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Abstract

There are inequalities between cardinal characteristics of the contin-
uum that are true in any model of ZFC, but without a Borel morphism
proving the inequality. We answer some questions from Blass [1].

1 Introduction

Vojtas [7] introduced a framework in which cardinal characteristics of the
continuum can be regarded as norms of corresponding relations A = (A_, A, A)
with A_JA, C2¥ AC A_ x A, and the norm

[|Al| =min{|Z] : ZC Ay AVz e A Fze€ Z A(z,2)}.

A Galois-Tukey connection from a relation B to a relation A, which we call
as in [1] a morphism from A to B (— notice the different direction —), is a

pair of functions («, ) such that
a : B_.—A_,
,8 . A+ — B_|_,
Vbe B_Va€ Ay (A(a(b),a) — B(b,B(a))).
If there is a morphism from A to B, then ||B|| < ||A||, and indeed the proofs

of the inequalities usually exhibit morphisms between the corresponding re-

lations. Following Blass [1], we call inequalities correct if they are true in
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every model of ZFC, and the other ones incorrect. A result of Yipariki in
[8] shows, that there may be morphisms corresponding to incorrect inequal-
ities. These morphisms are not absolute between different models of ZFC,
of course, and on the other hand many of the morphisms used in the proofs
of well-known correct inequalities e.g. of those in the Cichon diagram, are
Borel functions on Borel domains, which we will call Borel morphisms.

Some inequalities are proved by Borel morphisms between products or
more complicated compositions of the given relations, and Blass [1] conjec-
tures that there are no Borel morphisms between certain unsplitting rela-
tions, defined in the next paragraph. We prove a strengthening his conjec-
ture and some related theorems.

We deal with the unsplitting relations: For n > 1, we have

R, = (n’[w]“,{(f,Y) : f is almost constant on Y'}),
R! = (0¥ [w]“,{(f,Y) : fis constant on Y}),

= [[Rall,

4 = IR}l

(f is almost constant on Y if there is a finite Yy C Y such that f is con-
stant on Y \ Yp.) to is the usual unsplitting number. It is easy to see that

ty = t, = th = for m,n > 2.

Blass gives a notion of sequential composition (see 1.3 for the definition)
of two copies of Ro, called Ro; Ry, and a Borel morphism from Rs;Ro to
Rj3. This proves o > t3. The same procedure works also in the f-version.
Is the notion of sequential composition necessary for the goal to have Borel

morphisms? We give an affirmative answer.

Theorem 1.1 For n > m, there is no morphism («, 3) with a Baire mea-
surable o (and arbitrary B) from RE, to R,

Theorem 1.2 For m > 1,n > 2, there is no morphism («, 3) with a Baire

measurable a from R, to RY,.

The next two theorems say that the notion of category-product and the
older notion of component-product are weaker than the sequential compo-

sition. Let us first define the three notions:



Definition 1.3 For two relations A and B the category-product, the compo-
nent-product and the sequential composition are given by (where U denotes

the disjoint union):

AxB = (A UB ,A; x By,
{(¢,(a,b)) : (c€ A_ N A(c,a)) V (c € B_ AB(c,b))}),
A Xeomp B = (A x B, Ay x By, {((c,d),(a,b)) : A(c,a) A B(d,D)}),
A;B = (A x MB_ AL x By, {((c,p),(a,b) : Alc,a) A B(p(a),b)}).

Theorem 1.4 For n > m, £ > 1, there is no morphism (o, ) with a Baire
measurable o from the £-fold category- or component-product of copies of

R} to RE.

Theorem 1.5 Form > 1,n > 2, £ > 1, there is no morphism («, 8) with a
Baire measurable a from the £-fold category- or component-product of copies
of Ry, to RE.

Our proofs leave open the following conjecture:

Conjecture 1.6 For n > m, there is no morphism («,) with a Baire

measurable o (and arbitrary ) from Ry, to R,,.
The following theorem is closely related to the conjecture.

Theorem 1.7 n > m > 1. There is no pair of functions «, such that
a:n® — m¥ is Borel and B: [w]¥ — [w]¥ and Vfy, f1 € n¥ VX € [w]¥

(a(fo))X = a(fi)}X = fol B(X) =" f1}B(X)).

The theorems above are proved in section 2. In the third section, we
investigate unsplitting relations with modified domains and get some results
on the point where non-existence of morphisms with a Baire measurable first

component changes to existence of Borel morphisms.

Notation: We give some notation concerning trees, finite sequences, etc.
C and D denote the proper relations. D<¥ = {¢ : 3h € w t:h — D}.
[D* ={X CD : |X| =w}. TCn¥isa tree, if (Vt € T)(Vs € n<¥)
if s C t then s € T. The h-th level of a tree T, T)h = T Nwh. T is an



w-tree, if T # P and (Vs €e T)(3t € T)t D s. t € T C n<¥ is a branching
point of T if ¢y # ¢1 € n t°¢; € T. For an w-tree T, the set of branches
of T'is [T] = {f : Vh f}h € T}. For s € n<¥, we have the basic open sets
[s] ={f €n¥ : f D s} and the restricted trees Ts = {t € T : t D s}. V®
means for all but finitely many, 3°° means there are infinitely many, and for
fyg € n¥, we write f =* g iff V*°h f(h) = g(h).

Acknowledgement: I would like to thank Andreas Blass for many
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2 The Proofs

Suppose a:n“ — m* is Baire measurable, i.e. for every open set C in m®
there is an open set D in n* such that the symmetric difference (f~1"C)AD
is meager is n“. The following three steps can be used in the proofs of all
the above theorems, though theorem 1.2 has also a shorter proof avoiding
the work in the first step below and applying the Lebesgue density theorem
[5] instead.

First step: Restriction to suitable domains.

We use the following lemma of Kuratowski [3]:

Lemma 2.1 Let X and Y be topological spaces, and Y have a countable
base. For every Baire measurable function f: X — Y there is a comeager
set C C X such that f}C is continuous (w.r.t. the subspace topology on C
induced by X ).

We apply this to « and get a comeager C C n¥ such that «}C is contin-
uous. We take nowhere dense H;, i € w, such that n* \ C' = U;¢,, H;-

We now choose by induction on ¢ an increasing sequence ng = 0 < mgp <
ny...<n; <m; <njpy <migq...and s [ng,m;) = n, t:[mi,nip) — n.

Suppose n; is chosen. Then we take m; > n; and s;: [n;, m;) — n such
that H; N {f € n* : f)[ni,m;) = s;} = 0. (The existence of such m;, s; is
proved in [6], théoréme 21.) Now we take n;y1 > m; and t;: [mi, niy1) = n
such that H; N {f € n* : f}[m4,niy1) = t;} = 0. This ends the induction.



We define

To = {sen<¥:Vi(m; <Ih(s) = s)[ni,m;) = s;)},
T = {sen<¥ :Vi(ng1 <1lh(s) = s}[ms,ni1) =t)}-
Since [T;]NU;e,, Hi = 0, the a}[T}] and hence a}([Tp] U [T1]) are continuous.

For later use, it is important that the T} are fully branching on two sets of
levels that combine to w: Yk € U, [ni, mi)Vt € Ti}kVj <nt'j € Ti)(k+1),
and Yk € Ujc,[mi,nit1) VE € Tolk Vi <nt'j € To)(k + 1).

Second step

Since a}([Tp] U [T}]) is a continuous function with a compact domain,

there is an increasing sequence (k, : u € w) such that there is a function

g: U U Tty — m,

such that Vf € [To] U [T1] Vu € w a(f)(u) = g(fku)-

Third step: Selecting a subset of m that appears densely often in 7).

3 subsequence (ky, : v € w), Mj Cm for j = 0,1, rj € Tj}ky, such that
Vt € (Tj)r;Vhu, 9" ((Tj)ethku, 1) = M;.
This follows from
VW € [w]*3V € [W]“3IM C m 3rj € Tj Vt € (Tj),; Vv € V ¢"((T))elv) = M.

We set
X ={uy : v € w}.

End of the proofs of theorems 1.1 and 1.4

Now let n > m. We are looking for an X' such that 8(X') cannot be
defined if it has to respect the morphism property. The following is sufficient
for this aim: 3X’ V infinite B(X’) 3fo, f1 I € B(X') \ {min(8(X"))} foll =
fiM and fo(£) # f1(¢) and a(fo)} X' and a(fi)} X’ are constant. This is

provided by the next lemma.



Lemma 2.2 35; C T}, g;: X — M, such that S1 has a branching point
on each level in U;c,[ni,m;) and Sy has a branching point in each level in
Uiew[mi; nit1) and

Vf € [Sj] a(/IX = g;.

Proof: Independently for each j, by induction on v € w, we construct
Sj}ky, - We begin with S;}k,, = r;. Suppose S;}k,, is constructed, we take
an arbitrary r out of this set. We select a good “color” g;(uy+1) € M; such
that more than m points ¢ in (T}),}ky,,, and at least one point out
of each (T}),Vku, 1,7’ € Sjlky,, fulfill g(t) = gj(uy+1). We put these points
into S}k, ;-

Every level of (S0)r}ku,y, in [Kuy,kuypy) N Usewlmi, nig1) has a branch-
ing point, since otherwise in (So);kq,,, there would be at most 1 times the
maximal number n?, z = card([ky, , ku,,,) N Ujcn[Mi; nit1)) points. Similar
for S;. O

We remark that 2.2 proves the weaker version of theorem 1.7 gotten by

leaving out the * on the right hand side.

In order to finish the proof of 1.1, we take an infinite X’ C X such that
card((go,91)"X") = 1. Then for all f € [Sp] U [S1] the restriction a(f)} X" is
constant, but there is no infinite 5(X’), even no set with more than three
elements > ky,, such that all f € [Sp] U[S1] are constant on B(X'). Thus

theorem 1.1 is proved.

The proof of theorem 1.4 is finished by the following observation:

Suppose a = (ap,as,...ap_1):n? — (M), X € (W, (X; : i < £)
a partition of X into infinite parts, g;: X — M;, S; C n<Y are as above,
Vi < eVf € [S;] ei(f)}Xi = g;)Xi. Such an X' and X are provided by
applying the second and the third step to a (thus getting maybe different
M;) and mixing the «;, ¢ < £, in a suitable way in lemma 2.2. Then for
any X| € [X;]¥ with card((go,¢1)"X]) = 1, there is no infinite ¥ such that
Vf € [So]U[S1] (ai(f) is constant on X for all 4 < £ — f is constant on Y').

End of proofs of theorems 1.2 and 1.5

We do not construct any trees at all, only two special branches of [T] U



[T1]. The premise is n > 2. Then
VB € [w]¥ 3j € 2Ve € M; 3fo, f1 € [T}] Fu 3t € BN [ky, kyt1)

fol = f1} A fo(8) # fr(0) AVw € X\ (u+1) a(fo)(w) = a(fi)(w) =c.

Just construct starting with a branching point ¢ € B two branches, similar
but easier then lemma 2.2.

An easier way is the following: We choose any closed set [T] such that
a}[T] is continuous, and for any ¢ € T, the closed set [T;] has Lebesgue
measure greater than zero. Then we apply the Lebesgue density theorem

[5] and get (with the analogous properties of k,,, M, X, for T'):
VB € [w]* Ye € M 3fo, f1 € [T] Fu 3 € BN [ku, kus1)

fol= f1} A fo(8) # fr(0) AVw € X\ (u+1) a(fo)(w) = a(fi)(w) =c.

The modification of the proof of 1.2 towards a proof of 1.5 is very similar
to what we did for 1.4.

End of the proof of theorem 1.7

Now we use again n > m and proceed similar as but more carefully than

in the proof of lemma 2.2. We claim:
VB € [w|¥ 3B € [B|¥3j €2 3fy, f € TV € B’

fo€) # f1(&) A a(fo)l X = a(fi)}X.

This is proved by chosing f;}k,, by induction on v. B’ is a set containing
one point out of each nonempty B N U;c, [ni;ms) N [ku,, kuyyy), v € w, if
there are infinitely v such that this is nonempty, otherwise, one point out
of each nonempty B N U;c,[mi, nit1) N [Fuys Fuyrr), v € w. We use that
the proof of lemma 2.2 allows in the successor step the choice of r and take
r = folky, and determine fo}k,,,, such that in addition to the requirement

g(f()}kuu+l) = g(fl}kuqH—l) the nonequality fﬂ}kuvﬂ (e) v flTkuM—l (e) is true
if £ € B’ has to be considered in the step from v to v + 1.



3 Boundaries

In this section we consider some instances of the following generalization
of the problem. Given two spaces A_, B_ of functions with domain w: Is
there a Borel a: B — A_ such that there is a 8:[w]¥ — [w]¥ such that
Vf e B_VX € [w]“: If a(f) is constant on X then f is constant on (X).

Our example is a sharp result in the case n = m + 1: We set B_(n) :=
{sen?: 3k s(k) =n—1} and B(n) :={s € n<¥ : ISk s(k) =n — 1}.

Theorem 3.1 Suppose n > m > 1. We endow B_(n) with the topology of
n¥. Then there is no Baire measurable a: B_(n) — m¥ and f: [w]¥ — [w]¥

such that

VfeB_(n) VX € [w]Y: If a(f) is constant on X, then f is constant on B(X

The proof refers heavily to the method shown in section 2. We give only
the parts that are sharper than the steps in the previous section. W.l.o.g.,
we assume 1 = m + 1, otherwise 3.1 is contained in 1.1.

First we choose Ty and 77 more carefully than in section 2, such that
m & U;e, range(s;) U range(t;): We take Hy;, ¢ € w, such that Hy C
“ is nowhere dense in m* and a}m® \ U;c, H2; is continuous. We take
Hyi1 C B _(n)\ m* nowhere dense in B_(n) \ m* such that a}B_(n) \

(m* U U;e,, Hoit1) is continuous. Then the s; and ¢; can be chosen with

m

the properties as in the previous section and the additional requirement
m & U;e,, range(s;) U range(t;).

We code the continuous part of « as usual into a function g and we
modify the considerations in the third step: For each j € 2, either there are
r; € B(n) \ m<¥, M; # m, (ky, : v € w) with the described properties, or

there are r; € m<¥, M; C m, (ky, : v € w) such that

Vv € w (Vt € (Tj)rj}kuv (g”((Tj)t}kuvH) 2 Mj) N
Vt € (Tj)r; ku, VM= (¢"((T))ehku, 1) = Mj)).

Now we select a homogeneous subtree S; of T; by homogenizing on the
levels in some set {k,, : v € w} (notation from section 2). We assume that

we are in the second case, the first case is treated in 2.2. We fix some j.

).



Since T} has less branching than the trees of section 2, we have to sharpen
lemma 2.2. In order order to avoid clumsy indices, we forget the levels
without any splitting in Tp or in 77 and work with one tree T' = B(n): Since
r; € m<“ and m ¢ |

obvious manner we get them isomorphic to B(n). Hence it is easy to see

range(s;) U range(t;), by squashing (Tj),; in an

S
that the following lemma finishes the proof of theorem 3.1.

Lemma 3.2 Suppose g: B(n) - m, (ky, : v € w), M C m are such that

Voew (V€T hu, (¢"(Tihkuyy,) 2 M)A
Yt € (T Vhuy 1= (g"(T5)iM ) = M)

As above, we set X = {uy : v € w}. Then IS C B_(n), go: X — M such

that S has a branching point on each level and
Vf € [S]Vv € w g(flku,) = go(uw)-
Proof: In addition to S having a branching point on each level we require:
Vh € w (S}h) NmM # 0.

To start the induction, we take () € S.

Induction step: We suppose that level £ of S is chosen, say {sg, s1...5s,},
and that r = sg € S Nm¢. Let £ = ky,,, = £+ d be the next height.

Now the selection of a “right color” go(uy+1) and the corresponding
points in S} is split into two cases.

First case: Among the t € B(n),}¢' of a color ¢ € M appearing most
often in this set, there is some ¢ € m¥. We take all the points of such a
majority color ¢ into the £'th level of S. In the other (B(n))s, we take some
point or all points of color ¢ into S}#'.

If there were any level between £ and ¢ — 1 that did not contain a
branching point, then there would be strictly less than an % of the points

in B(n),}¢' left in S;}¢'. This is shown by the following calculation:

card(B(n), M) = mi4+m®-mé ' +m-m? 2. 4 m¢ .m0

= mé Ym+d).



If S, had one level between £ and ¢ — 1 without any splitting point and were
everywhere else maximally splitting (for any subtree, we get less or equal in

the following equation), then
card(S,)¢") =m® 2. (m+d—1),

which is strictly less than

cardB),l _ a2y 4 )

and hence contradicting the choice of the color c.

Second case: Not the first case. Then all colors in M appearing most of-
ten in B(n),}¢' do appear in B(n),}¢'\m’ . Hence in B(n),}¢'nmt = (m?),
there are at most m — 1 colors and the argumentation for full trees applies.

Again we take for any other s; some point of the chosen color into S, }¢/. O

Remark: For example B_(m+1)(K) :={f € B_(m+1) : Vk > K f(k) €
m}, K € w shows that {B_ : 3 a morphism («, 8) with Baire measurable

w w «

a from (m¥,[w]¥,“is constant on”) to (B_,[w]¥, “is constant on”)} is not
closed under countable unions. A moment’s reflection shows that is is closed
under finite unions. The same is true for Borel « and continuous «, because
for each K, there is a trivial morphism with continuous « to the relation
restricted to B_(m + 1)(K).

The example of B_(m + 1) also shows that the non-sharp and the sharp
unsplitting relations behave different with respect to the existence of Borel

morphisms.
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