

Meeting infinitely many cells of a partition once

Heike Mildenberger^{1,*}, Otmar Spinas^{2,3,**}

- ¹ Mathematisches Institut der Universität Bonn, Beringstr.1, 53115 Bonn, Germany. e-mail: heike@math.uni-bonn.de
- ² Humboldt Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, D-10099 Berlin, Germany. e-mail: spinas@mathematik.hu-berlin.de
- ³ Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland (current address)

Received: 2 October 1996 / Revised version: 22 May 1997

Abstract. We investigate several versions of a cardinal characteristic $\mathfrak f$ defined by Frankiewicz. Vojtáš showed $\mathfrak b \leq \mathfrak f$, and Blass showed $\mathfrak f \leq \min(\mathfrak d, \mathrm{unif}(\mathbf K))$. We show that all the versions coincide and that $\mathfrak f$ is greater than or equal to the splitting number. We prove the consistency of $\max(\mathfrak b,\mathfrak s) < \mathfrak f$ and of $\mathfrak f < \min(\mathfrak d, \mathrm{unif}(\mathbf K))$.

1. Introduction

We start with the definition of several cardinal characteristics. "There are infinitely many" is abbreviated by \exists^{∞} , the dual quantifier "for all but finitely many" is \forall^{∞} . In our context, a partition is a set of pairwise disjoint sets that combine to ω . The set of all functions from ω to ω is written as ω^{ω} ; and the set of all infinite subsets of ω is written as $[\omega]^{\omega}$. For $f,g\in\omega^{\omega}$ the ordering of eventual dominance is defined by $f\leq^* g$ iff $\forall^{\infty} n \ f(n)\leq g(n)$. The set ω is equipped with the discrete topology. The Baire space ω^{ω} carries the product topology.

The well-known cardinal invariants we are dealing with are: the splitting number $\mathfrak{s}=\min\{|\mathscr{S}|:\mathscr{S}\subseteq[\omega]^\omega\ \land\ \forall X\in[\omega]^\omega\ \exists S\in\mathscr{S}\ |X\cap S|=|X\setminus S|=\omega\}$, the (un)bounding number $\mathfrak{b}=\min\{|\mathscr{B}|:\mathscr{B}\subseteq\omega^\omega\ \land\ \forall f\in\omega^\omega\ \exists b\in\mathscr{B}\ b\not\leq^*f\}$, the dominating number $\mathfrak{d}=\min\{|\mathscr{D}|:\mathscr{B}\subseteq\omega^\omega\ \land\ \forall f\in\omega^\omega\ \exists d\in\mathscr{D}\ f\leq^*d\}$, and the uniformity of the sets of first Baire category unif(\mathbf{K}) = $\min\{|A|:A\subseteq\omega^\omega\$ is not meager $\}$.

Definition 1. For $r \in \omega$:

Mathematic Subject Classification (1991): 03E05, 03E35

^{*} Supported by Deutsche Forschungsgemeinschaft grant no. Mi 492/1.

^{**} Supported by a research fellowship of the Alexander von Humboldt Foundation and grant 2124-045702.95 of the Swiss National Science Foundation.

$$\mathfrak{f}_{1,r+1} := \min\{|\mathscr{A}| : \mathscr{A} \subseteq [\omega]^{\omega} \land \forall \text{ partitions } \mathscr{P} \text{ into finite intervals} \\ \exists A \in \mathscr{A} \exists^{\infty} \text{ pieces } P \in \mathscr{P} \ 1 \leq |P \cap A| \leq r+1\}.$$

$$\begin{array}{ll} \mathfrak{f}_2 &:=& \min\{|\mathscr{A}|: \mathscr{A}\subseteq [\omega]^\omega \wedge \forall \ partitions \ \mathscr{P} \ into \ finite \ intervals \\ &\exists A\in \mathscr{A} \ \exists r\in \omega \ \exists^\infty \ pieces \ P\in \mathscr{P} \ 1\leq |P\cap A|\leq r+1\}. \end{array}$$

$$\begin{array}{ll} \mathfrak{f}_3 &:=& \min\{|\mathscr{A}|: \mathscr{A}\subseteq [\omega]^\omega \wedge \exists r\in\omega \; \forall \; partitions \, \mathscr{P} \\ & into \; finite \; intervals \; \exists A\in\mathscr{A} \; \exists^\infty \; pieces \; P\in\mathscr{P} \\ & 1\leq |P\cap A|\leq r+1\}. \end{array}$$

If we replace in any of these definitions "finite intervals" by "finite sets", then we get an invariant that we denote with the same indexed letter but primed.

The families \mathcal{A} in the different sets are called "good" for the cardinal in question, and the families \mathcal{A} of minimal cardinality are called "witnesses" for the considered cardinal.

2. Equalities

There are some obvious inequalities: $\mathfrak{f}_2 \leq \mathfrak{f}_3 \leq \mathfrak{f}_{1,r+1} \cdots \leq \mathfrak{f}_{1,1}$ for $r \in \omega$, and the same for the primed versions, as well as $\mathfrak{f}_x \leq \mathfrak{f}_x'$ for all meaningful subscripts. Now we show that each primed invariant is the same as the unprimed one. Thereafter, we will work only with the (unprimed) interval versions.

Theorem 1.
$$\mathfrak{f}_{1,r+1} = \mathfrak{f}'_{1,r+1}, \mathfrak{f}_j = \mathfrak{f}'_j \text{ for } r \in \omega, j = 2, 3.$$

Proof. Let \mathscr{A} be a witness for the definition of $\mathfrak{f}_{1,r+1}$. For $Y \in [\omega]^{\omega}$, we let e_Y denote the increasing bijection $\omega \to Y$. We set $\mathscr{R} = \{e_Y[A] : A, Y \in \mathscr{R}\} \cup \mathscr{R}$ and show that \mathscr{R} meets any partition of ω into finite sets in infinitely many parts between 1 and r+1 times.

For any partition \mathscr{P} of ω into finite sets, we define an increasing function $f_{\mathscr{P}} \colon \omega \to \omega$ in the following manner:

$$f_{\mathscr{P}}(0) = 0,$$

 $f_{\mathscr{P}}(n+1) = \max\{\bigcup P : P \in \mathscr{P}, P \cap [0, f_{\mathscr{P}}(n)] \neq \emptyset\} + 1.$

Given any increasing function $f \in \omega^{\omega}$, we interpret it as a partition $\mathcal{Q}(f)$ of ω into finite intervals:

$$\mathcal{Q}(f) = \{[0, f(0))\} \cup \{[f(i), f(i+1)) : i \in \omega\}.$$

We will write only f instead of $\mathcal{Q}(f)$. The choices of the open and the closed end matter only in the proof of theorem 3. We also have: $\forall P \in \mathscr{P} \exists n \ P \subseteq [f_{\mathscr{P}}(n), f_{\mathscr{P}}(n+2))$.

In the first step, we "treat" a partition gotten by combining pairs of consecutive blocks of $f_{\mathscr{D}}$. The properties of \mathscr{N} yield:

$$\exists A \in \mathscr{N} \ \exists^{\infty} i \in \omega \ 1 \leq |A \cap [f(2i), f(2(i+1)))| \leq r+1.$$

We fix such an A.

First case:

$$\exists^{\infty} i \in \omega \ \exists P \in \mathscr{P} \qquad (1 \leq |A \cap [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2(i+1)))| \leq r+1$$

and
$$A \cap [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2i+1)) \cap P \neq \emptyset$$

and
$$A \cap [f_{\mathscr{P}}(2i+1), f_{\mathscr{P}}(2(i+1))) \cap P \neq \emptyset).$$

For any $P \in \mathscr{P}$ such that $A \cap P \cap [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2i+1)) \neq \emptyset$ and $A \cap [f_{\mathscr{P}}(2i+1), f_{\mathscr{P}}(2(i+1))] \cap P \neq \emptyset$, by the definition of $f_{\mathscr{P}}$ we have $P \subseteq [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2(i+1)))$. So we take for each of those infinitely many i one or more $P \in \mathscr{P}$ with these two properties.

Second case:

$$\exists^{\infty} i \in \omega \qquad (1 \leq |A \cap [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2(i+1)))| \leq r+1$$

and
$$\forall P \in \mathscr{P} \qquad (A \cap P \cap [f_{\mathscr{P}}(2i), f_{\mathscr{P}}(2i+1)) = \emptyset$$

or
$$A \cap P \cap [f_{\mathscr{P}}(2i+1), f_{\mathscr{P}}(2(i+1))) = \emptyset)).$$

Now we define a new partition, that is coarser and shifted to the odd arguments: We enumerate those infinitely many i's in the case hypothesis increasingly as $\langle i_n : n \in \omega \rangle$. We take the partition defined by $g(n) = f_{\mathscr{P}}(2i_n + 1)$. We think of this partition shrunk to the domain A, explicitly: $g_{0,A}(0) = |[0, g(0)) \cap A|$, $g_{0,A}(n+1) = g_{0,A}(n) + |[g(n), g(n+1)) \cap A|$.

This shrinkage procedure yields: If A' is good for $g_{0,A}$, then $e_A[A']$ is good for g. Then we have $A' \in \mathscr{A}$ such that $e_A[A']$ is good for the partition g. Since $e_A[A'] \subseteq A$, for infinitely many n it meets the interval $[f_{\mathscr{P}}(2i_n+1), f_{\mathscr{P}}(2i_{n+1}+1))$ between 1 and r+1 times in a piece P of \mathscr{P} such that P is not met by A (and hence neither by $e_A[A']$) again in the part of P possibly sticking out into $[f_{\mathscr{P}}(2i_n), f_{\mathscr{P}}(2i_n+1))$ or into $[f_{\mathscr{P}}(2i_{n+1}+1), f_{\mathscr{P}}(2i_{n+1}+2))$.

For the other versions, we can use almost the same proof: If in the second use of \mathcal{A} a larger r appears, we just take this as a final r.

Remark: Indeed, our proof gives a morphism from the primed relation into the sequential composition of two copies of the corresponding unprimed relation; for details about morphism constructions see [1].

Now we show that all the versions coincide; and we shall call the invariant f.

Proposition 1. $\mathfrak{f}_{1,1} \leq \mathfrak{f}_2$.

Proof. For any $A \in [\omega]^{\omega}$, $r \in \omega$, we thin out A as follows: Let $\langle a(n) : n \in \omega \rangle$ be the strictly increasing enumeration of A. We set

$$s(A, r) = \{a(n \cdot (r+1)) : n \in \omega\}.$$

Let \mathscr{R} be a witness for \mathfrak{f}_2 . We show that $\mathscr{\tilde{A}} = \{s(A,r) : A \in \mathscr{A}, r \in \omega\}$ is a set good in the sense of $\mathfrak{f}_{1,1}$.

Let $\mathscr{P} = \langle p(n) : n \in \omega \rangle$ be a partition of ω into intervals. As \mathscr{R} is good for \mathfrak{f}_2 we have

$$\exists r \ \exists^{\infty} n \ |[p(n), p(n+1)) \cap A| = r+1.$$

For those infinitely many n, $[p(n), p(n+1)) \cap A$ consists of r+1 consecutive elements of A. Hence we have $|[p(n), p(n+1)) \cap s(A, r)| = 1$.

3. Inequalities

In this section we show in ZFC that $\max(\mathfrak{b}, \mathfrak{s}) \leq \mathfrak{f} \leq \min(\mathfrak{d}, \mathrm{unif}(\mathbf{K}))$.

If we work with the strictly increasing enumeration $\langle a_n : n \in \omega \rangle$ of $A \in \mathcal{A}$ and the increasing function p for a partition \mathscr{P} , "A meets infinitely many parts of \mathscr{P} in one element" translates to

$$\exists^{\infty} n \ \exists k \ a(k-1) < p(n) \le a(k) < p(n+1) \le a(k+1) =: R(p,a).$$

For each $p \in \omega^{\omega \uparrow}$, the set of all strictly increasing functions from ω to ω , the set

$$R_p := \{ a \in \omega^{\omega \uparrow} : R(p, a) \}$$

is a comeager subset of the Baire space $\omega^{\omega\uparrow}$. Any non-meager set $\mathscr{A} \subseteq [\omega]^{\omega}$ will intersect all the R_p 's and hence $\mathfrak{f} \subseteq \mathrm{unif}(\mathbf{K})$.

We next give a proof of Vojtáš' and Blass' observations. Then we show $\mathfrak{f} \geq \mathfrak{s}$.

Theorem 2 (Vojtáš, Blass). $\mathfrak{b} \leq \mathfrak{f} \leq \mathfrak{d}$.

Proof. First inequality, which is proved in [5]: Assuming that $\mathscr{A} \subseteq [\omega]^{\omega}$ has cardinality strictly less than \mathfrak{b} we give a partition \mathscr{P} of ω into finite intervals that $\forall r \in \omega \ \forall A \in \mathscr{A}$ for all but finitely many pieces P of \mathscr{P} , the piece P is met by A in more than r points. This shows that even if we leave out the $1 \leq |A \cap P|$ in the requirement for \mathfrak{f}_2 , we will get an invariant greater or equal than \mathfrak{b} . (Indeed, then we get exactly \mathfrak{b} , which is proved in [5].) We enumerate \mathscr{A} as $\langle A_{\alpha} : \alpha < \gamma < \mathfrak{b} \rangle$, and define $g_{\alpha} : \omega \to \omega$, increasing, $g_{\alpha}(0) = 0$, $g_{\alpha}(n+1)$ =the (n+1)-st element in A_{α} after $g_{\alpha}(n)$.

There is some $g \in \omega^{\omega}$ that dominates all the g_{α} . We define h(0) = g(0), h(n+1) = g(h(n)+1), and consider the partition defined by h. We show:

$$\forall^{\infty} n \mid [h(n), h(n+1)) \cap A_{\alpha}| \geq h(n).$$

We take n_0 such that $\forall n \geq n_0$, $g(h(n)+1) \geq g_{\alpha}(h(n)+1)$. Then we have for $n \geq n_0$: $h(n+1) = g(h(n)+1) \geq g_{\alpha}(h(n)+1) =$ the (h(n)+1)st element of A_{α} after h(n)+1.

The proof of the second inequality is based upon the same ideas and shows $\mathfrak{f}_{1,1} \leq \mathfrak{d}$. We take a dominating family $\{g_{\alpha} : \alpha \in \mathfrak{d}\}$. Again, we define $h_{\alpha}(0) = g_{\alpha}(0)$, $h_{\alpha}(n+1) = g_{\alpha}(h_{\alpha}(n)+1)$, and we take $A_{\alpha} = \operatorname{range}(h_{\alpha})$. Suppose we are given a partition $\mathscr{P} = \langle f(n) : n \in \omega \rangle$. We choose an α such that $f \leq^* g_{\alpha}$, and show that A_{α} is good for \mathscr{P} in the sense of $\mathfrak{f}_{1,1}$, that is $\exists^{\infty} n \mid [f(n), f(n+1)) \cap A_{\alpha} \mid = 1$. As A_{α} is an infinite set, $\exists^{\infty} n \mid [f(n), f(n+1)) \cap A_{\alpha} \neq \emptyset$. We show that for all but finitely many of those n there is exactly one element in the intersection.

Suppose that $\forall n \geq n_0 \quad g_{\alpha}(n) \geq f(n)$ and that $n \geq n_0$ and that k is minimal such that $f(n) \leq h_{\alpha}(k) < f(n+1)$. Then $h_{\alpha}(k+1) = g_{\alpha}(h_{\alpha}(k)+1) \geq f(h_{\alpha}(k)+1) \geq f(f(n)+1) \geq f(n+1)$; and hence $h_{\alpha}(k)$ is the only element in the intersection.

Theorem 3. $\mathfrak{f} \geq \mathfrak{s}$.

Proof. The main part is the following

Observation: Let $\langle a(n) : n \in \omega \rangle$ be an increasing enumeration of a set A, and let $r \in \omega$. For convenience, we set a(-1) = -1. We partition ω into r + 1 pieces $Y(A, i, r), i \le r$:

$$Y(A,i,r) = \bigcup \big\{ \big[a((r+1)n+i-1)+1, a((r+1)n+i)+1 \big) \ : \ n \in \omega \big\}.$$

Assume we have a partition $\mathscr{P} = \{[0, p(0))\} \cup \{[p(k), p(k+1)) : k \in \omega\}$ such that $\exists i < r \ \forall k \in \omega \ p(k) \in Y(A, i, r)$. Then we have:

$$\forall k \in \omega \ \exists \ell \in \omega \ |[p(k), p(k+1)) \cap A| = \ell(r+1).$$

The best way to see this is drawing a picture with a line, some points and looking at it. \Box (observation)

Now suppose we have $\mathscr{A} \subset [\omega]^{\omega}$ of cardinality less than \mathfrak{s} . Then also

$$\mathscr{A}' = \{ Y(A, i, r) : A \in \mathscr{A}, r \in \omega, i \le r \}$$

has cardinality less than $\mathfrak s$. Hence there is a $p\in\omega^{\omega\uparrow}$ such that $\operatorname{range}(p)$ is not split by any element of $\mathscr H$, i.e.

$$\forall A \in \mathscr{A} \ \forall r \in \omega \ \exists i \leq r \ \mathrm{range}(p) \subseteq^* Y(A, i, r).$$

Above some p(n), the observation is applicable and yields

$$\forall r \in \omega \ \forall^{\infty} n \in \omega \ | [p(n), p(n+1)) \cap A | \notin \{1, 2, \dots r\},$$

so \mathcal{A} is not a family as in the definition of \mathfrak{f}_2 .

4. Consistency results

In this section, we show: In ZFC, \mathfrak{f} cannot be pinned down as $\max(\mathfrak{b},\mathfrak{s})$ nor as $\min(\mathfrak{d}, \mathrm{unif}(\mathbf{K}))$.

A forcing notion **P** is called ω^{ω} -bounding iff for every **P**-generic filter G over V:

$$\forall f \in \omega^{\omega} \cap V[G] \quad \exists g \in \omega^{\omega} \cap V \quad f <^* g,$$

or even without an *; that does not make any difference here.

We are now thinking in terms of the $\mathfrak{f}_{1,1}$ version and use the following two abbreviations: For $A\subseteq\omega$ and a partition p we say "A is good for p" iff $\exists^{\infty}n\ |A\cap[p(n),p(n+1))|=1$. For $\mathscr{A}\subseteq[\omega]^{\omega}$, we say " \mathscr{A} is good for p" iff $\exists A\in\mathscr{A}$ such that A is good for p.

Proposition 2. ω^{ω} -bounding forcing does not increase f.

We prove a lemma that immediately yields the above proposition. For $g \in \omega^{\omega}$, let \tilde{g} be defined by

$$\tilde{g}(0) = g(0),$$

 $\tilde{g}(n+1) = g(\tilde{g}(n)).$

As in Theorem 1, for $A \in [\omega]^{\omega}$ and a partition $h \in \omega^{\omega \uparrow}$ let $h_{0,A}$ be the partition of ω that is given by h shrunk to A, explicitly: $h_{0,A}(0) = |[0,h(0)) \cap A|, h_{0,A}(n+1) = h_{0,A}(n) + |[h(n),h(n+1)) \cap A|.$

Let e_A be the increasing enumeration of A, $e_A : \omega \xrightarrow{bijective} A$. As in Theorem 1 we will use: If A' is good for $h_{0,A}$, then $e_A[A']$ is good for h.

If *A* is good for $\langle h(2n) : n \in \omega \rangle$, we define h_A : We take an increasing enumeration $\langle i_n : n \in \omega \rangle$ of the infinitely many *i*'s such that $|[h(2i), h(2i+2)) \cap A| = 1$ and set $h_A(n) = h(2i_n + 1)_{0,A}$.

Lemma 1. If $f \leq^* g$ and A is good for $\langle \tilde{g}(2n) : n \in \omega \rangle$ and A' is good for \tilde{g}_A , then $e_A[A']$ is good for f.

Proof. We show that all but finitely many of those infinitely many n such that $|A'\cap [\tilde{g}_A(n),\tilde{g}_A(n+1))|=1$ there exists some k(n) such that the function k is injective and such that $|e_A[A']\cap [f(k(n)),f(k(n)+1))|=1$. We take n such that $|A'\cap [\tilde{g}_A(n),\tilde{g}_A(n+1))|=1$ and such that for all $k\geq n$, $f(k)\leq g(k)$. For such an n, we define k(n) as the unique k such that the singleton $e_A[A']\cap [\tilde{g}(2i_n+1),\tilde{g}(2i_{n+1}+1))\subseteq [f(k),f(k+1))$. We show that $e_A[A']$ does not hit [f(k),f(k+1)) in $[f(k),f(k+1))\setminus [\tilde{g}(2i_n+1),\tilde{g}(2i_{n+1}+1))$. So we suppose that the latter is not empty and consider the two cases:

First case: $f(k) \leq \tilde{g}(2i_n+1) < f(k+1) \leq \tilde{g}(2i_n+2)$. Then $\tilde{g}(2i_n) < f(k)$, and since $A \cap [\tilde{g}(2i_n+1), \tilde{g}(2i_n+2)) = A \cap [\tilde{g}(2i_n+1), f(k+1)) \neq \emptyset$, we have $e_A[A'] \cap [f(k), \tilde{g}(2i_n+1)) \subseteq A \cap [\tilde{g}(2i_n), \tilde{g}(2i_n+1)) = \emptyset$.

Second case: $\tilde{g}(2i_{n+1}) < f(k) \le \tilde{g}(2i_{n+1}+1) < f(k+1)$. Then $f(k+1) \le \tilde{g}(2i_{n+1}+2)$ and we have $e_A[A'] \cap [\tilde{g}(2i_{n+1}+1), f(k+1)) \subseteq A \cap [\tilde{g}(2i_{n+1}+1), \tilde{g}(2i_{n+1}+2)) = \emptyset$.

This also shows that k is injective.

The lemma gives us: If $f \leq^* g$ and \mathscr{A} is good for $\langle \tilde{g}(2n) : n \in \omega \rangle$ and good for \tilde{g}_A for $A \in \mathscr{A}$, then $\{e_A[A'] : A, A' \in \mathscr{A}\}$ is good for f, which is just a more constructive form of the proposition. \square (proposition)

Now we get

Theorem 4. $\mathfrak{b} = \mathfrak{s} = \mathfrak{f} = \aleph_1 \wedge \mathfrak{d} = \mathrm{unif}(\mathbf{K}) = \aleph_2 \text{ is consistent.}$

Proof. We start with a model of CH and first add \aleph_2 Cohen reals with finite support and then we force with the measure algebra on 2^{\aleph_2} , called B_{\aleph_2} . The Cohen reals increase \mathfrak{d} and keep the rest as \aleph_1 (for reference to proofs see [2]). The random reals increase unif(\mathbf{K}) while not decreasing \mathfrak{d} and not increasing \mathfrak{f} , because B_{\aleph_2} is ω^{ω} bounding (Lemma 3.1.2 in [2]).

Now we begin working towards the complementary result.

Definition 2. Define a forcing (Q, \leq) as follows: Conditions are pairs (σ, F) , where $\sigma \in \omega^{<\omega}$ is strictly increasing and $F \subseteq [\omega]^{\omega}$ is finite. The order is defined by letting $(\sigma, F) \leq (\tau, H)$ iff $\tau \subseteq \sigma$, $H \subseteq F$ and

$$\forall i \in |\sigma| \setminus (|\tau| \cup \{0\}) \forall a \in H \ | [\sigma(i-1), \sigma(i)) \cap a | \neq 1.$$

Lemma 2. Let $\sigma \in \omega^{<\omega}$ be strictly increasing and let $n, k \in \omega$. Suppose μ is a Q-name such that $|\!\!| -_Q \mu \in \omega$. There exists $i^* < \omega$ such that whenever $F \subseteq [\omega]^\omega$ has size n and $|[\sigma(|\sigma|-1),k)\cap a| \geq 2$ for all $a \in F$, then it is not the case that $(\sigma,F) |\!\!| -_Q \mu \geq i^*$.

Proof. Otherwise there exist $F_i \subseteq [\omega]^\omega$ of size n such that $|[\sigma(|\sigma|-1),k)\cap a| \ge 2$ for all $a \in F_i$ and $(\sigma,F_i) \parallel_{-Q} \mu \ge i$, for all $i < \omega$. Let $F_i = \{a_j^i : j < n\}$. By compactness, we may find $B \in [\omega]^\omega$ and $a_j \subseteq \omega, j < n$, such that $\lim_{i \in B} a_j^i = a_j$ for all j < n, i.e.

$$\forall m \; \exists i \; \forall i' \in B \setminus i \; (a_j^{i'} \cap m = a_j \cap m).$$

Let $K_0 = \{j < n : |a_j| < \omega\}$ and $K_1 = n \setminus K_0$. Note that $|[\sigma(|\sigma| - 1), k) \cap a_j| \ge 2$ for all j < n. Let

$$m^* = \max\{\max(a_i) + 1 : i \in K_0\}.$$

Find $(\tau, H) \leq (\sigma, \{a_j : j \in K_1\})$ such that (τ, H) decides μ , say as i_0 , and $\tau(|\sigma|) > m^*$. Choose $i > i_0$ such that for all j < n

$$a_i^i \cap \tau(|\tau| - 1) = a_i \cap \tau(|\tau| - 1). \tag{*}$$

We claim that $(\tau, H \cup F_i) \le (\tau, H)$ and $(\tau, H \cup F_i) \le (\sigma, F_i)$, which is a contradiction as (τ, H) and (σ, F_i) force contradictory statements about μ . The first

inequality is clear. For the second we have to show that if $l \in |\tau| \setminus (|\sigma| \cup \{0\})$ and j < n, then $|[\tau(l-1), \tau(l)) \cap a_j^i| \neq 1$. Suppose first $j \in K_0$. If $l = |\sigma|$ then this is true since $\tau(|\sigma|) > m^*$. If $l > |\sigma|$, then $[\tau(l-1), \tau(l)) \cap a_j^i = \emptyset$ for the same reason and by (*). Now suppose $j \in K_1$. Then $|[\tau(l-1), \tau(l)) \cap a_j| \neq 1$ since $(\tau, H) \leq (\sigma, \{a_j : j \in K_1\})$, and hence by (*) we are done.

Corollary 1. Suppose that $U \subseteq \omega^{\omega}$ is unbounded (with respect to \leq^*). Then U is unbounded after forcing with Q.

Proof. Suppose that ρ is a Q-name for a function in ω^{ω} . By Lemma 3.5, for every triple $(\sigma,n,k)\in\omega^{<\omega}\times\omega\times\omega$ with σ strictly increasing we have a function $h_{\sigma,n,k}\in\omega^{\omega}$ such that whenever $F\subseteq [\omega]^{\omega}$ has size n and $|\sigma(|\sigma|-1),k)\cap a|\geq 2$ for all $a\in F$, then it is not the case that for some $1<\omega$, (σ,F) $\|-Q\rho(1)\geq h_{\sigma,n,k}(1)$. Choose $h\in\omega^{\omega}$ such that $h>^*h_{\sigma,n,k}$ for all (σ,n,k) . Find $g\in U$ such that $h\not\geq^*g$. Suppose there were $(\sigma,F)\in Q$ and $1^*<\omega$ such that

$$(\sigma, F) \Vdash_Q \forall l \ge l^* \rho(l) > g(l).$$

Without loss of generality we may assume $|\sigma| > 0$. Let n = |F| and let k be large enough such that $|[\sigma(|\sigma|-1),a)\cap k| \geq 2$ for all $a\in F$. Find $l>l^*$ such that $h(l)>h_{\sigma,n,k}(l)$ and g(l)>h(l). By the definition of $h_{\sigma,n,k}$ we may find $(\tau,H)\leq (\sigma,F)$ such that (τ,H) $\Vdash_Q \rho(l)< h_{\sigma,n,k}(l)$ and hence (τ,H) $\Vdash_Q \rho(l)< g(l)$. This is a contradiction.

Theorem 5. It is consistent with ZFC, relative to the consistency of ZF, to assume $\max\{\mathfrak{b},\mathfrak{s}\}<\mathfrak{f}$.

Proof. Let V be a model of ZFC+CH, and let $\kappa>\omega_1$ be a regular cardinal. Let P be a finite support iteration of Q (Definition 3.4) of length κ , and let G be P-generic over V. Then we have that $V[G] \models \mathfrak{b} = \mathfrak{s} = \omega_1$ and $V[G] \models \mathfrak{f} = \kappa$. The latter is clear by definition of Q. Since Q is Suslin ccc, $V \cap [\omega]^{\omega}$ is a splitting family in V[G] (see [3] for definitions and proofs). By Corollary 3.6 and by Lemma 6.5.7 in [2], every well-ordered unbounded family in $V \cap \omega^{\omega}$ is unbounded in V[G]. Hence by the CH in V we conclude $V[G] \models \mathfrak{b} = \mathfrak{s} = \omega_1$. \square

5. Finitely splitting

In [4], Kamburelis and Węglorz introduce a strengthening of splitting, called finitely splitting, and show that its norm $fs = \max(\mathfrak{b}, \mathfrak{s})$. We give a direct construction that shows that $\mathfrak{f} \geq fs$. Theorem 5 shows that there is no reverse construction.

The definition of fs is:

 $fs = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \land \forall \text{ partitions } \mathscr{P} \text{ of an infinite subset of } \omega \text{ into finite sets} \}$

$$\exists A \in \mathscr{N} (\exists^{\infty} P \in \mathscr{P} P \cap A = \emptyset \land \exists^{\infty} P \in \mathscr{P} A \supseteq P) \}.$$

A family \mathcal{A} as above is called a finitely splitting family.

Proposition 3. Suppose \mathcal{A} is a witness for the computation of $\mathfrak{f}_{1,1}$. Then from \mathcal{A} we can construct a finitely splitting family of the same size.

Proof. First we take again $\mathscr{M}' = \{e_Y[A] : Y, A \in \mathscr{M}\}$, as in the proof of Theorem 1 and in the proof of Lemma 1. Suppose we are given a partition as in the definition of fs, $\mathscr{P} = \{P_n : n \in \omega\}$. We take a partition of ω into intervals $\langle q_k : k \in \omega \rangle$ such that each $[q_k, q_{k+1})$ contains at least one P_n . According to the proofs of Theorem 1 or of Lemma 1, there are $A, Y \in \mathscr{M}$ and a strictly increasing sequence $\langle 2j_n : n \in \omega \rangle$, such that

$$\exists^{\infty} n \ (|[q_{2j_n+1}, q_{2j_{n+1}+1}) \cap e_Y[A]| = 1 \quad \text{and} \quad |[q_{2j_n}, q_{2j_n+2}) \cap e_Y[A]| = 1).$$

Now we take an increasing enumeration $\langle b_{Y,A}(n) : n \in \omega \rangle$ of $e_Y[A]$ for each $A, Y \in \mathcal{A}$, and define

$$B(Y,A) = \bigcup \{ [b_{Y,A}(2n), b_{Y,A}(2n+1)) : n \in \omega \}.$$

The family $\{B(Y,A): Y,A \in \mathcal{A}\}$ is a finitely splitting family. \square

6. Open questions

One can investigate whether the value of f can be arranged more arbitrarily:

- 1. Can f be singular?
- 2. Is $\max(\mathfrak{s},\mathfrak{b}) < \mathfrak{f} < \min(\mathfrak{d}, \mathrm{unif}(\mathbf{K}))$ consistent? Tomek Bartoszyński observed that one random real forces $\mathfrak{f} \leq \mathfrak{b}$, hence the combination of constructions leading to 5 and 4 does not give the desired result.

Nor does doing first 4, say with \aleph_1 and \aleph_3 , and then 5, because of the Cohen reals coming with the finite support iteration of Q: adding one Cohen real makes unif(\mathbf{K}) $\leq \mathfrak{b}$ by Theorem 3.3.22 of [2].

Acknowledgement. We are very grateful to Andreas Blass for many stimulating discussions.

References

- 1. A. Blass, Reductions Between Cardinal Characteristics of the Continuum, Contemp. Math. 192, (1996), 31–49
- T. BARTOSZYŃSKI, H. JUDAH, Set Theory, On the Structure of the Real Line, A K Peters, 1995
- 3. H. Judah, S. Shelah, Souslin Forcing, J. Symb. Logic 53, (1988), 1188–1207
- 4. A. Kamburelis, B. Węglorz, Splittings, Arch. Math. Logic 35, (1996), 263–277
- P. Vojtáš, Set theoretic characteristics of summability and convergence of series, Comment. Math. Univ. Carolinae 28, (1987), 173–184