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Abstract. We investigate several versions of a cardinal characteristicf defined
by Frankiewicz. Vojt́ǎs showedb ≤ f, and Blass showedf ≤ min(d, unif(K )).
We show that all the versions coincide and thatf is greater than or equal to
the splitting number. We prove the consistency of max(b, s) < f and of f <
min(d, unif(K )).

1. Introduction

We start with the definition of several cardinal characteristics. “There are in-
finitely many” is abbreviated by∃∞, the dual quantifier “for all but finitely
many” is ∀∞. In our context, a partition is a set of pairwise disjoint sets that
combine toω. The set of all functions fromω to ω is written asωω; and the
set of all infinite subsets ofω is written as [ω]ω. For f , g ∈ ωω the ordering
of eventual dominance is defined byf ≤∗ g iff ∀∞n f (n) ≤ g(n). The setω
is equipped with the discrete topology. The Baire spaceωω carries the product
topology.

The well-known cardinal invariants we are dealing with are: the splitting
numbers = min{|S | : S ⊆ [ω]ω ∧ ∀X ∈ [ω]ω ∃S ∈ S |X ∩ S| = |X \ S| =
ω}, the (un)bounding numberb = min{|B | : B ⊆ ωω ∧ ∀f ∈ ωω ∃b ∈
B b 6≤∗ f }, the dominating numberd = min{|D | : D ⊆ ωω ∧ ∀f ∈
ωω ∃d ∈ D f ≤∗ d}, and the uniformity of the sets of first Baire category
unif(K ) = min{|A| : A ⊆ ωω is not meager}.

Definition 1. For r ∈ ω:
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f1,r +1 := min{|A| : A ⊆ [ω]ω ∧ ∀ partitionsP into finite intervals

∃A ∈ A ∃∞ pieces P∈ P 1 ≤ |P ∩ A| ≤ r + 1}.

f2 := min{|A| : A ⊆ [ω]ω ∧ ∀ partitionsP into finite intervals

∃A ∈ A ∃r ∈ ω ∃∞ pieces P∈ P 1 ≤ |P ∩ A| ≤ r + 1}.

f3 := min{|A| : A ⊆ [ω]ω ∧ ∃r ∈ ω ∀ partitionsP

into finite intervals ∃A ∈ A ∃∞ pieces P∈ P

1 ≤ |P ∩ A| ≤ r + 1}.

If we replace in any of these definitions “finite intervals” by “finite sets”, then we
get an invariant that we denote with the same indexed letter but primed.

The familiesA in the different sets are called “good” for the cardinal in
question, and the familiesA of minimal cardinality are called “witnesses” for
the considered cardinal.

2. Equalities

There are some obvious inequalities:f2 ≤ f3 ≤ f1,r +1 · · · ≤ f1,1 for r ∈ ω,
and the same for the primed versions, as well asfx ≤ f′x for all meaningful
subscripts. Now we show that each primed invariant is the same as the unprimed
one. Thereafter, we will work only with the (unprimed) interval versions.

Theorem 1. f1,r +1 = f′1,r +1, fj = f′j for r ∈ ω, j = 2, 3.

Proof. Let A be a witness for the definition off1,r +1. For Y ∈ [ω]ω, we let eY

denote the increasing bijectionω → Y . We setÃ = {eY [A] : A, Y ∈ A} ∪ A

and show thatÃ meets any partition ofω into finite sets in infinitely many parts
between 1 andr + 1 times.

For any partitionP of ω into finite sets, we define an increasing function
fP : ω → ω in the following manner:

fP (0) = 0,

fP (n + 1) = max{
⋃

P : P ∈ P , P ∩ [0, fP (n)] /= ∅} + 1.

Given any increasing functionf ∈ ωω, we interpret it as a partitionQ (f ) of ω
into finite intervals:

Q (f ) = {[0, f (0))} ∪ {[f (i ), f (i + 1)) : i ∈ ω}.

We will write only f instead ofQ (f ). The choices of the open and the closed
end matter only in the proof of theorem 3. We also have:∀P ∈ P ∃n P ⊆
[fP (n), fP (n + 2)).
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In the first step, we “treat” a partition gotten by combining pairs of consec-
utive blocks offP . The properties ofA yield:

∃A ∈ A ∃∞i ∈ ω 1 ≤ |A ∩ [f (2i ), f (2(i + 1)))| ≤ r + 1.

We fix such anA.

First case:

∃∞i ∈ ω ∃P ∈ P (1 ≤ |A ∩ [fP (2i ), fP (2(i + 1)))| ≤ r + 1

andA ∩ [fP (2i ), fP (2i + 1)) ∩ P /= ∅
andA ∩ [fP (2i + 1), fP (2(i + 1))) ∩ P /= ∅).

For any P ∈ P such thatA ∩ P ∩ [fP (2i ), fP (2i + 1)) /= ∅ and A ∩ [fP (2i +
1), fP (2(i +1)))∩P /= ∅, by the definition offP we haveP ⊆ [fP (2i ), fP (2(i +1))).
So we take for each of those infinitely manyi one or moreP ∈ P with these
two properties.

Second case:

∃∞i ∈ ω (1 ≤ |A ∩ [fP (2i ), fP (2(i + 1)))| ≤ r + 1

and∀P ∈ P (A ∩ P ∩ [fP (2i ), fP (2i + 1)) = ∅
or A ∩ P ∩ [fP (2i + 1), fP (2(i + 1))) = ∅)).

Now we define a new partition, that is coarser and shifted to the odd arguments:
We enumerate those infinitely manyi ’s in the case hypothesis increasingly as
〈in : n ∈ ω〉. We take the partition defined byg(n) = fP (2in + 1). We think
of this partition shrunk to the domainA, explicitly: g0,A(0) = |[0, g(0)) ∩ A|,
g0,A(n + 1) = g0,A(n) + |[g(n), g(n + 1)) ∩ A|.

This shrinkage procedure yields: IfA′ is good forg0,A, theneA[A′] is good
for g. Then we haveA′ ∈ A such thateA[A′] is good for the partitiong. Since
eA[A′] ⊆ A, for infinitely manyn it meets the interval [fP (2in + 1), fP (2in+1 + 1))
between 1 andr + 1 times in a pieceP of P such thatP is not met byA
(and hence neither byeA[A′]) again in the part ofP possibly sticking out into
[fP (2in), fP (2in + 1)) or into [fP (2in+1 + 1), fP (2in+1 + 2)).

For the other versions, we can use almost the same proof: If in the second
use ofA a largerr appears, we just take this as a finalr . �

Remark: Indeed, our proof gives a morphism from the primed relation into the
sequential composition of two copies of the corresponding unprimed relation; for
details about morphism constructions see [1].

Now we show that all the versions coincide; and we shall call the invariantf.

Proposition 1. f1,1 ≤ f2.
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Proof. For anyA ∈ [ω]ω, r ∈ ω, we thin outA as follows: Let〈a(n) : n ∈ ω〉
be the strictly increasing enumeration ofA. We set

s(A, r ) = {a(n · (r + 1)) : n ∈ ω}.

Let A be a witness forf2. We show thatÃ = {s(A, r ) : A ∈ A, r ∈ ω} is a
set good in the sense off1,1.

Let P = 〈p(n) : n ∈ ω〉 be a partition ofω into intervals. AsA is good
for f2 we have

∃r ∃∞n |[p(n), p(n + 1)) ∩ A| = r + 1.

For those infinitely manyn, [p(n), p(n + 1)) ∩ A consists ofr + 1 consecutive
elements ofA. Hence we have|[p(n), p(n + 1)) ∩ s(A, r )| = 1. �

3. Inequalities

In this section we show inZFC that max(b, s) ≤ f ≤ min(d, unif(K )).
If we work with the strictly increasing enumeration〈an : n ∈ ω〉 of A ∈ A

and the increasing functionp for a partitionP , “A meets infinitely many parts
of P in one element” translates to

∃∞n ∃k a(k − 1) < p(n) ≤ a(k) < p(n + 1) ≤ a(k + 1) =: R(p, a).

For eachp ∈ ωω↑, the set of all strictly increasing functions fromω to ω, the set

Rp := {a ∈ ωω↑ : R(p, a)}

is a comeager subset of the Baire spaceωω↑. Any non-meager setA ⊆ [ω]ω

will intersect all theRp’s and hencef ≤ unif(K ).

We next give a proof of Vojt́ǎs’ and Blass’ observations. Then we showf ≥ s.

Theorem 2 (Vojtáš, Blass).b ≤ f ≤ d.

Proof. First inequality, which is proved in [5]: Assuming thatA ⊆ [ω]ω has
cardinality strictly less thanb we give a partitionP of ω into finite intervals
that ∀r ∈ ω ∀A ∈ A for all but finitely many piecesP of P , the pieceP
is met by A in more thanr points. This shows that even if we leave out the
1 ≤ |A ∩ P| in the requirement forf2, we will get an invariant greater or equal
than b. (Indeed, then we get exactlyb, which is proved in [5].) We enumerate
A as 〈Aα : α < γ < b〉, and definegα : ω → ω, increasing,gα(0) = 0,
gα(n + 1) =the (n + 1)-st element inAα after gα(n).

There is someg ∈ ωω that dominates all thegα. We defineh(0) = g(0),
h(n + 1) = g(h(n) + 1), and consider the partition defined byh. We show:

∀∞n |[h(n), h(n + 1)) ∩ Aα| ≥ h(n).
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We taken0 such that∀n ≥ n0, g(h(n) + 1) ≥ gα(h(n) + 1). Then we have for
n ≥ n0: h(n + 1) = g(h(n) + 1) ≥ gα(h(n) + 1) = the (h(n) + 1)st element ofAα

after h(n) + 1.

The proof of the second inequality is based upon the same ideas and shows
f1,1 ≤ d. We take a dominating family{gα : α ∈ d}. Again, we definehα(0) =
gα(0), hα(n + 1) = gα(hα(n) + 1), and we takeAα = range(hα). Suppose we are
given a partitionP = 〈f (n) : n ∈ ω〉. We choose anα such thatf ≤∗ gα, and
show thatAα is good forP in the sense off1,1, that is∃∞n |[f (n), f (n + 1))∩
Aα| = 1. AsAα is an infinite set,∃∞n [f (n), f (n+1))∩Aα /= ∅. We show that for
all but finitely many of thosen there is exactly one element in the intersection.

Suppose that∀n ≥ n0 gα(n) ≥ f (n) and thatn ≥ n0 and thatk is min-
imal such thatf (n) ≤ hα(k) < f (n + 1). Thenhα(k + 1) = gα(hα(k) + 1) ≥
f (hα(k) + 1) ≥ f (f (n) + 1) ≥ f (n + 1); and hencehα(k) is the only element in
the intersection. �

Theorem 3. f ≥ s.

Proof. The main part is the following
Observation: Let 〈a(n) : n ∈ ω〉 be an increasing enumeration of a setA, and
let r ∈ ω. For convenience, we seta(−1) = −1. We partitionω into r + 1 pieces
Y(A, i , r ), i ≤ r :

Y(A, i , r ) =
⋃

{[a((r + 1)n + i − 1) + 1, a((r + 1)n + i ) + 1) : n ∈ ω}.

Assume we have a partitionP = {[0, p(0))} ∪ {[p(k), p(k + 1)) : k ∈ ω} such
that ∃i ≤ r ∀k ∈ ω p(k) ∈ Y(A, i , r ). Then we have:

∀k ∈ ω ∃` ∈ ω |[p(k), p(k + 1)) ∩ A| = `(r + 1).

The best way to see this is drawing a picture with a line, some points and looking
at it. � (observation)

Now suppose we haveA ⊂ [ω]ω of cardinality less thans. Then also

A′ = {Y(A, i , r ) : A ∈ A, r ∈ ω, i ≤ r }
has cardinality less thans. Hence there is ap ∈ ωω↑ such that range(p) is not
split by any element ofA′, i.e.

∀A ∈ A ∀r ∈ ω ∃i ≤ r range(p) ⊆∗ Y(A, i , r ).

Above somep(n), the observation is applicable and yields

∀r ∈ ω ∀∞n ∈ ω |[p(n), p(n + 1)) ∩ A| 6∈ {1, 2, . . . r },

so A is not a family as in the definition off2. �
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4. Consistency results

In this section, we show: InZFC, f cannot be pinned down as max(b, s) nor as
min(d, unif(K )).

A forcing notion P is called ωω-bounding iff for everyP-generic filterG
over V :

∀f ∈ ωω ∩ V [G] ∃g ∈ ωω ∩ V f ≤∗ g,

or even without an∗; that does not make any difference here.
We are now thinking in terms of thef1,1 version and use the following

two abbreviations: ForA ⊆ ω and a partitionp we say “A is good for p” iff
∃∞n |A ∩ [p(n), p(n + 1))| = 1. For A ⊆ [ω]ω, we say “A is good forp” iff
∃A ∈ A such thatA is good forp.

Proposition 2. ωω-bounding forcing does not increasef.

We prove a lemma that immediately yields the above proposition.
For g ∈ ωω, let g̃ be defined by

g̃(0) = g(0),

g̃(n + 1) = g(g̃(n)).

As in Theorem 1, forA ∈ [ω]ω and a partitionh ∈ ωω↑ let h0,A be the partition of
ω that is given byh shrunk toA, explicitly: h0,A(0) = |[0, h(0))∩A|, h0,A(n + 1) =
h0,A(n) + |[h(n), h(n + 1)) ∩ A|.

Let eA be the increasing enumeration ofA, eA : ω
bijective→ A. As in Theorem 1

we will use: If A′ is good forh0,A, theneA[A′] is good forh.
If A is good for 〈h(2n) : n ∈ ω〉, we definehA: We take an increasing

enumeration〈in : n ∈ ω〉 of the infinitely manyi ’s such that|[h(2i ), h(2i +2))∩
A| = 1 and sethA(n) = h(2in + 1)0,A.

Lemma 1. If f ≤∗ g and A is good for〈g̃(2n) : n ∈ ω〉 and A′ is good forg̃A,
then eA[A′] is good for f .

Proof. We show that all but finitely many of those infinitely manyn such that
|A′ ∩ [g̃A(n), g̃A(n + 1))| = 1 there exists somek(n) such that the functionk is
injective and such that|eA[A′] ∩ [f (k(n)), f (k(n) + 1))| = 1. We taken such that
|A′ ∩ [g̃A(n), g̃A(n + 1))| = 1 and such that for allk ≥ n, f (k) ≤ g(k). For such
an n, we definek(n) as the uniquek such that the singletoneA[A′] ∩ [g̃(2in +
1), g̃(2in+1+1)) ⊆ [f (k), f (k +1)). We show thateA[A′] does not hit [f (k), f (k +1))
in [f (k), f (k + 1))\ [g̃(2in + 1), g̃(2in+1 + 1)). So we suppose that the latter is not
empty and consider the two cases:

First case:f (k) ≤ g̃(2in + 1) < f (k + 1) ≤ g̃(2in + 2). Then ˜g(2in) < f (k),
and sinceA ∩ [g̃(2in + 1), g̃(2in + 2)) = A ∩ [g̃(2in + 1), f (k + 1)) /= ∅, we have
eA[A′] ∩ [f (k), g̃(2in + 1)) ⊆ A ∩ [g̃(2in), g̃(2in + 1)) = ∅.
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Second case: ˜g(2in+1) < f (k) ≤ g̃(2in+1 + 1) < f (k + 1). Then f (k + 1) ≤
g̃(2in+1+2) and we haveeA[A′]∩[g̃(2in+1+1), f (k+1)) ⊆ A∩[g̃(2in+1+1), g̃(2in+1+
2)) = ∅.

This also shows thatk is injective. �

The lemma gives us: Iff ≤∗ g and A is good for 〈g̃(2n) : n ∈ ω〉 and
good for g̃A for A ∈ A, then{eA[A′] : A, A′ ∈ A} is good forf , which is just
a more constructive form of the proposition. � (proposition)

Now we get

Theorem 4. b = s = f = ℵ1 ∧ d = unif(K ) = ℵ2 is consistent.

Proof. We start with a model ofCH and first addℵ2 Cohen reals with finite
support and then we force with the measure algebra on 2ℵ2, called Bℵ2. The
Cohen reals increased and keep the rest asℵ1 (for reference to proofs see [2]).
The random reals increase unif(K ) while not decreasingd and not increasingf,
becauseBℵ2 is ωω bounding (Lemma 3.1.2 in [2]). �

Now we begin working towards the complementary result.

Definition 2. Define a forcing(Q,≤) as follows: Conditions are pairs(σ, F ),
whereσ ∈ ω<ω is strictly increasing and F⊆ [ω]ω is finite. The order is defined
by letting(σ, F ) ≤ (τ, H ) iff τ ⊆ σ, H ⊆ F and

∀i ∈ |σ| \ (|τ | ∪ {0})∀a ∈ H |[σ(i − 1), σ(i )) ∩ a| /= 1.

Lemma 2. Let σ ∈ ω<ω be strictly increasing and let n, k ∈ ω. Supposeµ is a
Q-name such that‖−Q µ ∈ ω. There exists i∗ < ω such that whenever F⊆ [ω]ω

has size n and|[σ(|σ| − 1), k) ∩ a| ≥ 2 for all a ∈ F, then it is not the case that
(σ, F ) ‖−Q µ ≥ i ∗.

Proof. Otherwise there existFi ⊆ [ω]ω of sizen such that|[σ(|σ|−1), k)∩a| ≥ 2
for all a ∈ Fi and (σ, Fi ) ‖−Q µ ≥ i , for all i < ω. Let Fi = {ai

j : j < n}. By
compactness, we may findB ∈ [ω]ω andaj ⊆ ω, j < n, such that limi ∈B ai

j = aj

for all j < n, i.e.

∀m ∃i ∀i ′ ∈ B \ i (ai ′
j ∩ m = aj ∩ m).

Let K0 = {j < n : |aj | < ω} andK1 = n \ K0. Note that|[σ(|σ| − 1), k) ∩ aj | ≥ 2
for all j < n. Let

m∗ = max{max(aj ) + 1 : j ∈ K0}.

Find (τ, H ) ≤ (σ, {aj : j ∈ K1}) such that (τ, H ) decidesµ, say asi0, and
τ (|σ|) > m∗. Choosei > i0 such that for allj < n

ai
j ∩ τ (|τ | − 1) = aj ∩ τ (|τ | − 1). (∗)

We claim that (τ, H ∪ Fi ) ≤ (τ, H ) and (τ, H ∪ Fi ) ≤ (σ, Fi ), which is a con-
tradiction as (τ, H ) and (σ, Fi ) force contradictory statements aboutµ. The first
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inequality is clear. For the second we have to show that ifl ∈ |τ | \ (|σ| ∪ {0})
and j < n, then |[τ (l − 1), τ (l )) ∩ ai

j | /= 1. Suppose firstj ∈ K0. If l = |σ| then
this is true sinceτ (|σ|) > m∗. If l > |σ|, then [τ (l − 1), τ (l )) ∩ ai

j = ∅ for the
same reason and by (∗). Now supposej ∈ K1. Then |[τ (l − 1), τ (l )) ∩ aj | /= 1
since (τ, H ) ≤ (σ, {aj : j ∈ K1}), and hence by (∗) we are done. �

Corollary 1. Suppose that U⊆ ωω is unbounded (with respect to≤∗). Then U
is unbounded after forcing with Q.

Proof. Suppose thatρ is a Q-name for a function inωω. By Lemma 3.5, for
every triple (σ, n, k) ∈ ω<ω ×ω×ω with σ strictly increasing we have a function
hσ,n,k ∈ ωω such that wheneverF ⊆ [ω]ω has sizen and|σ(|σ|− 1), k) ∩ a| ≥ 2
for all a ∈ F , then it is not the case that for somel < ω, (σ, F ) ‖−Q ρ(l ) ≥
hσ,n,k(l ). Chooseh ∈ ωω such thath >∗ hσ,n,k for all (σ, n, k). Find g ∈ U such
that h 6≥∗ g. Suppose there were (σ, F ) ∈ Q and l ∗ < ω such that

(σ, F ) ‖−Q ∀l ≥ l ∗ ρ(l ) > g(l ).

Without loss of generality we may assume|σ| > 0. Let n = |F | and let k be
large enough such that|[σ(|σ| − 1), a) ∩ k| ≥ 2 for all a ∈ F . Find l > l ∗

such thath(l ) > hσ,n,k(l ) and g(l ) > h(l ). By the definition of hσ,n,k we
may find (τ, H ) ≤ (σ, F ) such that (τ, H ) ‖ Q ρ(l ) < hσ,n,k(l ) and hence
(τ, H ) ‖−Q ρ(l ) < g(l ). This is a contradiction. �

Theorem 5. It is consistent with ZFC , relative to the consistency of ZF, to assume
max{b, s} < f.

Proof. Let V be a model ofZFC + CH , and letκ > ω1 be a regular cardinal.
Let P be a finite support iteration ofQ (Definition 3.4) of lengthκ, and letG
be P-generic overV . Then we have thatV [G] |= b = s = ω1 andV [G] |= f = κ.
The latter is clear by definition ofQ. Since Q is Suslin ccc, V ∩ [ω]ω is a
splitting family in V [G] (see [3] for definitions and proofs). By Corollary 3.6
and by Lemma 6.5.7 in [2], every well-ordered unbounded family inV ∩ ωω is
unbounded inV [G]. Hence by theCH in V we concludeV [G] |= b = s = ω1. �

5. Finitely splitting

In [4], Kamburelis and We¸glorz introduce a strengthening of splitting, called
finitely splitting, and show that its normfs = max(b, s). We give a direct con-
struction that shows thatf ≥ fs. Theorem 5 shows that there is no reverse
construction.

The definition offs is:
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fs = min{|A| : A ⊆ [ω]ω ∧ ∀ partitionsP of an infinite subset ofω

into finite sets

∃A ∈ A (∃∞P ∈ P P ∩ A = ∅ ∧ ∃∞P ∈ P A ⊇ P)}.

A family A as above is called a finitely splitting family.

Proposition 3. SupposeA is a witness for the computation off1,1. Then from
A we can construct a finitely splitting family of the same size.

Proof. First we take againA′ = {eY [A] : Y , A ∈ A}, as in the proof of
Theorem 1 and in the proof of Lemma 1. Suppose we are given a partition as in
the definition offs, P = {Pn : n ∈ ω}. We take a partition ofω into intervals
〈qk : k ∈ ω〉 such that each [qk , qk+1) contains at least onePn. According to
the proofs of Theorem 1 or of Lemma 1, there areA, Y ∈ A and a strictly
increasing sequence〈2jn : n ∈ ω〉, such that

∃∞n (|[q2jn+1, q2jn+1+1) ∩ eY [A]| = 1 and |[q2jn , q2jn+2) ∩ eY [A]| = 1).

Now we take an increasing enumeration〈bY,A(n) : n ∈ ω〉 of eY [A] for each
A, Y ∈ A, and define

B(Y , A) =
⋃

{[bY,A(2n), bY,A(2n + 1)) : n ∈ ω}.

The family {B(Y , A) : Y , A ∈ A} is a finitely splitting family. �

6. Open questions

One can investigate whether the value off can be arranged more arbitrarily:
1. Canf be singular?
2. Is max(s, b) < f < min(d, unif(K )) consistent? Tomek Bartoszyński ob-

served that one random real forcesf ≤ b, hence the combination of constructions
leading to 5 and 4 does not give the desired result.

Nor does doing first 4, say withℵ1 andℵ3, and then 5, because of the Cohen
reals coming with the finite support iteration ofQ: adding one Cohen real makes
unif(K ) ≤ b by Theorem 3.3.22 of [2].
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4. A. Kamburelis, B. Wȩglorz, Splittings, Arch. Math. Logic35, (1996), 263–277
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