types of (M0,∈�M0, <

∗
χ�M0, Pγ , p, β̄) need to be

guessed stationarily often alongside with names for the F and f from the
statement of the weak diamond.

The following lemma shows the second part of the argument: We want
to show the G given in Equation (3.4) is bounded. The lemma analyses the
iteration of two posets when the second is D-complete.

Lemma 3.7. The One Step Extension Lemma.
Let P be poset and suppose that Q

˜
, D̃ ∈ VP are such that

P D̃ ∈ V is an ℵ1-completeness system and
Q
˜

is D-complete with respect to D̃.
Let χ be sufficiently large and M0 ≺ M1 ≺ Hχ be countable elementary
submodels with M0 ∈ M1 and P , Q

˜
, D̃ ∈ M0. Suppose that q0 ∈ P is

(M1, P )-generic as well as completely (M0, P )-generic, and let G0 ⊆M0∩P
be the M0 filter over M0∩P induced by q0. Let p0 ∈ P ∗Q

˜
, p0 ∈M0 be given,

so that p0 = (a, b
˜
) and a ∈ G0. Then there is q1 ∈ VP such that (q0, q1) is

completely generic over (M0, P ∗Q
˜

) and p0 ≤ (q0, q1), in fact (q0, q1) bounds
G = E(M0,M1, P ∗Q

˜
, G0, p0) = G0 ∗B1(η, U(N∗0 , Q

∗
0, π(b

˜
))).

Proof. This is literally [1, The Gambit Lemma]. For completeness’ sake
we repeat Abraham’s proof here. Notice that G0 ∈ M1 by the following
argument: Let R be the collection of all conditions r ∈ P that are completely
generic over M0. Then R ∈ M1 and q0 ∈ R ∩M1. Since q0 is (M1, P )-
generic, it follows that it is compatible with some r ∈ R∩M1. But any two
compatible conditions in R induce the same filter, and hence G0 is the filter
induced by r.
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Let π : M1 → N1, π(M0) = N0, be the transitive collapse and G0 = π′′G0.
We recall the definition of E(M0,M1, P ∗ Q

˜
, G0, p0). Form N∗0 = N0[G0]

and let Q∗0 = π(Q
˜

)[G0], and let D0 = π(D̃)[G0]. Then D0 ∈ N0 because
it is forced to be in the ground model. So D0 = π(D) where D ∈ M0 is
a countably closed completeness system. Thus D0(N∗0 , Q

∗
0, b
∗) is defined in

N1, where b∗ = π(b
˜
)[G0] is a condition in Q∗0. Since N1 ∩ D0(N∗0 , Q

∗
0, b
∗)

is countable, there is some G1 ∈
⋂

(N1 ∩ D0(N∗0 , Q
∗
0, b
∗)). G1 is (N∗0 , Q

∗
0)-

generic and b∗ ∈ G1. Form G0 ∗ G1 = G, an (N0, π(P ∗ Q
˜

))-generic filter.
Then π(p0) ∈ G. We defined G = E(M0,M1, P ∗Q

˜
, G0, p0) as π−1′′G.

Let G
˜
∈ VP be the canonical name of the generic filter over P . Then q0

forces that π can be extended to a collapse π
˜

which is onto N∗0 , that is

q0 P π
˜

: M0[G
˜

]→ N∗0 .

The conclusion of our lemma follows if we show that

q0 P π
˜
−1′′G1 is bounded in Q

˜
. (3.5)

In this case, if we define q1 ∈ VP so that q0 P q1 bounds π
˜
−1′′G1, then

the previous lemma implies that the (M0, P ∗ Q
˜

)-generic filter induced by
(q0, q1) is π−1′′G0 ∗ G1.

So let F be (V, P )-generic with q0 ∈ F . π
˜

[F ] collapses M0[F ] onto N∗0
and there is a set X ∈ D0(N∗0 , Q

∗
0, b
∗), so that if H ∈ X is any filter then

π−1′′H is bounded in Q
˜

[F ]. As N1[F ] ≺ Hχ[F ], we can have X ∈ N1[F ].
But since D0 is in the ground model, X ∈ N1. Thus G1 ∈ X, where G1 is
the filter defined above. This proves Equation (3.5).

The iteration theorem.
Let Pγ be a countable support iteration of length γ obtained by choosing

iterands Qα ∈ VPα as in the theorem. That is, each Qα is D-complete in
VPα for some ℵ1-completeness system taken from V. Let χ be a sufficiently
large regular cardinal. To prove the theorem we first describe a machinery
for obtaining generic filters over countable submodels of H(χ). We define
a function E that takes five arguments, E(M0, M̄ � [1, α), Pγ , G0, p0) of the
following types.

1. M0 ≺ Hχ is countable, Pγ ∈M0, so γ ∈M0. Moreover, p0 ∈M0 ∩ Pγ .
2. For some γ0 ∈M0 ∩ γ, G0 is an (M0, Pγ0)-generic filter and such that
p0 � γ0 ∈ G0. We assume that G0 ∈M1.

3. The order type of M0 ∩ [γ0, γ) is α.
4. M̄ = 〈Mξ : 0 ≤ ξ ≤ α〉 is an α + 1-tower of countable elementary

submodels of H(χ) and M0 = M . Note that only M0 = M appears in
the statement of the theorem. The rest 〈Mξ : 1 ≤ ξ ≤ α〉 of the tower
is a technical means for the proof.
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The value returned, Gγ = E(M0, M̄ � [1, α), Pγ , G0, p0) is an (M0, Pγ)-
generic filter that extends G0 and contains p0. Formally, in saying that Gγ
extends G0, we mean that the restriction projection takes Gγ onto G0. The
definition of E(M0, M̄ � [1, α), Pγ , G0, p0) is by induction on α < ω1.

Assume that α = α′ + 1 is a successor ordinal. Then γ = γ′ + 1 is also
a successor. Assume first that γ0 = γ′. Then α = 1 and we have only
two structures: M0 and M1. Since Pγ is isomorphic to Pγ0 ∗ Qγ0 we can
define Gγ by Equation (3.4). So, if η fulfils Equations (3.1) and (3.2) for
(M0[G0], Q0

˜
[G0], b

˜
[G0]) in the role of of (M,QT, p), then

Gγ =E(M0,M1, Pγ0 ∗Qγ0 , G0, p0)

=G0 ∗B1(η0, U(M0[G0], Q0
˜

[G0], b
˜
[G0])).

Assume next that γ0 < γ′. Then by induction hypothesis, if all ηi, i < α′,
are sufficiently large, then

Gγ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α′〉, Pγ′ , G0, p0 � γ′) (3.6)

= G0 ∗Bα′(〈ηi : 0 ≤ i < α′〉, U(M0[G0], P[γ0,γ′)
˜

[G0], p0 � [γ0, γ
′)

˜
[G0]))

is defined and is an (M0, Pγ′)-generic filter that extends G0 and contains
p0 � γ′. Moreover by elementarity, Gγ′ ∈Mα. When we finish this definition
it will be evident that it continues for every α < ω1 since Mα ≺ H(χ) and
the parameters are all in Mα. This brings us to the previous case and we
choose ηα′ such that it fulfils Equations (3.1) and (3.2) in which (M,QT, p)
is replaced by

(M0[Gγ′ ], Qγ˜ [Gγ′ ], p0(γ′)˜ [Gγ′ ]).

Now from Equation (3.6) we define temporarily

U ′ = U(M0[G0], P[γ0,γ′)˜ [G0], p0 � [γ0, γ
′)˜ [G0)]). (3.7)

Then
Gγ =E(M0,Mα, Pγ′ ∗Qγ′ , Gγ′ , p0)

=G0 ∗B1(ηα′ , U(M0[G0 ∗Bα′(〈ηi : i < α′〉, U ′)],
Qγ˜ [G0 ∗Bα′(〈ηi : i < α′〉, U ′)],
p0(γ′)˜ [G0 ∗Bα′(〈ηi : i < α′〉, U ′)]))

=:G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0˜ [G0]))

(3.8)

and the middle U ′ is defined above in Equation (3.7). This justifies that
the Borel functions given by induction hypothesis can be composed to one
Borel function of the required arguments.

Now it is also clear how to define the strategy σ(〈νi, ηi : i < α′〉):
The generic player plays να′ so that it fulfils Equations (3.1) and (3.2),
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where (M,QT, p) is replaced by (M0[Gγ′ ], Qγ˜ [Gγ′ ], p0(γ′)˜ [Gγ′ ]) with Gγ′ as
in Equation (3.6).

Now assume that α is a limit ordinal and let 〈αn : n ∈ ω〉 be an increasing
cofinal sequence with α0 = 0. Let γn ∈ M0 be such that αn = otp(M0 ∩
[γ0, γn)). Let 〈In : n ∈ ω〉 be an enumeration of all dense subsets of Pγ that
are in M0 in such a way that In is the <∗χ-least dense subset of Pγ that is
not among {Im : m < n}.

We define

Gγ =E(M0, M̄ � [1, α), Pγ , G0, p0)

=G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0 � [γ0, γ)˜ [G0]))

as follows. We define by induction on n ∈ ω a condition pn ∈ Pγ ∩M0 and
an (M0, Pγn)-generic filter Gn ∈Mαn+1 such that

1. G0 and p0 are given. pn � γn ∈ Gn.
2. pn ≤ pn+1 and pn+1 ∈ In.

Suppose that Gn and pn are defined. First we can find pn+1 ∈ In ∩M0 such
that pn+1 � γn ∈ Gn (for an existence proof see [1, Lemma 1.2]) and we take
the <∗χ-least in M0 so that it is Borel computed. Now define

Gn+1 =E(M0, 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉, Pγn+1 , Gn, pn+1 � γn+1)

=G0 ∗Bαn+1−αn(〈ηi : i ∈ [αn, αn+1)〉, U∗).

Here we have

U∗ =U(M0[G0 ∗Bαn(〈ηi : i < αn〉, U ′′)],
P[γn,γn+1)˜ [G0 ∗Bαn(〈ηi : i < αn〉, U ′′)],

pn+1 � [γn, γn+1)˜ [G0 ∗Bαn(〈ηi : i < αn〉, U ′′)]) and

U ′′ =U(M0[G0], P[γ0,γn)˜ [G0], pn+1 � [γ0, γn)˜ [G0]).

Finally let

Gγ = the generic filter generated in M0 by {pn : n ∈ ω}.

From the above induction on n < ω and from the induction hypothesis it is
clear that there is a Borel function Bα such that

Gγ = G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0 � [γ0, γ)˜ [G0])). (3.9)

This ends the definition of E(M0, M̄ � [1, α), Pγ , G0, p0) and of Bα.
The strategy σ for the generic player is defined by the prescription, that

in the limit game of length α he plays according to the strategies for the
initial segments of the game. (This justifies that σα is just named σ, for
all lengths α.) This is a winning strategy, as the Borel function was just
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derived. It gives a generic filter. We still have to show that the given generic
filter is bounded.

Now the missing part is to show that “all the generic filters are bounded”
is preserved in the limit steps of the iteration. Again there is nothing new
to our work and we repeat Abraham’s proof to [1, The Extension Lemma].

Lemma 3.8. Let 〈Pα, Q
˜
β : β < γ, α ≤ γ〉 be a countable support iteration

of forcing posets such that each iterand Qα satisfies the following in VPα:
1. Qα is δ-proper for every countable δ.
2. Qα is D-complete with respect to some countably closed completeness

system in the ground model that has the property that all η ≥∗ ν serve
as parameters.

Suppose that M0 ≺ H(χ) is countable, Pγ ∈M0 and p0 ∈ Pγ ∩M0. For any
γ0 ∈ γ ∩M0 with α = otp(M0 ∩ [γ0, γ)) and M̄ = 〈Mξ : ξ ≤ α〉 is a tower
of countable elementary substructures starting with the given M0, then the
following holds:

For every q0 ∈ Pγ0 that is completely (M0, Pγ0)-generic as well as
(M̄, Pγ0)-generic, if p0 � γ0 < q0, then there is some q ∈ Pγ such that
q0 = q � γ0 and p0 < q and q is completely (M0, Pγ)-generic. In fact, the fil-
ter induced by q is E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ , G0, p0) where G0 ⊆ Pγ0∩M0
is the filter induced by q0.

Proof. Let G0 ⊆ Pγ0 ∩M0 be the M0-generic filter induced by q0. Observe
that G0 ∈ M1 follows from the assumption that q0 is also M1-generic. We
shall prove by induction on α = otp(M0 ∩ [γ0, γ)) that q can be found that
bounds Gγ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ , G0, p0).

Suppose first that α = α′ + 1 and consequently γ = γ′ + 1 are successor
ordinals. Define in Mα, X ⊆ Pγ0 as maximal antichain of conditions r so
that

1. r bounds G0,
2. r in 〈Mξ : 1 ≤ ξ ≤ α′〉-generic.
Then X ∈Mα is predense above q0. By our inductive assumption, every

r0 ∈ X has a prolongation r1 ∈ Pγ′ that bounds Gγ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤
α′〉, G0, p0 � γ′). Since all the parameters are in Mα, we get that Gγ′ ∈Mα.
Since Mα ≺ H(χ) we can choose r1 ∈ Mα whenever r0 ∈ X ∩Mα. This
defines a name r

˜
1 ∈ VPγ0 , forced by q0 to be in Mα ∩ Pγ′ . Namely, if G

is any (V, Pγ0)-generic filter containing q0, then X ∩ G contain a unique
condition r0, and we let r

˜
1[G] = r1. By the Properness Extension Lemma

[1, Lemma 2.8] we can find q1 ∈ Pγ′ , q1 � γ0 = q0, q1 is (Mα, Pγ′)-generic,
and q1 Pγ′ “r

˜
1 is in the generic filter Gγ′

˜
”. It follows that q1 bounds Gγ′ .

We find q2 ∈ Pγ , such that q2 � γ′ = q1 and q2 bounds Gγ . In order to
define q2(γ) we use the Two Step Lemma and Equation (3.5).
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Now assume that α is a limit ordinal. We follow the definition of Gγ see
Equation (3.9). Recall that we had an ω-sequence 〈αn : n ∈ ω〉 cofinal in
α and we defined γn cofinal in γ as the resulting sequence αn = otp(M0 ∩
[γ0, γn)). We defined by induction pn ∈ Pγ ∩ M0 and filters Gn ⊆ Pγn ,
Gn ∈ Mαn+1 and defined Gγ as the filter generated by the pn’s. We shall
define now qn ∈ Pγn by induction on n so that the following hold

1. qn bounds Gn,
2. pn � γn ≤ qn,
3. qn = qn+1 � γn,
4. qn is 〈Mξ : αn + 1 ≤ ξ ≤ α〉-generic over Pγn .

Thus qn gains in length and looses in status as an Mξ-generic condition
for 0 < ξ ≤ αn. But qn is completely (M0, Pγn)-generic for all n. Finally
q =

⋃
qn is not Mξ-generic for any ξ > 0. However, q is completely (M0, Pγ)-

generic.
Suppose that qn is defined. Let X be in Mαn+1+1 be a maximal antichain

in Pγn of conditions r that induce Gn and are 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉-
generic over Pγn . Observer that X is predense above qn. For each r0 ∈ X,
define by the induction assumption r1 ∈ Pγn+1 such that r1 bounds Gn+1,
pn+1 � γn+1 < r1 and r1 � γn = r0. If r0 ∈ X ∩ Mαn+1+1, then r1 is
taken from Mαn+1+1. Now view {r1 : r0 ∈ X} as a name r

˜
for a condition

forced by qn to lie in Mαn+1+1. By the α-Extension Lemma [1, Lemma 5.6],
define qn+1 that satisfies items 2 to 4 from the above list and such that
qn+1 Pγn+1

r
˜
∈ Gn+1

˜
. Then qn+1 bounds Gn+1 and is a required.

End of proof of Theorem 3.4. Now that the induction is performed, we
set γ0 = 0, G0 = {0P0}, p0 = p ∈ Pγ from the statement of Theorem 3.4.
Then N∗0 = N0 = π(M0), π(P[γ0,γ)

˜
)[G0] = π(Pγ) and π(p0)[γ0,γ)

˜
)[G0] = π(p)

and the Bα’s second argument is just the isomorphism type of (M0,∈, <∗χ
, Pγ , p, β̄). 3.4

The role of the antigeneric player in the game a(M,Pγ , p) is now turned
to good use:

Definition 3.9. Let f, g ∈ V ∩ ωω. A notion of forcing P ∗ has the (f, g)-
bounding property when for every P ∗-name u

˜
for a function from ω to ω

the following holds: If p P ∗ u
˜
≤∗ g, then there are q ≥ p and an f -slalom

〈Sn : n < ω〉 in the ground model such that q P ∗ (∀n)(u
˜

(n) ∈ Sn).
〈Sn : n < ω〉 is an f -slalom if for every n, Sn ⊆ ω and |Sn| ≤ f(n).

Lemma 3.10. Suppose that
(α) γ < ω1, and
(β) B′ is a Borel function from (ωω)γ to 2ω,
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(γ) r : ω → ω, r diverging to infinity, and lim
r(n)
2n

= 0.

Then we can find some C = CB′ such that
(a) C is a closed subset of 2ω,
(b) (∀n)|{η � n : η ∈ C}| ≤ r(n), so if C = lim(T ) = {f ∈ 2ω : ∀nf � n ∈

T}, then T ⊆ 2<ω is a tree with n-th level counting less than or equal
to r(n),

(c) in the following game a(γ,B′) between two players, IN and OUT, the
player IN has a winning strategy, the play lasts γ moves and in the
ε-th move OUT chooses νε ∈ ωω and then IN chooses ηε ≥∗ νε. In the
end IN wins iff B′(〈ηε : ε < γ〉) ∈ C.

Proof. Assume that P ∗γ = 〈P ∗ξ , Q
˜
∗
ζ : ξ ≤ γ, ζ < γ〉 is a c.s. iteration of

Laver forcing and assume that p ∈ P ∗γ and 〈ρ
˜
ξ : ξ < γ〉 is a sequence of

names for the P ∗ξ -generics. Clearly p P ∗γ B′(〈ρε
˜

: ε < γ〉) ∈ 2ω.
The (f, g)-bounding property is preserved in countable support iterations

[3, p. 340]. The Laver forcing and any forcing not adding reals at all have
the (f, g)-bounding property. Hence there are p∗ ∈ P ∗γ and C as in (a) and
(b) above such that

p∗ P ∗γ B′(〈ρε
˜

: ε < γ〉) ∈ C.
Now we show that player IN can play in a way that imitates the Laver-
generic reals over a countable elementary submodel, so that actually every-
thing is in the ground model.

Let M∗ ≺ (H(χ),∈) be countable such B′, C ∈M∗. (So M∗ is not the M
from the next proof, but rather contains a non-trivial part of the power-set
of that M .) Now we prove by induction on j ≤ γ for all i < j

�i,j Assume that P ∗j ∈ M∗ and Gi ⊆ P ∗i ∩M∗ is generic over M∗, and
p∗ is such that p∗ ∈ P ∗j ∩M∗ and p∗ � i ∈ Gi. Then in the following
game a∗(i,j,Gi,p∗) player II has a winning strategy σ(i,j,Gi,p∗). There
are j− i moves indexed by ε ∈ [i, j), and in the ε-th move (pε, νε, ηε)
are chosen such that player I chooses pε ∈ Pε/Gi, pε ≥ p∗ � ε, and
νε ∈ ωω and player II chooses ηε ≥∗ νε.

First case: there is a (P ∗ε ,M
∗)-generic Gε ⊆ P ∗ε ∩M∗, such that

p∗(ε) ∈ Gε and Gε ⊃ Gi and (∀ξ ∈ [i, ε)ρξ
˜

[Gε] = ηξ and M∗[Gε ∩
P ∗ξ ] |= pξ ≥ p∗(ξ). In this case player I chooses pε ∈ Gε forcing
this and so that M∗[Gε] |= p∗(ε) ≤P ∗ε pε. Then player I chooses νε
dominating M∗[Gε] and the second player chooses ηε ≥∗ νε.

Second case: There is no such Gε. Then player I won the play.
We prove by induction on j that player II wins the game a∗(i,j,Gi,p∗): Case

1: j = 0. Nothing to do. Case 2: j = j∗ + 1. For ε ∈ [i, j) we use the
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strategy for a∗(i,j,Gi,p∗), and for ε = j we make the following move: We show

that there is a generic Gj
∗

of Q∗
M∗[Gj∗ ]
j∗ to which p∗(j∗) belongs and such

that ρ
˜
j∗ [Gj

∗
] ≥∗ νj∗ . Then the move ρ

˜
j∗ [Gj

∗
] dominates ωω ∩M∗[Gj∗ ] and

also player I’s move νj∗ .

First take q ≥ p∗(j∗) such that q is (M∗[Gj∗ ], Q∗
M∗[Gj∗ ]
j∗ )-generic. q ∈

V is a Laver condition. Now we take a stronger condition q′ by letting
trunk(q) = trunk(q′) and for every s ∈ q′ of length n,

succ(q′, s) = {n ∈ succ(q, s) : n ≥ νj∗(n)}.

Now let Gj
∗

= {r ∈ M∗[Gj∗ ] : q′ ≥ r}. Since q′ is a (M∗[Gj∗ ], Q∗
M∗[Gj∗ ]
j∗ )-

generic condition, Gj
∗

is a (M∗[Gj∗ ], Q∗
M∗[Gj∗ ]
j∗ )-generic filter. The generic

real is ρ
˜
j∗ [Gj

∗
] =

⋃
{trunk(p) : p ∈ Gj

∗}. Then q′  ρ
˜
j∗ ≥∗ νj∗ . Now

player II takes ηj∗ = ρ
˜
j∗ [Gj

∗
]. We set Gj = Gj∗ ∗Gj

∗
. Case 3: j is a limit.

Like the proof of the preservation of properness.
Why does �i,j suffice? Use i = 0, j = γ, B′ ∈ M∗. Take P ∗γ ∈ M∗,

p∗ ∈ P ∗γ ∩M∗. Let σ(0, γ, {∅}, p∗) be a winning strategy for player II in
the game a∗(0,γ,{∅},p∗). During the play of a(γ,B′) let νε be chosen in stage
ε < γ. The player IN simulates on the side a play of a∗(0,γ,{∅},p∗): As a
move of I he assumes the νε chosen by OUT in the play of a(γ,B′) and pε,
pε � δ = pδ for δ < ε, the pδ gotten from earlier simulations. Then player IN
uses σ(0, γ, {∅}, p∗) for player II, applied to (pε, νε), to compute an ηε, which
he presents in this move in a(γ,B′). So pε forces that there is a Laver generic
ρε
˜

[Gε] =: ηε over M∗[Gε] and that ηε ≥∗ νε. The requirement ηε ≥∗ νε is
fulfilled.

Suppose that they have played. So we have 〈νε, ηε : ε < γ〉 and there
is p =

⋃
ε<γ pε ≥ p∗, and for ε < γ there is the name for the Q∗ε-generic

real, namely ρε
˜
∈ M∗, such that for all ε < γ, p P ∗γ ρε

˜
= η̌ε. So as

p P ∗γ “B′(〈ρ
˜
ε : ε < γ〉) ∈ C”, we have B′(〈ηε : ε < γ〉) ∈ C.

Let S ⊆ ω1 be stationary and 〈Aδ : δ ∈ S〉 exemplify ♦S . For example
we can take the most frequent S = {α < ω1 : α limit ordinal}, which gives
♦ω1 .

Lemma 3.11. Let r : ω → ω such that lim
r(n)
2n

= 0. Assume that V |=
♦S. Then

Pω2
♦

(2ω, {lim(T ) : T ⊆ R perfect ∧ (∀n)|{η � n : η ∈ lim(T )}| ≤ r(n)},∈) .
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Proof. Let G be Pω2-generic over V. We use the ♦S-sequence 〈Aδ :
δ ∈ S〉 in the following manner: By easy integration and coding we have
〈(N δ, β̄δ, f

˜
δ, F

˜
δ, C

˜
δ, P δω2

, pδ, <δ) : δ ∈ S〉 such that

(a) N δ is a transitive collapse of a countable M ≺ H(χ,∈, <∗χ),
<δ is a well-ordering of N δ, U δ codes the isomorphism type of
(N δ, P δω2

, pδ, β̄δ).
(b) N δ |= P δω2

= 〈P δα, Q
˜
δ
β : α ≤ ωNδ

2 , β < ωN
δ

2 〉 is as in Definition 2.10.
(c) N δ |= (pδ ∈ P δω2

, f
˜
δ is a P δω2

-name of a member of ω12 F
˜
δ : 2<ω1 → 2ω).

(d) If p ∈ Pω2 ,

p Pω2
f
˜
∈ 2ω1 ∧ F

˜
: 2<ω1 → 2ω is Borel, C

˜
⊆ ω1 is club,

and p, Pω2 , F
˜

, f
˜

, C
˜
∈ H(χ), then

S(p, F
˜
, f
˜

) := {δ ∈ S : there is a countable M ≺ (H(χ),∈, <∗χ)
such that f

˜
, F
˜
, C
˜
, Pω2 , p ∈M

and there is an isomorphism hδ from N δ onto M

mapping P δω2
to Pω2 , f

˜
δ to f

˜
,

F
˜
δ to F

˜
, C
˜
δ to C

˜
, pδ to p,<δ to <∗χ�M}

is a stationary subset of ω1.
(e) Choose 〈Bγ(δ) : δ ∈ S〉 such that γ(δ) = otp(N δ ∩ ω2) and

Bγ(δ) : (ωω)γ(δ) × P(ω)→ Gen+(P δω2
)

= {G ⊆ P δω2
∩N δ : G is P δω2

-generic over N δ and bounded}

be as in Theorem 3.4 with U δ = U(N δ, P δω2
, pδ, β̄δ).

We do not require uniformity, 〈νε, ηε : ε < γ(δ)〉 is indeed 〈νδε , ηδε : ε <
γ(δ)〉 since we have the dependence on the δ in the definition of Bγ(δ). We
assume that N δ ∩ ω1 = δ. Since this holds on a club set of δ ∈ ω1, this is
no restriction.

Now assume the p ∈ G and F
˜

, f
˜

, C
˜

are as in (d).
We define a function B′δ,Uδ with domain (ωω)γ(δ).

B′δ,Uδ(〈ηε : ε < γ(δ)〉) =


F
˜
δ(f

˜
δ � δ)[Bγ(δ)(〈ηε : ε < γ(δ)〉, U δ)],

if the argument is good;
〈0, 0, . . . , 〉 ∈ 2ω, otherwise.

Here, we call 〈ηε : ε < γ(δ)〉 a good argument if there is a play 〈νε, ηε :
ε < γ(δ)〉 in the game a(Nδ,P δ,pδ) from Theorem 3.4 in which the generic
player plays according his winning strategy and the antigeneric player plays
according to the rules. Goodness is a Borel predicate because the νε are
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irrelevant, just check whether the ηε are large enough for Equations (3.1) and
(3.2) in the respective iteration step. So B′

δ,Uδ
(〈ηε : ε < γ(δ)〉 is a Borel

function. Now we choose a “very good” argument 〈ηδε : ε < γ(δ)〉 that
player IN plays with his strategy in a(γ(δ),B′δ,Uδ

) from Lemma 3.10 applied

to B′δ,Uδ and the (r, 2n) bounding property, answering to a good argument
〈νδε : ε < γ(δ)〉 played by player OUT.

Now we derive a guessing function g. We consider for every δ ∈ S a very
good argument 〈ηδε : ε < γ(δ)〉. We assume that G is Pω2-generic over V
and that p ∈ G. Then we also have by the rules of the game a(Nδ,P δ,pδ) that

Bγ(δ)(〈ηδε : ε < γ(δ)〉, U δ) has an upper bound qδ.

Lemma 3.10 gives a closed set CB′
δ,Uδ

with small levels as in 3.10 (b), such
that for δ ∈ S, and we have

B′δ,Uδ(〈η
δ
ε : ε < γ(δ)〉) ∈ CB′

δ,Uδ
. (3.10)

Note that CB′
δ,Uδ

does not depend on 〈ηδε : ε < γ(δ)〉. So (3.10) also holds

for 〈ηδε : ε < γ(δ)〉 that are the answers of player IN in the game a(γ(δ),B′
δ,Uδ

)

to any good sequence 〈νδε : ε < γ(δ)〉 given by the generic player that is
so fast growing νδε that Bδ,Uδ(〈νδε : ε < γ(δ)〉) computes a bounded generic
filter over M as in Theorem 3.4. This is important, since the isomorphism
hδ does not preserve the knowledge (that is which branches are continued
and what are the values of the promises in these continuations) about the
level δ for the Aronszajn trees involved in P ∩M .

We set

CB′
δ,Uδ

=: g(δ).

Both sides are conceived as Borel codes for closed sets. Since ω ⊆ M and
ω ⊆ N δ we have that hδ(CB′

δ,Uδ
) = CB′

δ,Uδ
. We show that g is a diamond

function.
Since Pω2 is proper, S(p, f

˜
, F
˜

) is also stationary in V[G]. Now we take a
very good sequence 〈ηδε : ε < γ(δ)〉 that is suitable so that Bδ,Uδ(〈ηδε : ε <
γ(δ)〉) computes a bounded (M,P )-generic filter for M that witnesses that
δ ∈ S. So now we take the game a(M,P,p) for the choice of the 〈νδη : η < γδ〉
and then again we take the winning strategy in the game a(γ(δ),B′δ,Uδ

), which

is unchanged by the collapse, for choosing 〈ηδε : ε < γδ〉. We take q to be a
bound of Bδ,Uδ(〈ηδε : ε < γ(δ)〉). Now we have that q ≥ p and

q  “Bγ(δ)(〈ηδε : ε < γ(δ)〉, U δ) is (M,P )-generic and bounded by q”.
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Now for δ ∈ S(p, f
˜
, F
˜

) we have by the isomorphism property of hδ and by
(3.10),

q  hδ ′′F
˜
δ(f

˜
δ � δ) = F

˜
(f
˜
� δ) ∧ F

˜
(f
˜
� δ) ∈ g(δ) ∧ δ ∈ C

˜
.

So we have that p forces that {α ∈ S : F (f � δ) ∈ g(δ)} contains a
stationary subset of S(p, f

˜
, F
˜

). Note that the stationary subset depends on
F (and f of course), but the guessing function g does not. So actually we
proved a diamond of the kind:

There is some g : ω1 → B such that for every Borel map F : 2<ω1 → A
and for every f : ω1 → 2 the set

{α ∈ ω1 : F (f � α)Eg(α)}

is stationary.

Corollary 3.12. Pω2
♦(R,N ,∈).

Proof. Leb(g(δ)) = 0 for the functions g : ω1 → {closed subsets of 2ω} from
the previous lemma. Thus, for every Borel F : 2<ω1 → 2ω, the function
g : ω1 → N is a guessing sequence showing Pω2

♦(R,N ,∈), and we finish
the proof of Theorem 1.2. 1.2

Since C from Lemma 3.10 is also meagre, the same proof also yields

Corollary 3.13. Pω2
♦(R,M,∈).

If S ⊆ ω1 is stationary and we start with ♦S in the ground model, then we
get the respective weak diamonds on S. We conclude with an open question:
The forcing from Definition 2.10 could easily be mixed with proper ℵ2-p.i.c.
iterands, for example iterands with |Qα| ≤ ℵ1 (by [15, Lemma VIII 2.5]
this is sufficient for the ℵ2-p.i.c.) that add reals. Still we specialise all
Aronszajn trees in the new mixed iteration. However, the parallel of our
main technique for the weak diamonds, that is Theorems 3.4 and 3.11, does
not work anymore, since the completeness systems are no longer in the
ground model. So there is the question:

Question 3.14. Is 2ℵ0 = ℵ2 and ♦(Cov(N )) and “ all Aronszajn trees are
special” consistent relative to ZFC?
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[3] Bartoszyński, T., Judah, H., Set Theory, On the Structure of the Real Line, A K

Peters, Wellesley, Massachusetts, 1995.
[4] Baumgartner, J., Harrington, L., Kleinberg, E., Adding a closed unbounded set, J.

Symbolic Logic, 41 (1976), 481–482.
[5] Blass, A., Shelah, S., There may be simple Pℵ1 - and Pℵ2 -points and the Rudin-Keisler

ordering may be downward directed, Ann. Pure Appl. Logic, 33 (1987), 213–243.
[6] Devlin, K., Johnsbr

o
aten, H., The Souslin Problem, Lecture Notes in Math. 405,

Springer-Verlag, Berlin-New York, 1974.
[7] Devlin, K. J., Shelah, S., A weak version of ♦ which follows from 2ℵ0 < 2ℵ1 , Israel

J. Math. 29 (1978), 239–247.
[8] Hirschorn, J., Random trees under CH, Israel J. Math. 157 (2007), 123–154.
[9] Jensen, R. B., The fine structure of the constructible hiercharchy, Ann. Math. Logic

4 (1972), 229–308.
[10] Kechris, A., Classical Descriptive Set Theory, Grad. Texts in Maths. 156, Springer-

Verlag, New York, 1995.
[11] Laver, R., Random reals and Souslin trees, Proc. Amer. Math. Soc. 100(3) (1987),

531–534.
[12] Mildenberger, H., Creatures on ω1 and weak diamonds, J. Symbolic Logic, (to ap-

pear).
[13] Miller, A., Arnie Miller’s problem list, in “Set theory of the reals” (Ramat Gan,

1991), Israel Math. Conf. Proc. 6 (1993), Bar-Ilan Univ., Ramat Gan, 645–654.
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