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Abstract. We investigate several versions of a cardinal charactefisdiefined
by Frankiewicz. Vojis showedb < f, and Blass showefl < min(o, unif(K)).
We show that all the versions coincide and thas greater than or equal to
the splitting number. We prove the consistency of nhaX( < f and of f <
min(o, unif(K)).

1. Introduction

We start with the definition of several cardinal characteristics. “There are in-
finitely many” is abbreviated byi>, the dual quantifier “for all but finitely
many” is V°°. In our context, a partition is a set of pairwise disjoint sets that
combine tow. The set of all functions fronw to w is written asw®; and the

set of all infinite subsets ab is written as {]“. Forf,g € w* the ordering

of eventual dominance is defined by<* ¢ iff v°°n f(n) < g(n). The setw

is equipped with the discrete topology. The Baire spacecarries the product
topology.

The well-known cardinal invariants we are dealing with are: the splitting
numbers = min{|.¥"] : . C[w]* A VX € [w]¥ IS €. [XNS|=|X\S| =
w}, the (un)bounding number = min{|. 2| : . Cw* A Vf € w¥ Jb €
Z b £* f}, the dominating numbed = min{|Z| : & C w* A Vf €
w¥ 3d € & f <* d}, and the uniformity of the sets of first Baire category
unif(K) = min{|A| : A C w* is not meagey.

Definition 1. Forr € w:
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firer = mMin{|. 2| @ .4 C [w]* AV partitions = into finite intervals
JA €. 4 3> piecesPe - 1< |PNAl <r+1}.

fo = min{| 42| : .4 C [w]” AV partitions & into finite intervals
JA€. 4 3r cw I piecesPe & 1< |PNA <r+1}.

fa = min{|. 4| : .4 C[w]” AJr € wV partitions &
into finite intervals JA € . 4 3 pieces Pe &
1<|PNA <r+1}.

If we replace in any of these definitions “finite intervals” by “finite sets”, then we
get an invariant that we denote with the same indexed letter but primed.

The families. 4 in the different sets are called “good” for the cardinal in
guestion, and the familiesZ of minimal cardinality are called “witnesses” for
the considered cardinal.

2. Equalities

There are some obvious inequalitigs: < f3 < fy -+ < f1q forr € w,

and the same for the primed versions, as wellf,as< f. for all meaningful
subscripts. Now we show that each primed invariant is the same as the unprimed
one. Thereafter, we will work only with the (unprimed) interval versions.

Theorem 1. 3 4y = fi 4.6y = forr e w,j =2,3.

Proof. Let. 2 be a witness for the definition df ;. ForY € [w]“, we letey
denote the increasing bijection— Y. We set 4 = {ev[Al : AY € A4LU. 4
and show that-Z meets any partition ab into finite sets in infinitely many parts
between 1 and + 1 times.

For any partition=” of w into finite sets, we define an increasing function
f»: w — w in the following manner:

f»(0)
fr(n+1)

0
max| JP : P € #,PN[0,f, (] #0} +1

Given any increasing functioh € w*, we interpret it as a partitio/(f) of w
into finite intervals:

OF) = {[0,1(0)} U{IF().F i +1) 1 i €w).

We will write only f instead of(f). The choices of the open and the closed
end matter only in the proof of theorem 3. We also havle:€ & 3n P C

[fr(n),fr(n +2)).
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In the first step, we “treat” a partition gotten by combining pairs of consec-
utive blocks off ». The properties of 2 yield:

JAec. 4 I cw 1< AN[F(2), TR0 +1) <r+1

We fix such anA.

First case:

icw Per  @A<IAN[H(2),f,20+1) <r+1
andAN[f(2i),f,2 +1)NP #0
andAN[f.-(2i +1),f.,(2( +1)))N P #0).

For anyP € & such thatANn P N [f(2i),f»(2 +1)) # 0 andAN [f,(2 +
1), f»(2(i +1)))NP # (, by the definition of ,» we haveP C [f»(2i),T»(2(i +1))).
So we take for each of those infinitely manyne or moreP € & with these
two properties.

Second case:

3% € w AL < AN (2), T 20 +1) <r+1
andvP € 2 (ANPN[f,(2),f,(2i +1))=0
or ANPN[f,2 +1),f,2( + 1)) =0)).

Now we define a new patrtition, that is coarser and shifted to the odd arguments:
We enumerate those infinitely mamis in the case hypothesis increasingly as
(in : n € w). We take the partition defined by(n) = f_»(2i, + 1). We think

of this partition shrunk to the domaiA, explicitly: goa(0) = |[0, g(0)) N A|,

goa(N +1) =goa(n) +[[g(n), g(n + 1)) N A.

This shrinkage procedure yields: Af is good forgo a, thenes[A'] is good
for g. Then we have) .4 such thatea[A] is good for the partitiory. Since
ea[A’] C A, for infinitely manyn it meets the intervalf[,(2i,, + 1), f»(2in+1 + 1))
between 1 and + 1 times in a pieceP of & such thatP is not met byA
(and hence neither bga[A’]) again in the part ofP possibly sticking out into
[f-(2in),f-(2in +1)) orinto [ (2ins + 1), (2ineg +2)).

For the other versions, we can use almost the same proof: If in the second
use of 4 a largerr appears, we just take this as a final O

Remark: Indeed, our proof gives a morphism from the primed relation into the
sequential composition of two copies of the corresponding unprimed relation; for
details about morphism constructions see [1].

Now we show that all the versions coincide; and we shall call the invafiant

Proposition 1. f11 < fo.
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Proof. For anyA € [w]“, r € w, we thin outA as follows: Let{(a(n) : n € w)
be the strictly increasing enumeration &f We set

s(Ary={a(n-(r+1)) : n e w}.

Let. 4 be a witness fof,. We show that Z = {s(A;r) : Ae.4,rew}isa
set good in the sense ¢f ;.
Let ¥ = (p(n) : n € w) be a partition ofw into intervals. As. 4 is good
for f, we have
Ir 3°n |[p(n),p(n+1))NA =r+1

For those infinitely manyn, [p(n), p(n + 1)) N A consists ofr + 1 consecutive
elements ofA. Hence we havé{p(n),p(n + 1)) Ns(A r)| = 1. O

3. Inequalities

In this section we show iZFC that maxg, s) < { < min(®, unif(K)).

If we work with the strictly increasing enumeratida, : n € w) of Ac .2
and the increasing functiop for a partition=, “A meets infinitely many parts
of & in one element” translates to

3F*°n 3k ak — 1) < p(n) <a(k) < p(n+1)<alk+1)=R(p,a).
For eachp € wT, the set of all strictly increasing functions framto w, the set
Ry, :={acw*" : R(p,a)}

is a comeager subset of the Baire spat¢é. Any non-meager set4 C [w]®
will intersect all theR,’s and hencg < unif(K).

We next give a proof of Vo8’ and Blass’ observations. Then we shpw s.
Theorem 2 (Vojtés, Blass).b < f <.

Proof. First inequality, which is proved in [5]: Assuming tha¥ C [w]“ has
cardinality strictly less tham we give a partition” of w into finite intervals
thatvr € w VA € .4 for all but finitely many piece$ of &, the pieceP
is met by A in more thanr points. This shows that even if we leave out the
1 < |ANP| in the requirement fof,, we will get an invariant greater or equal
thanb. (Indeed, then we get exacth; which is proved in [5].) We enumerate
4 as (A, . a < v < b), and defineg,: w — w, increasing,g,(0) = O,
go(n +1) =the f + 1)-st element iMA,, after g,(n).

There is somegy € w* that dominates all thg,. We defineh(0) = ¢(0),
h(n + 1) = g(h(n) + 1), and consider the partition defined byWe show:

vn [[h(n),h(n +1))N As| > h(n).
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We takeng such thatvn > ng, g(h(n) + 1) > g,(h(n) + 1). Then we have for
n > ng: h(n +1) =g(h(n) + 1) > g.(h(n) + 1) = the f(n) + 1)st element ofA,
afterh(n) + 1.

The proof of the second inequality is based upon the same ideas and shows
f1.1 < 0. We take a dominating familyg, : a € 0}. Again, we definen,(0) =
9a(0), hy(n +1) = g,(h,(n) + 1), and we taked, = rangeb,). Suppose we are
given a partition=” = (f(n) : n € w). We choose am such thatt <* ¢,, and
show thatA,, is good for=” in the sense of, ;, that is3*>°n |[[f(n),f(n +1))N
A.| = 1. AsA, is an infinite set3>°n [f(n),f(n+1))NA, # (. We show that for
all but finitely many of those there is exactly one element in the intersection.

Suppose thatn > ng g,(n) > f(n) and thatn > ny and thatk is min-
imal such thatf (n) < h,(k) < f(n +1). Thenh,(k + 1) = go(h.(k) +1) >
f(ho(k) +1) > f(f(n) + 1) > f(n + 1); and hencé, (k) is the only element in
the intersection. O

Theorem 3. f > s.

Proof. The main part is the following

Observation: Let (a(n) : n € w) be an increasing enumeration of a fetand
letr € w. For convenience, we sa{—1) = —1. We partitionw into r +1 pieces
Y(Ai,r),i<r:

Y(A,i,r):U{[a((r+1)n+i —+Lla((r+1n+i)+1) :new}

Assume we have a partitios” = {[0, p(0))} U {[p(k),p(k + 1)) : k € w} such
thatdi <r Vk € wp(k) € Y(A,i,r). Then we have:

Vk ew I ew |[pkk),pk+1)NAl=£(r+1)
The best way to see this is drawing a picture with a line, some points and looking
at it. O (observation)
Now suppose we haves C [w]¥ of cardinality less thaw. Then also
A ={YAi,r)  Ae. A r ew,i <r}

has cardinality less than Hence there is @ € w*! such that rang@| is not
split by any element of Z/, i.e.

VA€ . 4Yr ewdi <rrangep) C*Y(Ai,r).
Above somep(n), the observation is applicable and yields
¥r € wvn € wl[p(n),p(n + )N A & {1,2,...1},

S0.-¢ is not a family as in the definition df. g
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4. Consistency results

In this section, we show: IZFC, § cannot be pinned down as méax§) nor as
min(o, unif(K)).

A forcing notion P is called w*-bounding iff for everyP-generic filterG
overV:

Vi ew* NV[G] dgew’nV <My,

or even without ar; that does not make any difference here.

We are now thinking in terms of th¢ ; version and use the following
two abbreviations: FOA C w and a partitionp we say ‘A is good forp” iff
3*°n |AN[p(n),p(n + 1)) = 1. For. 2 C [w]¥, we say ‘- is good forp” iff
JA € . ¢ such thatA is good forp.

Proposition 2. w*-bounding forcing does not increage

We prove a lemma that immediately yields the above proposition.
For g € w¥, let § be defined by

9(0)
gn+1)

9(0),
9(G(n)).

As in Theorem 1, foA € [w]* and a partitiorh € w7 let ho,a be the partition of
w that is given byh shrunk toA, explicitly: hg o(0) = [0, h(0))NA|, hg a(n+1) =
ho.a(n) + |[h(n), h(n + 1)) N A|.

Let ea be the increasing enumeration Af ex: w ™3 A. As in Theorem 1
we will use: If A’ is good forhg a, thenea[A’] is good forh.

If A'is good for (h(2n) : n € w), we defineha: We take an increasing
enumerationi, : n € w) of the infinitely manyi’s such thai[h(2i), h(2i +2))N
Al =1 and sehp(n) = h(2ip + L)oa.

Lemma 1. If f <* g and A is good forg(2n) : n € w) and K is good forga,
then g[A’] is good for f.

Proof. We show that all but finitely many of those infinitely manysuch that
|A" N [ga(n), ga(n + 1))| = 1 there exists somk(n) such that the functiok is
injective and such thgea[A'] N [f (k(n)), f (k(n) + 1))| = 1. We taken such that
|A" N [ga(n), ga(n +1))] = 1 and such that for ak > n, f (k) < g(k). For such
ann, we definek(n) as the uniquek such that the singletosa[A'] N [§(2in +
1), §(2in+1+1)) C [f (k), f (k+1)). We show thaea[A] does not hit f (k), f (k+1))
in [f(k),f(k+1))\ [§(2i, + 1), §(2in+1 + 1)). So we suppose that the latter is not
empty and consider the two cases:

First casef (k) < g(2i, +1) < f(k + 1) < g(2i, + 2). Theng(2i,) < f(k),
and sinceA N [§(2i, + 1), §(2in + 2)) = AN [9(2in + 1),f(k + 1)) # 0, we have
ea[AT N [f(k), §(2in + 1)) C AN [§(2in), §(2in + 1)) =0.
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Second casey(2in+1) < f(k) < g(2ipe1+1) < f(k+1). Thenf(k +1) <
9(2in+1+2) and we haves[ATN[G(2in+1+1), f (k+1)) € AN[G(2in+1+1), §(2in+1t+
2)) =0.

This also shows thék is injective. O

The lemma gives us: If <* g and. ¢ is good for(g(2n) : n € w) and
good forga for A € .2, then{es[A] : A/A" € .4} is good forf, which is just
a more constructive form of the proposition. O (proposition)

Now we get
Theorem 4. b =5 =§=8; A 0 = unif(K) =R, is consistent.

Proof. We start with a model offH and first addX, Cohen reals with finite
support and then we force with the measure algebra '6n called By,. The
Cohen reals increaseand keep the rest a§ (for reference to proofs see [2]).
The random reals increase uidf( while not decreasin@ and not increasing,
becausey, is w* bounding (Lemma 3.1.2 in [2]). O

Now we begin working towards the complementary result.

Definition 2. Define a forcing(Q, <) as follows: Conditions are pair¢o, F),
whereos € w<¥ is strictly increasing and FC [w]¥ is finite. The order is defined
by letting(o,F) < (r,H) iff r Co,H C F and

Vi €lo|\ (Ir]u{0})vac H [[o(i —1),0())Nal# 1

Lemma 2. Leto € w<¥ be strictly increasing and let rk € w. Suppose: is a
Q-name such that-q 1 € w. There exists* < w such that whenever E [w]¥
has size n andlo(|o| — 1),k) nal > 2 for all a € F, then it is not the case that
(0,F) [Fou =i
Proof. Otherwise there exigti C [w]* of sizen such that[o(|o—1),k)Na| > 2
foralla € Fj and ¢,F) |Fop > i, foralli < w. LetF; = {a]-' :j <n}. By
compactness, we may firtl € [w]* andg; C w, ] < n, such that limg a‘-i = g
forallj <n,i.e.

ym3ivi’ e B\i (@ nm=ga nm).

LetKo={j <n:l|g| <w}andK; =n\Ko. Note that|[o(|o| — 1), k) Nnag| > 2
for all j <n. Let
m* = max{max@) +1:j € Ko}.

Find (r,H) < (o,{& :j € Ki}) such that £,H) decidesy, say asio, and
7(|lo|) > m*. Choose > ig such that for alj < n

al nr(7| = 1) =g N7(r| - 1). ()

We claim that t,H UF;) < (r,H) and ¢,H UF;) < (o, F;), which is a con-
tradiction as t,H) and ¢, F;) force contradictory statements abqutThe first
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inequality is clear. For the second we have to show thatdf|r| \ (jo| U {0})
andj < n, then|[7(l — 1), 7(1)) N a]-‘\ # 1. Suppose first € Ko. If | = |o| then
this is true sincer(jo|) > m*. If | > |o|, then f(I — 1), 7(1)) N a]-i = () for the
same reason and by)( Now supposg € Ki. Then|[7(l — 1), 7(1)) nag| # 1
since ,H) < (0,{a :j € Ky}), and hence by« we are done. a

Corollary 1. Suppose that UC w* is unbounded (with respect t*). Then U
is unbounded after forcing with Q.

Proof. Suppose thap is a Q-name for a function inv“. By Lemma 3.5, for
every triple ¢, n, k) € w<¥ x w x w with ¢ strictly increasing we have a function
hsnk € w* such that whenevef C [w]® has sizen and|o(Jo| —1),k)na| > 2
for all a € F, then it is not the case that for sormhe< w, (o,F) ||—q p(l) >
honk(l). Chooseh € w* such thath >* h, , « for all (o, n, k). Findg € U such
thath 2* g. Suppose there were(F) € Q andl* < w such that

(0,F) [Fo VI > 17 p(1) > ¢(I).

Without loss of generality we may assurfid > 0. Letn = |F| and letk be
large enough such thdfo(jo| — 1),a) nk| > 2 for alla € F. Findl > |*
such thath(l) > h, k() and g(I) > h(l). By the definition ofh,,x we
may find ¢,H) < (o,F) such that £,H) H—Qp(|) < hyn(l) and hence
(r,H) |Fa p(l) < ¢(1). This is a contradiction. O

Theorem 5. Itis consistent with ZFC, relative to the consistency of ZF, to assume
max{b,s} < f.

Proof. Let V be a model oZFC + CH, and letk > w; be a regular cardinal.
Let P be a finite support iteration d@ (Definition 3.4) of lengthx, and letG
be P-generic oveV. Then we have tha¥ [G] F b =5 =w; andV[G] F f = k.
The latter is clear by definition of. SinceQ is Suslinccg V N [w]¥ is a
splitting family in V[G] (see [3] for definitions and proofs). By Corollary 3.6
and by Lemma 6.5.7 in [2], every well-ordered unbounded family in w® is
unbounded iV [G]. Hence by theCH in V we conclude/[G] Fb=s =w;. O

5. Finitely splitting

In [4], Kamburelis and Welorz introduce a strengthening of splitting, called
finitely splitting, and show that its norrfs = max@,s). We give a direct con-
struction that shows that > fs. Theorem 5 shows that there is no reverse
construction.

The definition offs is:
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fs = min{]. 4| : .4 C[w]¥ A V partitions=” of an infinite subset ok
into finite sets
JAe . A4EFPeXPNA=0 A I*P e ADP)}.
A family .4 as above is called a finitely splitting family.

Proposition 3. Suppose # is a witness for the computation ¢f,. Then from
.4 we can construct a finitely splitting family of the same size.

Proof. First we take again4’ = {e/[A] : Y,A € .2}, as in the proof of
Theorem 1 and in the proof of Lemma 1. Suppose we are given a partition as in
the definition offs, ” = {P, : n € w}. We take a partition o into intervals

(gk : k € w) such that eachdf, gk+1) contains at least onB,. According to

the proofs of Theorem 1 or of Lemma 1, there &g € .4 and a strictly
increasing sequenad@j, : n € w), such that

3°°n (/[agj,+1, G2j.i+1) NeY[Al] =1 and  |[dy,, Gzj,+2) N ey[A]] = 1).

Now we take an increasing enumeratifiiy o(n) : n € w) of ey[A] for each
AY € .4, and define

B(Y,A) = [J{lbva@n),bya@n+1)) :ncw}
The family {B(Y,A) : Y,A €. ¢} is a finitely splitting family. O

6. Open questions

One can investigate whether the valuef@fan be arranged more arbitrarily:

1. Canf be singular?

2. Is maxg, b) < f < min(o, unif(K)) consistent? Tomek Bartosaski ob-
served that one random real fordes b, hence the combination of constructions
leading to 5 and 4 does not give the desired result.

Nor does doing first 4, say witR; andX3, and then 5, because of the Cohen
reals coming with the finite support iteration Qf adding one Cohen real makes
unif(K) < b by Theorem 3.3.22 of [2].

AcknowledgementWe are very grateful to Andreas Blass for many stimulating discussions.

References

1. A. BLrass, Reductions Between Cardinal Characteristics of the Continudontemp. Math.
192,(1996), 31-49

2. T. BArRTOSzYNsKI, H. JupaH, Set Theory, On the Structure of the Real LiAeK Peters,
1995

3. H. JupaH, S. SHELAH, Souslin Forcing J. Symb. Logic53, (1988), 1188-1207

4. A. KAMBURELIS, B. WEGLORz, Splittings Arch. Math. Logic35, (1996), 263-277

5. P. VoJTAS, Set theoretic characteristics of summability and convergence of s&@sment.
Math. Univ. Carolinae28, (1987), 173-184



